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Abstract. Since the development of pulse compression in the mid-1950’s
the concept has become an indispensable feature of modern radar sys-
tems. A matched filter is used on reception to maximize the signal to
noise ratio of the received signal. The actual waveforms that are trans-
mitted are chosen to have an autocorrelation function with a narrow
peak at zero time shift and the other values, referred to as sidelobes, as
low as possible at all other times. A new approach to radar pulse com-
pression is introduced, namely the Reproducing Kernel Hilbert Space
(RKHS) method. This method reduces sidelobe levels significantly. The
paper compares a second degree polynomial kernel RKHS method to
a least squares and L2P -norm mismatched filter, and concludes with a
presentation of the representative testing results.

1 Introduction

Since the development of pulse compression in the mid-1950’s [1,2] the concept
has become an indispensable feature of modern radar systems. Pulse compression
gives radar designers the ability to obtain sufficient energy from a target for
detection without degrading the range resolution of the system or resorting to
the use of very high transmitter power levels. Pulse compression therefore allows
for the use of lower power transmitters but with longer pulse lengths to increase
the energy content of a pulse. A matched filter is used on reception to maximize
the signal to noise ratio (SNR) of the received signal. The actual waveforms that
are transmitted are chosen to have an autocorrelation function (ACF) with a
narrow peak at zero time shift and sidelobe levels as low as possible at all other
times. The sidelobes have the undesirable effect of masking smaller targets which
are in close proximity to large targets, such as clutter returns. It is therefore
desirable to have a main pulse lobe as narrow as possible.

This paper introduces the Reproducing Kernel Hilbert Space (RKHS) meth-
ods in radar pulse compression. It is shown that the RKHS methods reduce the
sidelobe levels significantly compared to the results in [3].

In the section 2 we discuss the matched filter used in radar pulse compression
and the least squares technique to solve the mismatched filter coefficients. Section
3 discusses the RKHS methods to be used in pulse compression. Results obtained
in testing the algorithms are presented in section 4. The paper ends with a
conclusion.



2 Problem Formulation

2.1 Matched Filter

In the discrete time domain the transmit pulse of a radar could be represented
by a sequence of complex transmit coefficients {an}. Digital pulse compression
is performed by the convolution of the received signal, which is assumed to be
a time delayed and scaled version of the transmitted pulse, with the complex
receive filter coefficients {zn}. For the purpose of analyzing the sidelobe response
of the pulse compressor, a zero time-delay and unity scaling factor can be as-
sumed without loss of generality. In this paper a P4 code [4] (i.e. sampled linear
frequency chirp) is used for the transmit coefficients.

For the transmit pulse {an} the matched filter is given by hn = a*
N−n where

* denotes the complex conjugate and N is the number of transmit pulse samples.
If the matched filter is used, the output of the pulse compressor will be the ACF
of {an} which is equivalent to the discrete convolution

bi =
∑

i

ai+1−khk. (1)

The convolution sequence {bi} for the matched filter has the maximum attainable
SNR at zero time shift.

The sidelobe values of the convolution result can be minimized by introducing
cost functions which map the set of sidelobes to a single real value. By minimizing
the cost functions, mismatched receive filters with reduced sidelobe responses
can be found. In the next section the mismatched filter solutions for the least-
squares sidelobe measure, which is equivalent to the L2-norm solution, and the
generalized L2P -norm are briefly discussed. In [3] the L2- and L2P -norms are
presented as methods to reduce the sidelobes of the pulse compressor output.
These methods will be compared to the RKHS pulse compressor.

2.2 Least Squares and L2P Sidelobe Minimisation

In matrix form the output of the pulse compressor could be written as [3]

b = AF z, (2)

where
b = [b1, b2, · · · , b2N−1]

T
, (3)

z = [z1, z2, · · · , zN ]T (4)

and

AF =


a1 a2 · · · aN 0 · · · 0
0 a1 a2 · · · aN · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · 0 a1 a2 · · · aN


T

, (5)



where T denotes the transpose of a vector or matrix and that AF is the full
convolution matrix.

