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Abstract. This paper presents a method for combining classifiers that uses k-
nearest localized templates. The localized templates are estimated from a 
training set using C-means clustering algorithm, and matched to the decision 
profile of a new incoming sample by a similarity measure. The sample is 
assigned to the class which is most frequently represented among the k most 
similar templates. The appropriate value of k is determined according to the 
characteristics of the given data set. Experimental results on real and artificial 
data sets show that the proposed method performs better than the conventional 
fusion methods. 
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1   Introduction 

Combining multiple classifiers has been actively exploited for developing highly 
reliable pattern recognition systems in the past decade [1, 2]. There are two basic 
parts for generating an ensemble: creating base classifiers and combining the outputs 
of the classifiers. In order to achieve the higher accuracy of the ensemble, the 
individual classifiers have to be both diverse and accurate [3, 4]. Two popular 
methods for creating classifiers are Bagging and Boosting [5]. Bagging creates each 
individual classifier in the ensemble with a different random sampling of the training 
set. Thus some instances are represented multiple times while others are left out. In 
Boosting, examples that were incorrectly predicted by previous classifiers in the 
ensemble are chosen more often than examples that were correctly predicted. 

The outputs of the diverse classifiers have to be combined with some manner to 
achieve a group consensus. In order to improve further on the performance of the 
ensemble, several existing and novel combining strategies have been investigated [6, 
7]. Some combiners do not require additional training after the classifiers in the 
ensemble have been trained individually. Majority voting, minimum, maximum, and 
average are examples of them [8, 9, 10]. Other combiners need training at fusion level. 
Examples are behavior knowledge space (BKS) [11] and decision templates (DT) [12]. 
Especially, DT that composes a template for each class by averaging the outputs of 
classifiers was reported good performance and was used complementarily with a 



classifier selection method [13]. However, because the DT abstracts the 
characteristics of a class into a template, there might be the limitation of applying it to 
complex problems. In our previous work [14], multiple decision templates (MuDTs) 
which decompose a template into several localized templates using clustering 
algorithm was investigated to solve this limitation. Since many clustering algorithms 
rely on a random component, this method would be sensitive to clustering results. 

In this paper, we present a novel fusion method, k-nearest localized template (k-
NLT), which refers k most similar templates among the multiple decision templates. It 
may be less affected by clustering results and thus can obtain stable and high accuracy. 
Finally, to validate the proposed method, its performance are compared with several 
classifier combining approaches by using real and artificial data sets from the UCI 
database and ELENA. 

2   Background 

2.1   Conventional Fusion Methods 

Simple fusion methods such as majority voting, minimum, maximum, average, and 
BKS have been widely used to construct a multiple classifier system. 

Majority Voting. For a sample, this method simply counts the votes received from 
the individual classifiers, and selects the class with the largest number of votes. Ties 
are broken randomly. 

Minimum, Maximum, and Average. These three fusion methods are considered 
together because they have a similar decision scheme. The minimum method selects 
the smallest value among the outputs of the classifiers for each class. The minimums 
are then compared and a class with the larger value is selected. For an M-class 
problem with L classifiers, it is calculated as follows: 
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Here, dy,z(xi) is the degree of support given by the yth classifier for the sample x of the 
class z. The maximum and the average methods are the same as the minimum method 
except that the biggest values are compared as 
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for the maximum method, and the average method compares the mean values as 
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Behavior Knowledge Space. In this method, possible combinations of the outputs of 
the classifiers are stored in the BKS-table LM L

T ×−∈ }1,1{ . Each entry in the T 
contains a class label (most frequently encountered amongst the samples of the 
training data in this cell) or no label (no sample of the training data has the respective 
combination of class labels). In tests, a new sample can be classified into the label of 
the entry with the same outputs of the classifiers. It fails to classify when an output 
pattern is not found in T. 

