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Abstract. This paper investigates the application of novelty detection
techniques to the problem of drug profiling in forensic science. Numerous
one-class classifiers are tried out, from the simple k-means to the more
elaborate Support Vector Data Description algorithm. The target appli-
cation is the classification of illicit drugs samples as part of an existing
trafficking network or as a new cluster. A unique chemical database of
heroin and cocaine seizures is available and allows assessing the methods.
Evaluation is done using the area under the ROC curve of the classifiers.
Gaussian mixture models and the SVDD method are trained both with
and without outlier examples, and it is found that providing outliers
during training improves in some cases the classification performance.
Finally, combination schemes of classifiers are also tried out. Results
highlight methods that may guide the profiling methodology used in
forensic analysis.

1 Introduction

Analytical techniques such as gas chromatography are becoming widespread in
forensic science in order to find underlying patterns in crime-related data, espe-
cially in the analysis of illicit drugs composition. Indeed, it has become largely
accepted that the chemical signature of drug samples can provide information
about the origin or the distribution network of the products and producers. An
important issue that arises in this application is, given a set of chemical samples
which can be related to known criminal investigations, how can one characterize
this dataset in order to determine if a new sample can be linked to a known data
cluster. If it cannot, it could be part of a “new” cluster. To this end, one-class
classification is a novel and efficient way of approaching this problem.

In this paper, we perform a comparison of several popular one-class classifiers
to the problem of drug profiling. The aim is to determine the most promising
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methods for this application, and to find potential strengths and weaknesses of
the novelty detectors. A remarkable characteristic of the datasets is that class
labels corresponding to links confirmed by investigators are available and allow
a real evaluation of the performance of the methods and of the relevance of the
chemical composition of drugs in order to classify samples.

2 Related work

Introductory work on chemical drug profiling in forensic science can be found in
[1] and [2]. In these papers, no “true” class labeling is available; only chemical
similarities are used as class membership criteria. Nonetheless, a profiling method
based on samples correlation is devised. Several distance measures are used, and
results are good when considering only chemical links as class criteria.

The datasets used here have been previously studied by the present authors
in [3] and [4] using nonlinear dimensionality reduction techniques and various
classification algorithms. In [5], authors apply the SVDD algorithm to novelty
detection in mass spectra data. However, since no class labels are available, the
performance of SVDD is assessed using a comparison with a clustering method.

3 Novelty detection

Novelty detection, also called one-class classification, is usually defined as the
task of detecting a signal or pattern that a learning system is not aware of during
training. Broad reviews of the subject can be found in [6], [7] and [8]. Even
though the problem of outlier detection is a classical one in statistics, one-class
classifiers have only been popularized recently. Most statistical approaches, such
as Mahalanobis distance or extreme value theory, rely on strong assumptions,
which are not always respected when dealing with small and noisy datasets.
Many machine learning approaches, apart from density-based methods, go round
these assumptions by trying to model the support of the data rather than its
whole distribution. As suggested by Tax [9], one-class classifiers usually fall into
one of these categories: density estimation methods, boundary methods and
reconstruction methods.

3.1 Density estimation methods

Density estimation methods aim at estimating the whole distribution of the
target data. A rejection threshold is then fixed so that points located in the far
tails of the distribution are rejected. We shortly describe here the three density-
based methods used in this study.

Gaussian distribution Here, a single Gaussian distribution is fitted to the
target data. The mean and covariance matrix is estimated from the data, and the
points comprised in the two tails are considered outliers. The rejection threshold
is set such that 5% of the target data is rejected.



Parzen density estimation The Parzen density estimator is a mixture of
kernels - typically Gaussian - with each of them centered on one training point.
It can be expressed simply as
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N is the size of the target training set and K is the kernel. One parameter, the
width h (smoothing parameter), has to be tuned. Again, the rejection threshold
is set such that 5% of the target data is rejected.

Gaussian mixture models Gaussian mixture models (GMM) are used to char-
acterize the target data distribution by using a linear combinations of Gaussian
distributions. Generally speaking, the likelihood of a mixture of Gaussians can
be expressed as

K
p(x) =Y mN (x|, Z) (2)
i=1
The 7’s are scalar weights. Unlike Parzen density estimation, the number of
Gaussians is specified and usually much smaller than the size of the training set.
The means pp and covariances Xy, are estimated by maximum likelihood using
the expectation-maximization (EM) algorithm.
Two variants of GMM are tested: Gaussians with a diagonal covariance ma-
trix and with a full covariance matrix. In the former case, elliptic clusters are
assumed, while the latter case can take into account arbitrary-shaped clusters.

