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Abstract. The dependence of the classification error on the size of a
bagging ensemble can be modeled within the framework of Monte Carlo
theory for ensemble learning. These error curves are parametrized in
terms of the probability that a given instance is misclassified by one
of the predictors in the ensemble. Out of bootstrap estimates of these
probabilities can be used to model generalization error curves using only
information from the training data. Since these estimates are obtained
using a finite number of hypotheses, they exhibit fluctuations. This im-
plies that the modeled curves are biased and tend to overestimate the
true generalization error. This bias becomes negligible as the number of
hypotheses used in the estimator becomes sufficiently large. Experiments
are carried out to analyze the consistency of the proposed estimator.

1 Introduction

In many classification tasks, bagging [1] improves the generalization performance
of individual base learners. However, due to need of repeated executions of the
underlying algorithm, the computational requirements to estimate generaliza-
tion error of this algorithm by traditional statistical techniques, such as cross
validation, can be quite expensive. In order to address this problem we investi-
gate the properties of an efficient estimator based on the Monte Carlo approach
to ensemble learning developed in [2–4]. Assuming that the probability of select-
ing a hypotheses that misclassifies a given instance is known, the average error
on that instance of a Monte Carlo ensemble of arbitrary size can be computed
in terms of the binomial distribution [2–4]. Using this analysis, it is possible
to model error curves that describe the error of the ensemble as a function of
the number of predictors in the ensemble. In this work we propose an out of
bootstrap estimator for the generalization error of a bagging ensemble based
on computing the misclassification probabilities on out of bootstrap data. The
estimator is shown to be biased. Nonetheless, the bias component decreases as
the size of the ensemble used to perform estimations grows.



2 Monte Carlo Ensemble Learning

Monte Carlo (MC) algorithms [5, 2–4] provide a useful framework for the analysis
of learning ensembles. In order to introduce some notation and basic concepts,
we provide a brief review of Monte Carlo algorithms applied to classification
problems.

A Monte Carlo algorithm is a stochastic system that returns an answer to
an instance of a problem with a certain probability. The algorithm is consistent
if does not generate two different correct answers to the same problem instance.
Different executions of the algorithm are assumed to be statistically independent,
conditioned to some known information (in classification, this known information
is the training data). A Monte Carlo algorithm is said to be α-correct if the
probability that it gives a wrong answer to a problem instance is at most p =
1−α. The advantage of such an algorithm is defined to be γ = α− 1

2 = 1
2−p. The

accuracy of a consistent Monte Carlo (MC) algorithm with positive advantage

can be amplified to an arbitrary extent simply by taking the majority answer of
repeated independent executions of the algorithm. In B independent executions
of the algorithm, the probability of b failures follows a binomial distribution

Pr(b) =

(

B

b

)

pb(1 − p)B−b. (1)

Assuming that B is odd, the answer of the amplification process would be wrong
only if more than half of the responses of the base algorithm were wrong. The
probability of such an event is

π(p, B) =
B

∑

b=⌊B
2 ⌋+1

(

B

b

)

pb(1 − p)B−b. (2)

If p < 1
2 and B → ∞ (2) tends to 0 or, equivalently, the probability of a correct

output from the algorithm tends to one. On the other hand, if p > 1
2 , the

algorithm does not asymptotically produce a correct answer.
Consider a binary classification learning problem characterized by the fixed

joint probability distribution P(x, y), where x ∈ X ,and y ∈ Y = {−1, +1}. For
simplicity, X is assumed to be discrete and finite with cardinality N . This in
turn implies that the space of hypothesis H is also finite with cardinality J . The
results can be readily extended to continuous infinite spaces. In these conditions
Table 1 summarizes the performance of a set of hypotheses H. The nth row
in this table corresponds to the nth vector xn ∈ X , which has a probability
P(xn). The jth column corresponds to the jth hypothesis hj ∈ H, which has a
probability qj of being applied. The element ξj(xi) ∈ {0, 1} at row i and column
j of the inner matrix is an indicator whose value is 1 if hypothesis hj misclassifies
instance xi and 0 otherwise.