2.2   C-Means Algorithm 

The C-means (or K-means) algorithm is an iterative clustering method that finds C 
compact partitions in the data using a distance-based technique [15]. The cluster 
centers are initialized to C randomly chosen points from the data, which is then 
partitioned based on the minimum squared distance criterion 
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Here, n is the total number of samples in the data set, zc is the center of the cth cluster, 
and uc,i is the membership of the ith sample xi in cluster c. The cluster centers are 
subsequently updated by calculating the average of the samples in each cluster and 
this process is repeated until cluster centers no longer change. Although this algorithm 
tends to find the local minima, it is widely used for clustering because of its simplicity 
and fast convergence. 

2.3   Decision Templates 

DT proposed by Kuncheva [12] estimates M templates (one per class) with the same 
training set that is used for the set of classifiers. For the M-class problem, the 
classifier outputs can be organized in a decision profile as a matrix 
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where L is the number of classifiers in an ensemble and dy,z(xi) is the degree of 
support given by the yth classifier for the sample xi of the class z. When decision 
profiles are generated, the template of the class m is estimated as follows: 
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In the test stage, the similarity between the decision profile of a test sample and 
each template is calculated. The sample is then categorized into the class of the most 
similar template. Kuncheva [16] examined DT with various distance measures, and 
achieved higher classification accuracies than conventional fusion methods. 

3   k-Nearest Localized Templates 

The DT scheme abstracts features of each class as a template which may be difficult 
to classify dynamic patterns. For dealing with the intra-class variability and the inter-
class similarity of the dynamic patterns, we adopt a multiple template-based approach 
where patterns in the same class are characterized by a set of localized classification 
models. Fig. 1 illustrates an overview of the proposed method. 
 

 

Fig. 1. An overview of the k-nearest localized templates 

3.1   Estimation of Localized Decision Templates 

Localized decision templates are estimated in order to organize the multiple 
classification models. At first, decision profiles are constructed from the outputs of 
the base classifiers as Eq. (5) and are clustered for each class using C-means 
algorithm. The localized template of the cth cluster in the class m, DTm,c, is then 
estimated as follows: 
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Here, um,c,i is the membership of the ith sample xi in the cluster c of the mth class. 
Finally, M×C templates are constructed where M is the number of classes and C is the 
number of clusters per class. In this paper the number of clusters was selected as 20 
based on the experiments in section 4.1 

3.2   Classification Using k-Nearest Localized Templates 

In the test stage, the profile of a new input sample is matched to the localized 
templates by a similarity measure. A distance between the profile of a given sample x 
and the template of each cluster is calculated as follows: 
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Since the C-means clustering algorithm which was used for generating localized 
templates is often affected by its random initial instances, it is easy to make error 
clusters. The error clusters cause a misclassification when the sample is only matched 
to the nearest template. In order to resolve this problem, the proposed method adopts 
a k-nearest neighbor scheme where the sample is assigned to the class that is most 
frequently represented among the k most similar templates. In this approach, the 
appropriate value of k commonly depends on the properties of a given data set. The 
proposed method, therefore, analyzes the intra-class compactness IC and the inter-
class separation IS (which were originally designed for the validity index of clustering 
algorithm [17]) of the data set using: 
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where n is the total number of points in the data set, zm is the center of the mth class, 
and um,i is the membership of the ith sample xi in class m. In this paper we generate a 
simple rule for k as Eq. (11) based on experiments (see section 4.1). 
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4   Experiments 

In this paper, we have verified the proposed method on 10 real (R) and artificial (A) 
data sets from the UCI database and ELENA which are summarized in Table 1. Each 
feature of data sets was normalized to a real value between -1.0 and 1.0. For each data 



set 10-fold cross validation was performed. The neural network (NN) was used as a 
base classifier of an ensemble. We trained the NN using standard backpropagation 
learning. Parameter settings for the NN included a learning rate of 0.15, a momentum 
term of 0.9, and weights were initialized randomly between -0.5 and 0.5. The number 
of hidden nodes and epochs were chosen based on the criteria given by Opitz [5] as 
follows: at least one hidden node per output, at least one hidden node for every ten 
inputs, and five hidden nodes being a minimum; 60 to 80 epochs for small problems 
involving fewer than 250 samples, 40 epochs for the mid-sized problems containing 
between 250 to 500 samples, and 20 to 40 epochs for larger problems (see Table 1). 

