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Abstract. This paper presents a method for combining classithat use&-
nearest localized templates. The localized template estimated from a
training set usingC-means clustering algorithm, and matched to thesiec
profile of a new incoming sample by a similarity asare. The sample is
assigned to the class which is most frequentlyesgrted among thie most
similar templates. The appropriate valuekois determined according to the
characteristics of the given data set. Experimemgsuilts on real and artificial
data sets show that the proposed method perfortter llean the conventional
fusion methods.
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1 Introduction

Combining multiple classifiers has been activelyleited for developing highly
reliable pattern recognition systems in the pastade [1, 2]. There are two basic
parts for generating an ensemble: creating bassifitrs and combining the outputs
of the classifiers. In order to achieve the highecuracy of the ensemble, the
individual classifiers have to be both diverse awturate [3, 4]. Two popular
methods for creating classifiers are Bagging andsng [5]. Bagging creates each
individual classifier in the ensemble with a diffat random sampling of the training
set. Thus some instances are represented multipés twhile others are left out. In
Boosting, examples that were incorrectly predichsd previous classifiers in the
ensemble are chosen more often than examples énatoarrectly predicted.

The outputs of the diverse classifiers have to dmkined with some manner to
achieve a group consensus. In order to improvéndurbn the performance of the
ensemble, several existing and novel combiningegras have been investigated [6,
7]. Some combiners do not require additional tragnafter the classifiers in the
ensemble have been trained individually. Majoritfing, minimum, maximum, and
average are examples of them [8, 9, 10]. Other auend need training at fusion level.
Examples are behavior knowledge space (BKS) [1d]dmtision templates (DT) [12].
Especially, DT that composes a template for eaabscby averaging the outputs of
classifiers was reported good performance and veasl womplementarily with a



classifier selection method [13]. However, becaut®e DT abstracts the

characteristics of a class into a template, thaghitoe the limitation of applying it to

complex problems. In our previous work [14], mukiglecision templates (MuDTSs)
which decompose a template into several localizehptates using clustering
algorithm was investigated to solve this limitati®ince many clustering algorithms
rely on a random component, this method would Ibsitee to clustering results.

In this paper, we present a novel fusion methedearest localized templaté- (
NLT), which refersk most similar templates among the multiple decis@nplates. It
may be less affected by clustering results and ¢thnsobtain stable and high accuracy.
Finally, to validate the proposed method, its penfance are compared with several
classifier combining approaches by using real atificéal data sets from the UCI
database and ELENA.

2 Background

2.1 Conventional Fusion Methods

Simple fusion methods such as majority voting, munin, maximum, average, and
BKS have been widely used to construct a multifdssifier system.

Majority Voting. For a sample, this method simply counts the vogesived from
the individual classifiers, and selects the clagh the largest number of votes. Ties
are broken randomly.

Minimum, Maximum, and Average. These three fusion methods are considered
together because they have a similar decision seh&he minimum method selects
the smallest value among the outputs of the ciassifor each class. The minimums
are then compared and a class with the larger vislugelected. For aM-class
problem withL classifiers, it is calculated as follows:
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Here,d, Ax) is the degree of support given by e classifier for the sampbeof the
classz. The maximum and the average methods are the agaitie minimum method
except that the biggest values are compared as
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for the maximum method, and the average method ao#sthe mean values as
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Behavior Knowledge Space. In this method, possible combinations of the otgjmi
the classifiers are stored in the BKS-tablel{-1, 1}MLXL . Each entry in ther
contains a class label (most frequently encountenedngst the samples of the
training data in this cell) or no label (no samplehe training data has the respective
combination of class labels). In tests, a new saroph be classified into the label of
the entry with the same outputs of the classifitr&ils to classify when an output
pattern is not found if.