3.2 Boundary methods

Boundary methods, rather than estimating the distribution, aim at constructing
a boundary - such as a sphere - around the target data. Points that fall outside
the limits of the boundary are rejected. Here, k-nearest neighbors and SVDD
are used.

K-nearest neighbors KNN first calculates the distances of the test point to
its k neighbors, and averages these distances in order to have a single measure. It
then computes the distances from these k neighbors to their k-nearest neighbors.
Based on these distances, the local density of each point is computed, and the
new point is rejected if its local density is inferior to that of its neighbors in the
training set.

Support vector data description Support vector data description (SVDD),
introduced in [10], is a method for characterizing the target data distribution
without explicitely estimating the distribution parameters. It works by fitting



the smallest possible hypersphere around the target data in the feature space
induced by a specified kernel, typically a Gaussian kernel. Data points that
fall outside the hypersphere when projected in the feature space are rejected.
This method has many similarities with the support vector method for novelty
detection presented in [11]. However, in the latter work, an optimal hyperplane
is built between target and outlier data, while SVDD builds a hypersphere.

3.3 Reconstruction methods

The goal of reconstruction methods is to develop a simplified representation of
the data via clusters or principal components. These methods are numerous: k-
means, principal components analysis, self-organizing maps, etc. Only k-means
has been chosen among the reconstruction methods.

K-means In order to perform k-means clustering, the number of clusters in
the target data has to be specified. Following this, boundaries are constructed
around each cluster such that a certain fraction (5% here) of the target data is
rejected. Again, points that fall outside the boundaries are considered outliers.
It can be supposed that this type of method will work best for clusters that are
well-separated.

3.4 Combination of classifiers

Ensemble methods have become increasingly popular when dealing with noisy
real-world problems. This is also true for the problem of one-class classification,
for which combination schemes have been proposed [12]. In this paper, we test
two approaches: average and product of the posterior probabilities of the classi-
fiers. These probabilities are either directly obtained when using a density-based
method, or estimated when using reconstruction or boundary methods.

3.5 ROC analysis

A very useful assessment tool in classification and novelty detection tasks is the
well-known receiver operating characteristic (ROC) curve. This curve represents
the true positives (targets accepted as such) plotted against the false positives
(outliers accepted as target), when varying the acceptation threshold. The area
under the ROC curve (AUC) is thus a good measure of the classification per-
formance. A random guess classifier is expected to have an AUC of 0.5, if the
number of samples is large enough, while a classifier achieving a perfect separa-
tion will have an AUC of 1. Consequently, the AUC criterion must be maximized
in order to obtain a good separation between targets and outliers.



4 Datasets and methodology

4.1 The data

Many types of substances can be found in a drug sample, and each of these
can possibly provide information about a certain stage of drug processing. The
interested reader may find a thorough description of this processing in [13]. This
study focusses on the major chemical constituents, measured using GC/FID (gas
chromatography and flame ionization detector). Details regarding the experi-
mental procedure can be found in [1]. Each sample is characterized by features
corresponding to the proportion of each chemical it contains. The first dataset
(heroin) has 7 features, while the second (cocaine) has 13 features. The propor-
tions of the chemical constituents have been estimated for each sample by using
the area under the peaks in its chromatogram, after removal of the background
noise. Figure 1 shows a typical chromatogram of a heroin sample.
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Fig. 1. An example of a chromatogram for a heroin sample. Each feature corresponds
to the proportion of a constituent, estimated by the area under its corresponding peak.

Fig. 2 shows the labeled datasets projected on their two first principal com-
ponents, in order to give an indication of the type of clusters that might be
encountered. These figures show that the classes vary in shape and exhibit dif-
ferent scales. This could be expected, since the class labeling corresponds to
networks of people involved in trafficking, while the input data corresponds to
chemical constituents. It is thus of no surprise that the correlation between chem-
ical profiles may not always match the links found by investigation, since two
persons linked within a network do not necessarily share identical products from
a chemical perspective.

The data consist of 323 heroin samples (with originally 3 classes) and 310
cocaine samples (10 classes). Each class corresponding to a distinct case (regard-
less of the chemical content of the samples), we have drawn out and tagged as
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Fig. 2. Projection on the two first principal components of heroin (left) and cocaine
(right).

outliers one case from the heroin dataset and two cases from the cocaine dataset,
the number of classes being superior for the latter. Each dataset thus contains
1 target class (containing the remaining original classes) and 1 outlier class (the
drawn out cases). The rationale for this is that we want to classify a sample as
being linked to a known network or not.