Table 1.  Summary of the data sets used in this paper 

      Neural network 
Type Data set Case Feature Class Availability Hidden Epoch 
R Breast-cancer 683 9 2 UCI1 5 20 
R Ionosphere 351 34 2 UCI 10 40 
R Iris 150 4 3 UCI 5 80 
R Satellite 6435 36 6 UCI 15 30 
R Segmentation 2310 19 7 UCI 15 20 
R Sonar 208 60 2 UCI 10 60 
R Phoneme 5404 5 2 ELENA2 5 30 
R Texture 5500 40 11 ELENA 20 40 
A Clouds 5000 2 2 ELENA 5 20 
A Concentric 2500 2 2 ELENA 5 20 

 
 

 

Fig. 2. Average test error over all data sets for ensembles incorporating from one to 30 neural 
networks 

 

                                                           
1 http://mlearn.ics.uci.edu/MLRepository.html 
2 http://www.dice.ucl.ac.be/mlg/?page=Elena 



In order to select the appropriate size of an ensemble, preliminary experiments 
with conventional fusion methods: majority voting (MAJ), minimum (MIN), 
maximum (MAX), average (AVG), and DT were performed using up to 30 NNs. As 
shown in Fig. 2, there is no significant error reduction over 25 classifiers. Therefore, 
ensemble size of 25 was chosen for the remaining experiments. 

4.1   Parameter Setting of the k-Nearest Localized Templates 

Two major parameters of the proposed method, C (the number of clusters per class) 
and k (the number of referring templates), were selected based on the characteristics 
of given data. The data sets used in our studies were partitioned into two groups 
according to IC and IS as depicted in Fig. 3. One group had small values of IC and IS 
(Ionosphere, Sonar, Phoneme, Clouds, and Concentric), while the other group had 
large values of IC and IS (Satellite, Texture, Segmentation, Breast-cancer, and Iris). In 
this paper, we chose Ionosphere and Satellite as the representative data sets of the two 
groups, and performed two series of experiments on them to select C and generate the 
rules for k (Eq. 11). 
 

 

Fig. 3. Characteristics of the data sets used in this paper. IC and IS are estimated as Eq. (9) and 
Eq. (10), respectively.  
 

 

Fig. 4. Accuracies for the two data sets according to C (where k = 1~C) and k (where C = 20) 



First, we investigated the value of C where it had changed from one to 30 while k 
had changed from one to C. Since the accuracies were converged after 20 values of C, 
we fixed C as 20 and changed k from one to 20 in the second series of experiments. 
As shown in Fig. 4, accuracy was decreased when k was increasing for the Ionosphere. 
In case of Satellite, on the other hand, accuracy was increased when k was increasing. 
Therefore, for the remaining experiments, we simply selected k based on Eq. (11) 
where tIC = 1.5, tIS = 2.0, and C = 20. 

4.2   Classification Results 

We performed the comparison experiments with k-NLT against the conventional 
fusion methods. Table 2 provides the accuracies of 10-fold cross validation 
experiments for all data sets except Ionosphere and Satellite used for the parameter 
selection of the k-NLT. SB indicates the single best classifier among 25 NNs used in 
the ensemble. MuDTs, which combine the outputs of the classifiers using localized 
templates like k-NLT, only refer the class label of the nearest template. Oracle (ORA) 
was used as a comparative method which is assign the correct class label to an input 
sample if at least one individual classifier produces the correct class label of the 
sample. As shown in Table 2, the localized template-based methods (MuDTs and k-
NLT) achieved a high classification performance for the overall data sets. Especially, 
k-NLT showed the best accuracies on more than half of the data sets. 

Table 2.  Average test accuracy (%) for each data set. Marked in boldface are the best 
accuracies in each column. 