2.2 C-MeansAlgorithm

The C-means (oK-means) algorithm is an iterative clustering methioat findsC
compact partitions in the data using a distancedaschnique [15]. The cluster
centers are initialized t&€ randomly chosen points from the data, which isthe
partitioned based on the minimum squared distaritaion
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Here,n is the total number of samples in the datazeés, the center of theth cluster,
and uc; is the membership of thigh samplex; in clusterc. The cluster centers are
subsequently updated by calculating the averagheosamples in each cluster and
this process is repeated until cluster centerongdr change. Although this algorithm
tends to find the local minima, it is widely usex €lustering because of its simplicity
and fast convergence.

2.3 Decision Templates

DT proposed by Kuncheva [12] estimatdstemplates (one per class) with the same
training set that is used for the set of classfidfor theM-class problem, the
classifier outputs can be organized in a decisiofilp as a matrix

dy1(x;) iy (%)
DP(x;) = dy.z(xi) > (5)
dp(x) dpa(x)

where L is the number of classifiers in an ensemble dpgx) is the degree of
support given by thgth classifier for the samplg of the classz. When decision
profiles are generated, the template of the classestimated as follows:

dt, (1,1) . dr, (1, M) ) )
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In the test stage, the similarity between the deciprofile of a test sample and
each template is calculated. The sample is thesgodted into the class of the most
similar template. Kuncheva [16] examined DT withrigas distance measures, and
achieved higher classification accuracies than entional fusion methods.

3 k-Nearest Localized Templates

The DT scheme abstracts features of each classeaspdate which may be difficult
to classify dynamic patterns. For dealing with ititea-class variability and the inter-
class similarity of the dynamic patterns, we adoptultiple template-based approach
where patterns in the same class are charactdriz@dset of localized classification
models. Fig. 1 illustrates an overview of the pregmbmethod.
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Fig. 1. An overview of thek-nearest localized templates

3.1 Estimation of Localized Decision Templates

Localized decision templates are estimated in orerorganize the multiple
classification models. At first, decision profilase constructed from the outputs of
the base classifiers as Eqg. (5) and are clusteoededch class usin@-means
algorithm. The localized template of tlweh cluster in the clasm, DTy, is then
estimated as follows:
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Here, Uy, is the membership of thith samplex; in the clusterc of the mth class.
Finally, MxC templates are constructed whétds the number of classes a@ds the
number of clusters per class. In this paper thebmurof clusters was selected as 20
based on the experiments in section 4.1

3.2 Classification Using k-Nearest L ocalized Templates

In the test stage, the profile of a new input samigl matched to the localized
templates by a similarity measure. A distance betwide profile of a given sampte
and the template of each cluster is calculate@lésafs:

dst,,.(x) = |DT,,. = DP() . 6)

Since theC-means clustering algorithm which was used for gairgy localized
templates is often affected by its random initisdtances, it is easy to make error
clusters. The error clusters cause a misclassditathen the sample is only matched
to the nearest template. In order to resolve thiblpm, the proposed method adopts
a k-nearest neighbor scheme where the sample is assionthe class that is most
frequently represented among tkemost similar templates. In this approach, the
appropriate value df commonly depends on the properties of a given setaThe
proposed method, therefore, analyzes the intra-atasnpactnesiC and the inter-
class separatiol$ (which were originally designed for the validitydiex of clustering
algorithm [17]) of the data set using:

n M
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wheren is the total number of points in the data ggtis the center of thenth class,
andug, is the membership of théh samplex in classm. In this paper we generate a
simple rule foik as Eq. (11) based on experiments (see section 4.1)

(11)

K= 1 if IC<t,. andIS<tg
ez i IC>t. and IS>t,4

4 Experiments

In this paper, we have verified the proposed methd 0 real (R) and artificial (A)
data sets from the UCI database and ELENA whictsanemarized in Table 1. Each
feature of data sets was normalized to a real \adteen -1.0 and 1.0. For each data



set 10-fold cross validation was performed. Theralenmetwork (NN) was used as a
base classifier of an ensemble. We trained the NiNgustandard backpropagation
learning. Parameter settings for the NN includéebaning rate of 0.15, a momentum
term of 0.9, and weights were initialized randotétween -0.5 and 0.5. The number
of hidden nodes and epochs were chosen based amiténrga given by Opitz [5] as
follows: at least one hidden node per output, astl®ne hidden node for every ten
inputs, and five hidden nodes being a minimum;®8Q epochs for small problems
involving fewer than 250 samples, 40 epochs formtié-sized problems containing
between 250 to 500 samples, and 20 to 40 epocharémr problems (see Table 1).