To classify instance x, the Monte Carlo algorithm defined in [4] proceeds by
selecting one hypothesis hj from H with probability qj . It then assigns the class



label hj(x) ∈ Y. Elements on the right-most column of Table 1 are defined as

p(xi) =
J

∑

j=1

qjξj(xi), (3)

where p(xi) is the probability of extracting a hypothesis that misclassifies in-
stance xi. With this definition, the algorithm is (1 − p(xi))-correct on xi. If
p(xi) < 1

2 then, the advantage of the algorithm on instance xi is strictly pos-
itive. This means that we can amplify the answer to this instance by running
the algorithm B times and taking a majority vote among the classifications gen-
erated. However, if p(xi) > 1

2 this same procedure would actually worsen the
results and make the probability of generating a right answer tend to zero.

If all the hypotheses in H are available, the classification produced after B
executions of the algorithm is a random variable whose average is

H(x) = sign





J
∑

j=1

qjhj(x)



 . (4)

As B → ∞ the distribution of this random variable becomes more peaked around
this mean. The expected error of the Monte Carlo algorithm is

E(B) =
∑

x∈X

π (p(x), B)P(x), (5)

where π (p(x), B) is given by (2). The limit of the error as B approaches ∞ is

E∞ = lim
B→∞

E(B) =
∑

x∈XA

P(x), (6)

where XA = {x ∈ X : p(x) > 1
2} is the set of instances over which the algorithm

cannot be amplified.
As noted in [4] bagging and the Monte Carlo algorithm we have just described

are closely related. Assume that a labeled training dataset T (tr) = {(xi, yi), i =
1, . . . , Ntr} is available. Suppose that H is the set of hypotheses that can be gen-
erated by training a base learner on independent bootstrap samples extracted

Table 1. Elements in a Monte Carlo Ensemble Algorithm.

h1 h2 · · · hJ

q1 q2 · · · qJ

x1 ξ1(x1) ξ2(x1) · · · ξJ(x1) p(x1)

x2 ξ1(x2) ξ2(x2) · · · ξJ(x2) p(x2)
...

...
...

. . .
...

...

xN ξ1(xN ) ξ2(xN) · · · ξJ(xN ) p(xN)



from the original training data. Bagging can be described as a Monte Carlo
algorithm that first draws B hypotheses from H at random using a uniform
probability distribution, and then uses the same B hypotheses to classify all
data instances. From a statistical point of view, when classifying a single in-
stance x, the Monte Carlo algorithm described and bagging are equivalent. This
observation means that Table 1 can also be used to analyze the generalization
properties of bagging.

In particular, it can be shown [4] that the expected error of bagging with B
hypotheses is given by (5). This expression provides a model for the error curves
of bagging ensembles. These curves display the dependence of the classification
error as a function of the ensemble size. In [4] the test and train error curves
are modeled using (5), where the values of p(x) and P(x) are estimated on the
training and test samples, respectively. In the present investigation it is shown
that the generalization error curves can be can be modeled using information
only from the training data by computing bootstrap estimates of p(x) in (5).

3 Error Curves for Bagging Ensembles

Ensemble methods such as bagging [1] have demonstrated their potential for
improving the generalization performance of induced classifier systems. The suc-
cess of bagging is related to its ability to increase the accuracy of a (possibly
weak) learning algorithm A. Bagging constructs a set of different hypotheses
H = {hm; m = 1, 2, . . . , M} using in the learning algorithm A different surro-

gate training sets
{

T
(tr)

m ; m = 1, 2, . . . , M
}

obtained by bootstrap sampling from

the original training data T (tr) [6]. Provided that the base learning algorithm is
unstable with respect to modifications in the training data, this procedure has
the effect of generating a set of diverse hypotheses. Each instance is then classi-
fied by using majority voting scheme. If the errors of the different base learners
are not fully correlated, the composite hypothesis should have a lower error than
the individual hypotheses. Experimental analysis of bagging is given in [7–10].

As described in Section 2, the dependence of the classification error of a
bagging ensemble on its size can be modeled within the framework of Monte
Carlo theory for ensemble learning. The analysis is based on averages computed
using the elements of Table 1. Assume that H is the set of hypotheses included
in a bagging ensemble of size M . The classification error of a bagging ensemble
of size B on a given dataset T = {(x1, y1), . . . , (xN , yN )} can be estimated using

ET (B) =
1

|T |

∑

xi∈T

π(p̂(xi), B), (7)

which corresponds to (5) with P(x) replaced by the empirical distribution of the
examples in T and with the value of p(xi) estimated on H as

p̂(xi) =
1

M

M
∑

m=1

ξm(xi). (8)



The indicator ξm(xi) is the error of each hypothesis hm ∈ H on instance xi ∈ T .
Note that B and M can be different. That is, one can use the hypothesis in the
bagging ensemble of size M to estimate the generalization error of an ensemble
of arbitrary size B. Because (7) has a smooth dependence on B it can be used
to estimte the convergence level of bagging with B hypotheses. In fact one can
take B → ∞ to approximate the asymptotic limit of the error of bagging.