The sidelobe measure function for a compressed pulse can now be formulated
by defining a new matrix, A , which is similar to AF , except that the row in
AF which produces the compression peak is removed. The sidelobe measure cost
function to be minimised can therefore be written as

f (z) = bHb

= zHAHAz

= zHCz, (6)

with
C = AHA, (7)

and H denotes the complex conjugate transpose. The row in AF that is removed
could now be written as a constraint

az = bpeak, (8)

where a = [a1, a2, · · · , aN ]. This optimisation problem could now be solved using
Lagrange multipliers.

The generalised L2P -norm sidelobe cost function could now in a similar way
be derived as [3]

f (z) =

(
2N−1∑
i=1

[
‖bi‖2

]P) 1
2P

=

(
2N−1∑
i=1

[
zHCiz

]P) 1
2P

, (9)

where
Ci = aH

i ai, (10)

and ai is the ith row of A. Using the same constraint as in (8), Lagrange mul-
tipliers could be used to solve the minimisation problem.

3 RKHS-based Filter

The idea of a function space reproduced by a single kernel function as well as the
question of whether or not there exists a kernel which will reproduce a specific
function space has received attention since the beginning of the 20th century,
and even before. Aronszajn [5], however, was the first to formally define the
notion of a Reproducing Kernel Hilbert space during the decade 1940 to 1950.

Today the applications of the theory of reproducing kernels are widely spread
in mathematical statistics and engineering applications. In the 1960’s (refer to
[6],[7] and [8]) Parzen applied the theory of Reproducing Kernel Hilbert spaces to



time series analysis. In the early 1970’s Kailath ([9],[10],[11]) and his coworkers
applied this theory to problems encountered in detection and estimation. More
recently, the theory of reproducing kernel Hilbert spaces has found applications
in generalised sampling theory, in wavelets and in graph matching (see [12],[13]
and [14] as well as references therein).

In its simplest form a RKHS is a Hilbert space H equipped with an inner
product (·, ·) and a kernel K(·, ·) : R×R → R such that K(t, ·) ∈ H for all t ∈ R
and which has the reproducing property, i.e.

(F (·),K(t, ·)) = F (t)

for all t ∈ R. A consequence of the reproducing property is that (K(s, ·),K(t, ·)) =
K(s, t).

Suppose now we are given a data set of input-output training patterns
T = {ti, fi}N

i=1 where fi = F (ti) + εi are noisy measurements of some unknown
function F (·) : R → R. The following approximation problem is of interest: given
T find the minimum norm approximation F̃ (·) of F (·) in the RKHS H subject
to the constraints (F̃ (·),K(ti, ·)) = fi. It can be shown that F̃ (·) is of the form
[15]

F̃ (·) =
Nc∑
i=1

ci K(t̃i, ·), (11)

where usually Nc ≤ N due to the presence of noise and the kernel centres t̃i are
inferred from T by means of some data reduction scheme [14]. The solution of
this approximation problem is then obtained as

c = G†f (12)

where c = (ai), f = (fi) and G = (K(t̃i, tj)). Here G† denotes the pseudo inverse
of the matrix G.

For the application discussed here we have chosen the polynomial kernel [16]
namely

K(s, t) =
(
1 + sT t

)d
, (13)

where d is the degree of the polynomial. One could also use other RKHS kernels,
for example the Dirichlet kernel (which is periodic) [14]

K(s, t) =
sin
((

n + 1
2

)
2π (s−t) u

)
sin
(

2π(s−t)u
2

) , (14)

or the sinc kernel
K(s, t) =

sin (2π (s−t)u)
2π (s−t) u

, (15)

where n is the harmonic number and u is the width (or dilation) parameter
of the kernel. However, for this application the polynomial kernel gave much
better results, and therefore only the polynomial kernel will be considered when
presenting the results.