Tablel. Summary of the data sets used in this paper

Neural network

Type Data set Case Feature Class Availability Hidden Epoch
R Breast-cancer 683 9 2 uct 5 20
R lonosphere 351 34 2 ucCl 10 40
R Iris 150 4 3 UCl 5 80
R Satellite 6435 36 6 UCl 15 30
R Segmentation 2310 19 7 UCI 15 20
R Sonar 208 60 2 UCl 10 60
R Phoneme 5404 5 2 ELENA 5 30
R Texture 5500 40 11 ELENA 20 40
A Clouds 5000 2 2 ELENA 5 20
A Concentric 2500 2 2 ELENA 5 20

15.0

13:5

Error rate (%)

Number of NNs in an Ensemble

Fig. 2. Average test error over all data sets for ensesrihterporating from one to 30 neural
networks

1 http://mlearn.ics.uci.edu/MLRepository.html
2 http://www.dice.ucl.ac.be/mlg/?page=Elena



In order to select the appropriate size of an ebsgnpreliminary experiments
with conventional fusion methods: majority votingAJ), minimum (MIN),
maximum (MAX), average (AVG), and DT were performezing up to 30 NNs. As
shown in Fig. 2, there is no significant error retihn over 25 classifiers. Therefore,
ensemble size of 25 was chosen for the remainipgrarents.

4.1 Parameter Setting of the k-Nearest Localized Templates

Two major parameters of the proposed mettiddthe number of clusters per class)
andk (the number of referring templates), were selett®skd on the characteristics
of given data. The data sets used in our studigg artitioned into two groups
according tdC andlS as depicted in Fig. 3. One group had small vahi¢€ and|S
(lonosphere, Sonar, Phoneme, Clouds, and Concgntitle the other group had
large values ofC andIS (Satellite, Texture, Segmentation, Breast-carard, Iris). In
this paper, we chose lonosphere and Satelliteeasefiresentative data sets of the two
groups, and performed two series of experimenthem to selec€ and generate the
rules fork (Eq. 11).
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Fig. 3. Characteristics of the data sets used in thisrppipendlSare estimated as Eq. (9) and
Eq. (10), respectively.
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Fig. 4. Accuracies for the two data sets accordin@ {@vherek = 1~C) andk (whereC = 20)



First, we investigated the value Gfwhere it had changed from one to 30 while
had changed from one & Since the accuracies were converged after 2@saltC,
we fixedC as 20 and changddfrom one to 20 in the second series of experiments
As shown in Fig. 4, accuracy was decreased wheas increasing for the lonosphere.
In case of Satellite, on the other hand, accuraay wcreased whdowas increasing.
Therefore, for the remaining experiments, we sings#lectedk based on Eq. (11)
wheret;c = 1.5,t,s= 2.0, andC = 20.

4.2 Classification Results

We performed the comparison experiments wWitNLT against the conventional
fusion methods. Table 2 provides the accuraciesl@ffold cross validation
experiments for all data sets except lonosphereSaitdllite used for the parameter
selection of th&-NLT. SB indicates the single best classifier am@Bg\NNs used in
the ensemble. MuDTs, which combine the outputshefdlassifiers using localized
templates like&k-NLT, only refer the class label of the nearestgkte. Oracle (ORA)
was used as a comparative method which is assgndirect class label to an input
sample if at least one individual classifier proglidhe correct class label of the
sample. As shown in Table 2, the localized temgtateed methods (MuDTs arke
NLT) achieved a high classification performancetfue overall data sets. Especially,
k-NLT showed the best accuracies on more than fatfeodata sets.