3.1 Bias Analysis

The estimator of the ensemble error ET (B) given by (7) is biased because the
value of M , the number of hypotheses used to estimate p(xi), is finite. In contrast
with B, whose value can be made arbitrarily large, M is at most as large as
the size of the bagging ensemble constructed. The dependence of the bias of
E(B) with M can be estimated within the Monte Carlo framework. The value
computed in (8) using a set of hypothesis of finite size M is a realization of a
random variable p̂(xi) that follows a binomial distribution with parameter p(xi).
The average of (7) over this random variable is

Ep̂(x) [ET (B)] =
1

|T |

|T |
∑

i=1

Ep̂(xi) [π(p̂(xi), B)] , (9)

where, for an ensemble of size M ,

Ep̂(xi) [π(p̂(xi), B)] =

M
∑

m=0

(

M

m

)

p(xi)
m(1 − p(xi))

M−mπ(
m

M
, B), (10)

As a result of the non linearity of (2), the value of (10) need not be equal to
π(p(xi), B). Fig. 1 (left) illustrates this effect. The discontinuous curves corre-
spond to (10) and display the expected value of the estimator of the ensemble
error on a single instance as a function of p(xi) for different values of M . The
continuous line plots the M → ∞ limit of the discontinuous curves, which corre-
sponds to π(p(xi), B). The graphs are drawn for an ensemble of size B = 1001.
Similar results are obtained for different values of B. In the limit B → ∞ the
M = 1 curve remains unchanged (a straight line) and the M → ∞ curve tends
to a step function.

This figure illustrates that for M > 1 and a fixed value of B the Monte Carlo
amplification is more effective the further the value of p(xi) is away from 1

2 . For
a given value of p(xi), the bias of the finite M estimate is the vertical distance
between the corresponding (discontinuous) line and the continuous one. The
smaller the values of M the larger the variance of p̂(xi), and, in consequence,
the larger the bias of the estimator. The sign of the bias is positive for p(xi) < 1

2
and negative for p(xi) > 1

2 . Since examples correctly classified by the ensemble
of size M have p(xi) < 1

2 and incorrectly classified examples have p(xi) > 1
2 ,

some bias cancellation should be expected when computing (7). Assuming that
the ensemble error rate is smaller than 1/2, the total bias for finite M is typically
positive.
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Fig. 1. (left) Expected value of π(ρ(xi), B) as a function of the true misclassification
probability p(xi) for B = 1001 and different values of M . Discontinuous lines corre-
spond to finite values of M . The continuous line corresponds to the M → ∞ curve,
π(p(xi), B). (right) Ensemble error measured over a test set (continuous) and out of
bootstrap estimation computed by means of (7) and (11) (discontinuous).

As a result of the reduction in the variance of p̂(xi) the bias component can
be made arbitrarily small provided that sufficiently large ensembles are used.
Therefore the estimator (7) is consistent in the limit M → ∞. In particular, if
one wishes to estimate the error of a subensemble composed of B ≤ M different
hypotheses extracted at random from the original ensemble of size M one should
use all the M elements in the original ensemble to compute (8).

3.2 Out of Bootstrap Estimation

In this section we propose an out of bootstrap estimator for the generalization
error of bagging ensembles of arbitrary sizes. In bootstrap sampling examples are
selected at random from the original set with replacement. On average, 36.8%
of the extractions in a bootstrap sample of the same size as the original set
correspond to repeated elements. This means that there are 36.8% examples in
the original set which are not present in a particular bootstrap sample. Out
of bootstrap techniques take advantage of these data to perform estimations of
the generalization properties of the predictors constructed with the bootstrap
sample.