Once the interpolator coefficients c are solved, we can define a template [16]

t̃ =
Nc∑
i=1

ci t̄i, (16)

where
t̄i =

[[
1 tT

i

]
⊗
[
1 tT

i

]
⊗ · · · ⊗

[
1 tT

i

]]T
, (17)

⊗ denotes the Kronecker Tensor Product, ti is an input vector, and the term[
1 tT

i

]
in (17) is repeated d times. For example if a second order polynomial

kernel is used, then
t̄i =

[[
1 tT

i

]
⊗
[
1 tT

i

]]T
. (18)

Once the RKHS pulse compressor is trained, the template t̃ is used to calculate
the ith output of the RKHS pulse compressor as t̃T t̄i.

4 Numerical Results

Fig. 1. Matched filter, L2- and L2P - norm pulse compression response for a linear chirp
transmit pulse with a TBWP of 50 (Borrowed from [3])



For this experiment we used a second order RKHS polynomial kernel. The
MATLAB programming environment [17] was used for implementation. A linear
chirp pulse

y(t) = Aej2πft, (19)

where A is the amplitude, f is frequency and t is time, is used to simulate
the signal that should be transmitted by the radar. The generated signal had a
time-bandwidth product (TBWP) of 50.

Fig. 2. RKHS pulse compressor output as the input chirp signal amplitude varies

The results from [3] are shown in Fig. 1. The matched filter response, mis-
matched least squares and two L2P -norm filter responses (P = 2 , P = 40) are
shown. This figure shows only the output of the compressor for the input signal
that was used determine (“train”) the filter coefficients. The best sidelobe levels
achieved were around −35dB. The value of the output in dB is calculated as

OutputdB = 20 log10 (‖Output‖) . (20)

Fig. 2 to Fig. 4 show the results for the proposed RKHS pulse compressor.
A second degree polynomial kernel was used for this RKHS method, and a chirp
pulse with amplitude A = 1 was used to train the system. Fig. 2 shows the



output of the RKHS pulse compressor for four different values of the input chirp
pulse, namely A = 0.2, A = 0.5, A = 0.8 and A = 1. Each output signal was
scaled by its maximum value and then converted to the dB scale. This forces
the maximum value (in dB) for each output equal to 0dB, which enables us
to see the different outputs of the different input amplitudes in perspective of
the output amplitude of the training chirp pulse. For the training signal with
amplitude A = 1 it is clear that the RKHS pulse compressor performs very well
compared to the least squares method, and as the amplitude deviates from 1,
the sidelobe levels start to increase.

Fig. 3. RKHS maximum sidelobe levels as the input chirp signal amplitude varies

Fig. 3 shows a graph of the unscaled maximum sidelobe levels as the chirp
pulse amplitude varies from A = 0.1 to A = 2. For a chirp signal with the
training amplitude A = 1, the RKHS pulse compressor achieved sidelobe levels of
maximum −287dB, which is far better than the −35dB of the pulse compressors
shown in Fig. 1. Then as the input amplitude decreases or increases from that
of the training pulse, the sidelobe levels varied from −60dB to −30dB. This is
still better (or comparable) to the results from the L2P -norm and least squares
methods in Fig. 1, which only shows results for the training signal and not for



Fig. 4. RKHS pulse compressor output when a pulse is detected as the input chirp
signal amplitude varies



input signals different than that of the training set. Fig. 4 shows the output peak
amplitude (when a pulse was actually detected) in terms of the input amplitude.
Since a second degree polynomial kernel was used, the output has a quadratic
relation to the input amplitude.

5 Conclusion

In this paper we have presented a RKHS method to be applied in radar pulse
compression. We compared our proposed method to the least squares and L2P -
norms for minimising pulse compression sidelobes. The RKHS method has su-
perior performance over the other methods and showed significant sidelobe re-
duction of between −30dB and −287dB.
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