Dataset 
Breast-
cancer 

Iris 
Segmentat
ion 

Sonar Phoneme Texture Clouds Concentric 

SB 97.5 ±1.8 97.3 ±4.7 94.2 ±1.9 85.5 ±6.4 80.4 ±2.0 99.6 ±0.2 79.9 ±3.6 96.2 ±2.7 

MAJ 96.9 ±1.6  96.7 ±4.7  94.1 ±1.9  85.5 ±6.4  80.2 ±1.5  99.7 ±0.2  79.5 ±2.5  97.7 ±1.2  
MIN 97.1 ±1.6  96.7 ±4.7  93.6 ±2.2  81.0 ±8.4  80.3 ±1.6  99.6 ±0.2  79.3 ±2.5  97.6 ±1.2  
MAX 97.1 ±1.7  96.0 ±4.7  94.4 ±1.9  82.5 ±9.2  80.3 ±1.6  99.6 ±0.3  79.3 ±2.5  97.6 ±1.2  
AVG 97.1 ±1.8  97.3 ±4.7  94.5 ±1.7  86.0 ±6.6  80.3 ±1.4  99.7 ±0.2  79.4 ±2.5  97.8 ±0.8  
BKS 95.9 ±2.1  93.3 ±8.3  87.7 ±2.8  72.5 ±14.  79.8 ±1.6  97.8 ±0.7  78.6 ±2.4  92.6 ±2.5  
DT 97.2 ±1.8  97.3 ±4.7  94.5 ±1.7  85.5 ±6.4  80.4 ±1.5  99.7 ±0.2  79.6 ±2.5  98.0 ±0.8  
MuDTs 95.4 ±2.1  95.3 ±5.5  96.2 ±1.4  84.0 ±7.8  80.7 ±1.8  99.6 ±0.2  81.9 ±1.7  98.8 ±0.6  
k-NLT 97.2 ±1.8  96.7 ±4.7  94.6 ±1.5  84.0 ±7.8  80.7 ±1.8  99.7 ±0.2  81.9 ±1.7  98.8 ±0.7  

ORA 98.7 ±1.8  98.7 ±2.8  98.8 ±0.5  98.0 ±3.5  93.1 ±1.2  99.9 ±0.1  84.7 ±3.7  100  ±0.0  

 
Fig. 5 shows the average test errors and averaged standard deviations over all data 

sets. The standard deviation can be interpreted as the stability measure of algorithm. 
BKS showed the worst performance while k-NLT yielded the highest accuracy with 
stable performance among the compared methods. The paired t-tests between k-NLT 
and comparable methods, AVG, DT, and MuDTs which produced relatively high 
accuracies, were conducted and revealed that the differences were statistically 
significant (p<0.02, p<0.002, and p<0.007 respectively). 

In order to compare the relative performance of each method with respect to the 
others, we calculate a rank score. For each data set, each method was assigned a rank 
with respect to its place among the others. The highest possible score which assigned 



to the best model was nine, and the lowest was one. The ranks for each method were 
then summed to give a measure of the overall dominance among the methods. As 
shown in Fig. 6, k-NLT achieved highest score among the others. 

 

 

Fig. 5. Average test errors and standard deviations over all data sets used in this paper 

 

 

Fig. 6. The sum of rank scores for all data sets. The higher the score, the better the fusion 
method. 

5   Conclusions 

In this paper, we proposed k-nearest localized templates (k-NLT) for combining 
multiple classifiers. First, decision profiles (the outputs of classifiers) of training set 
were clustered for each class. Second, localized templates were estimated by 
averaging decision profiles of each cluster. The templates were then matched to the 
decision profile of a test sample by a similarity measure. Finally, the sample was 
assigned to the class which was most frequently represented among the k most similar 
templates. Here, the appropriate value of k was selected according to the intra-class 



compactness and the inter-class separation of a given data set. Experimental results on 
ten real and artificial data sets showed that the proposed method performed better than 
conventional fusion methods. The advantage of k-NLT can be proved with theoretical 
backgrounds about the subclass-based model and the k-nearest neighbor approach. In 
near future, further experiments on additional data sets shall be conducted to analyze 
the parameters of k-NLT. 
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