Table2. Average test accuracy (%) for each data set. &thik boldface are the best
accuracies in each column.

Dataset Breast- Iris _Segmentat
cancer ion
SB 97.5+1.8 97.3+4.7 94.2+1.9 85.5+6.4 80.4+2.0 99.6+0.2 79.9+3.6 96.2+2.7
MAJ 96.9+1.6 96.7+4.7 94.1+1.9 855+6.4 80.2+1.5 99.7+0.2 795+25 97.7+1.2
MIN 97.1+16 96.7+4.7 93.6+2.2 81.0:84 80.3+1.6 99.6:02 79.3+25 97.6+1.2
MAX 97.1+1.7 96.0+4.7 94.4+19 825+9.2 80.3+1.6 99.6+0.3 79.3+25 97.6+1.2
AVG 97.1+1.8 97.3+4.7 945+1.7 86.0+6.6 80.3+1.4 997 +0.2 79.4+25 97.8+0.8
BKS 95.9+2.1 93.3+8.3 87.7:28 725+14. 79.8:1.6 97.8+0.7 78.6+2.4 92.6+2.5
DT 972 +1.8 973+4.7 945+1.7 855+6.4 80.4+15 99.7+02 79.6+25 98.0+0.8
MuDTs 95.4+2.1 95.3+55 96.2+1.4 84.0+7.8 80.7+1.8 99.6+0.2 81.9+1.7 98.8+0.6
k-NLT 97.2+1.8 96.7+4.7 94.6+1.5 84.0+7.8 80.7+1.8 99.7+0.2 819+1.7 98.8+0.7

ORA 98.7+1.8 98.7+2.8 98.8+0.5 98.0+35 93.1+1.2 99.9+0.1 84.7+3.7 100 +0.0

Sonar Phoneme Texture Clouds Concentric

Fig. 5 shows the average test errors and averdgedasd deviations over all data
sets. The standard deviation can be interpretateastability measure of algorithm.
BKS showed the worst performance wHidLT yielded the highest accuracy with
stable performance among the compared methodspdihed t-tests betwedaNLT
and comparable methods, AVG, DT, and MuDTs whichdpced relatively high
accuracies, were conducted and revealed that tfieratices were statistically
significant (p<0.02, p<0.002, and p<0.007 respetyiv

In order to compare the relative performance ohemethod with respect to the
others, we calculate a rank score. For each dateash method was assigned a rank
with respect to its place among the others. Thadstgpossible score which assigned



to the best model was nine, and the lowest was Time ranks for each method were
then summed to give a measure of the overall dammamong the methods. As
shown in Fig. 6k-NLT achieved highest score among the others.
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Fig. 5. Average test errors and standard deviations dvdat sets used in this paper
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Fig. 6. The sum of rank scores for all data sets. Thedrigte score, the better the fusion
method.

5 Conclusions

In this paper, we proposekinearest localized templatek-NLT) for combining
multiple classifiers. First, decision profiles (tbatputs of classifiers) of training set
were clustered for each class. Second, localizedpletes were estimated by
averaging decision profiles of each cluster. Theplates were then matched to the
decision profile of a test sample by a similaritgasure. Finally, the sample was
assigned to the class which was most frequentlsessmted among themost similar
templates. Here, the appropriate valu&kafas selected according to the intra-class



compactness and the inter-class separation ofemgiata set. Experimental results on
ten real and artificial data sets showed that thegsed method performed better than
conventional fusion methods. The advantagk-NET can be proved with theoretical
backgrounds about the subclass-based model ardrtbarest neighbor approach. In
near future, further experiments on additional dzs shall be conducted to analyze
the parameters &¢NLT.
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