Estimates of the generalization error of bagging ensembles based on out of
bootstrap data have been considered in [11, 12]. In [11] a bias-variance decompo-
sition of the generalization error of bagging ensembles for regression problems is
carried out. Out of bootstrap data is used to estimate the bias component of the
error, which is equal to the asymptotic error of the ensemble. In [12] out of boot-
strap data is used to estimate the generalization error of bagging ensembles. The
classification error for a given instance in the original training set is estimated
using only the classifiers trained with bootstrap samples that do not include such
instance (on average, 36.8% of the total ensemble members). The generalization
error of the ensemble is obtained by averaging these error estimates for single



instance over the whole training set. Notice that this procedure provides only a
single estimate, while the estimator proposed in the current article models the
complete error curve. The estimator proposed in [12] is a particular case of the
one given in the present work. Breiman’s estimator is recovered when all the hy-
potheses in the ensemble are used for the estimation of (8), and the asymptotic
limit B → ∞ of (7) is taken.

Error curves estimated on the training set typically underestimate the true
generalization error. To avoid this training bias, it is possible to give an estimate
EV AL(B), where (8) is computed using a validation set independent of the train-
ing data. Alternatively, an out of bootstrap estimator EOB(B) that uses only
training data can be designed. For each instance in the training set xi ∈ T (tr),
p(xi) is estimated as the average of ξm(xi) over the set of hypotheses trained on
bootstrap samples that do not include xi

p̂(xi) =
1

∣

∣H\i

∣

∣

∑

hm∈H\i

ξm(xi), (11)

where H\i = {hm : hm ∈ H, (xi, yi) /∈ T
(tr)

m }. The set T
(tr)

m is the bootstrap

sample of T (tr) used to train hm. On average H\i contains 36.8% of the initial
hypotheses in bagging . The out of bootstrap estimate proposed in [12] corre-
sponds to the limit B → ∞ and is given by (6) with p(xi) estimated by (11).

Fig. 1 (right) displays generalization error curves of a bagging classification
ensemble for the synthetic problem Twonorm, as a function of its size. The
ensemble is trained using Ntr = 300 labeled instances. The continuous line traces
the actual error on an independent test set with Ntest = 1000 elements. The
dashed line corresponds to EOB(B) estimated on M = 370 bagging hypotheses
using out of bootstrap data. Note that the proposed out of bootstrap estimator
(7) has a smooth dependence on B.

4 Experiments

In order to assess the reliability of the proposed out of bootstrap estimator ex-
periments are carried out in several real world and synthetic binary classification
problems from the UCI repository [13] (see Table 2). Each real world problem
data set is split into three subsets: train, validation and test. The size of the
training set is set to 4

9 of the total data while the size of the validation and
test set are set to 2

9 and 1
3 respectively. For the synthetic problems Twonorm

and Ringnorm, train, test and validation sets are randomly built as described in
Table 2. The validation set is used to provide an independent check on whether
using out of bootstrap data has an undesired effect in the estimation of the
misclassification probabilities p̂(xi).

The experimental protocol consist of the following steps:

(i) Data examples are partitioned at random into train, validation and test sets.
(ii) A bagging ensemble of 1000 CART trees [14] is built using the training set.



Table 2. Description of the problems and data sets used in the experiments.

Problem Train Test Val. Classes

Ringnorm 300 1000 300 2

Twonorm 300 1000 300 2

Sonar 63 69 49 2

Ionosphere 156 117 78 2

Breast 310 233 155 2

Pima 341 256 171 2
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Fig. 2. Average ensemble error as a function of the ensemble size for the classification
problem Twonorm. Plotted curves depict test set error alongside with out of bootstrap
(left-hand side) and validation (right-hand side) estimates of the generalization error
for different values of M .

Table 3. Averages and standard deviations of the validation and out of bootstrap
estimates of the generalization error and test errors (in %) for bagging ensembles of
size B = 1000.

Ringnorm Twonorm Sonar Ionosphere Breast Pima

M = 18 VAL 14.8±3.4 12.0±3.2 28.5±7.2 10.6±3.7 5.3±2.1 25.6±3.2

M = 50
OB 14.9±1.9 12.2±2.1 28.8±5.1 10.5±2.2 5.2±1.0 25.5±2.1

VAL 13.2±3.4 10.2±3.2 27.9±7.1 10.3±3.8 5.1±2.0 25.5±3.1

M = 135
OB 13.5±2.0 10.5±2.3 27.9±4.8 10.2±2.1 5.1±0.9 25.4±2.0

VAL 12.8±3.2 9.5±3.1 27.6±6.9 10.21±3.8 5.1±1.9 25.4±3.2

M = 368
OB 12.9±2.0 9.8±2.3 27.8±4.8 10.1±2.2 5.0±0.9 25.3±2.0

VAL 12.6±3.3 9.3±3.2 27.5±6.8 10.1±3.8 5.1±1.9 25.4±3.1

M = 103 OB 12.8±2.0 9.5±2.6 27.7±4.7 10.1±2.2 5.0±0.9 25.3±2.0

VAL 12.5±3.3 9.2±3.1 27.4±6.8 10.1±3.7 5.1±1.9 25.4±3.2

Test Error 12.4±3.1 9.2±3.0 27.7±5.7 9.9±3.2 5.1±1.6 25.4±2.5

(iii) Estimates of the error by the procedure described in Section 3.2 are com-
puted for subensembles of different sizes (B = 1, 2, . . . , 1000). A first set of
out of bootstrap estimators (OB) that use out of bootstrap data is built



using a random selection of M = 50, M = 135, M = 368 and M = 1000
trees from the ensemble generated in (ii). A second set of validation estima-
tors (VAL) is constructed using validation data and a random selection of
M = 18, M = 50, M = 135, M = 368 and M = 1000 trees from the en-
semble built in (ii). Note that the out of bootstrap estimate effectively uses
only 36.8% of the classifiers to estimate a given value of p(xi). This means
that the out of bootstrap estimator with MOB trees should be compared
with the validation estimator that uses MV AL ≈ 0.368 MOB trees, so that
both estimators are computed on the same effective number of hypotheses.
In fact, the values M1 = 18 M2 = 50, M3 = 135, M4 = 368 and M5 = 1000
are chosen so that Mi−1 = round(0.368 Mi), starting from M5 = 1000.

(iv) Finally, the error in the test set is calculated for subensembles containing
the first B elements of the bagging ensemble generated in (ii), with B =
1, 2, . . . , 1000.

The curves plotted and figures reported correspond to averages over 500 itera-
tions of the steps (i)-(iv) for each problem.

Fig. 2 depicts the ensemble error as a function of ensemble size (B = 1, 2, . . .,
1000) for the classification problem Twonorm. The continuous lines correspond
to test set errors. The discontinuous lines are out of bootstrap (on the left-hand
side) and validation estimates (on the right-hand side) of the generalization
error with different values of M . Note that, in agreement with the results of
Section 3.1, the bias of the Monte Carlo estimators in (2) becomes smaller as M
increases and is fairly small for M = 1000 in all problems. As predicted, the error
curves for the pairs MOB = round(0.368 MV AL) are very similar. Finally, we
point out that the bias of the estimator is typically positive. This is because, on
average, the misclassification probabilities of the base learners over the problem
instances are smaller than 1

2 as shown in Section 3.1. The error curves for the
other classification problems exhibit similar features.

Table 3 summarizes the values for the different estimators of the ensemble er-
ror with B = 1000 and different values of M . The values tabulated are the mean
and standard deviation over 500 executions carried out with different random
partitions of the data. The average and standard deviation of the error on the
test set are displayed in the last row of the table. These results illustrate that for
sufficiently high values of M the out of bootstrap method provides a consistent
estimate for the generalization error of the ensemble. The values displayed in
boldface correspond to cases in which the difference between the expected value
of the error estimate and the actual test error is not statistically significant at a
confidence level of 1%.

As expected, for MV AL = MOB the validation estimator is more accurate
than the out of bootstrap one. This behavior is particularly noticeable in the
synthetic problems Ringnorm and Twonorm. However, the average estimates for
MV AL = 0.368 MOB are similar. Variances are roughly independent of M . They
tend to be smaller for EOB because of the presence of correlations between the
out of bootstrap estimates of the misclassification probability of the different
training examples [15].



5 Conclusions

An estimator of the generalization error for bagging ensembles of arbitrary size
has been developed within a Monte Carlo framework for ensemble learning. This
framework allows to model the dependence of the ensemble error with smooth
curves parametrized in terms of estimates of the probability that an ensemble
member misclassifies a given example. The method proposed in this work com-
putes these estimates on the out of bootstrap data, using information only from
the training data. This avoids setting apart an independent dataset for valida-
tion. These estimates can be calculated efficiently, avoiding the cost of classical
ensemble generalization error estimation techniques like cross validation.

Estimates of the misclassification probabilities exhibit fluctuations. This im-
plies that error curves are biased and tend to overestimate the true error. How-
ever, this bias is shown to tend to zero as the size of the ensemble used to perform
estimations grows. Experiments over several classification problems provide em-
pirical support for the theoretical analysis of the properties of the estimator.
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