4.2 Experimental setup

All experiments have been performed in Matlab. The Data Description toolbox
(DDTools) [14] has been used. When necessary, parameter values (o or k) were
assigned using line search and a k-fold cross-validation scheme. The main dif-
ference with normal k-fold cross-validation is that, outliers being available, the
outlier set was also split into k folds, but not used for training. The procedure
can be summarized as follows:

1: for i =1 to k do

2:  Remove partition p! of target dataset T to obtain 7".

3 Remove partition p? of outlier dataset O.

4 Train the one-class classifier on T".

5. Compute the AUC q; for dataset pI U p?.

6: end for
7: Compute the cross-validation error e = % Zjil a;.

As the datasets are rather small given the number of variables, using only half

of the training targets to test the classifiers may not allow a good characterization
of the target data. Two measures are thus given:

1. AUC on training target data and independent test outliers (called training
AUC or simply AUC below).

2. AUC by the k-fold cross-validation method previously described (using 5
folds, and called AUC-CV).



The first method obviously overestimates the AUC, while the second might be
both pessimistic or optimistic. However, our prime goal here is to compare the
methods one against another.

5 Results and discussion

Tables 1 and 2 show the obtained results, which are averaged over 10 runs.

Heroin Cocaine

AUC [AUC-CV [param. [[AUC [AUC-CV [param.
K-means |[64.6 = 0.0 |51.5 £4.5|k =2 95.4+5.3|184.9+ 4.1k =8
KNN 97.7+0.0 |62.2+0.0/k =2 96.6 + 0.0(87.7 £ 0.0k =9
Gauss 64.0 £ 0.0 |45.7 £ 0.0|- 98.4+0.0/90.8£0 |-
Parzen 92.1 £0.0 [58.7+0.0/h =0.5 ||94.8 +0.0{89.04+0.0/h = 1.5
GMM I 55.3 £ 0.2 |41.5 4 8.7|2 clusters||87.7 £ 0.0|86.4 4+ 2.2|8 clusters
GMM II 84.7 £3.9 [62.5 & 7.1|2 clusters||98.1 £ 1.5(83.2 &+ 2.1|8 clusters
SVDD 59.6 £ 12.0(66.4 & 7.8|c = 2 88.6 £3.6/90.2+ 1.1jc =3
all-mean 91.0 £ 0.8 |60.0 & 1.2|- 98.2 £ 1.2|87.2 £ 2.2|-
all-product||91.1 £ 0.7 [60.1 £ 1.3|- 99.1 £ 0.8|87.2 + 2.2|-

Table 1. AUC for the heroin and cocaine dataset, without outliers in the training
process. GMM I designates the Gaussian mixture model with a diagonal covariance
matrix, and GMM II the model with the full matrix.

Heroin Cocaine

AUC [AUC-CV [param. [J[AUC [AUC-CV [param.
GMM 1 70.9 £9.4|42.7 + 8.3|2 clusters||98.3 £ 0.8|86.0 &+ 3.0|8 clusters
GMM II 84.8 +3.0(64.8 + 7.1|2 clusters||99.8 £ 0.1|84.7 + 2.0|8 clusters
SVDD 78.4+2.4/40.5 +4.1|0c =2 96.2 £0.3[86.7 =+ 1.5/0 = 3
all-mean ||83.3 £4.6(60.2 &= 4.1|- 98.6 £0.4(86.0 + 1.9(-
all-product||82.2 £ 2.1{57.2 = 7.7|- 99.7 £0.2({85.4 + 1.9|-

Table 2. AUC for the heroin and cocaine dataset, with outliers in the training process.

Figure 3 shows ROC curves on test outliers and training target data for
the best and the worst classifier. Since the test AUC was estimated with cross-
validation, the corresponding curves cannot be illustrated. It can be seen that
the performances for the second dataset are located within a smaller interval.

Results show a surprising difference between the two datasets regarding the
general performance of the methods. First, for the heroin dataset, the gap be-
tween AUC and AUC-CV is considerably larger than that of the cocaine dataset.
KNN and Parzen perform best at achieving a good separation between target and
outlier data, but they both provide an average performance on cross-validation.
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Fig. 3. ROC curves for the best and the worst classifiers obtained on training target
data and independent outliers, for both datasets (heroin on the left and cocaine on
the right). Since the test AUC was estimated using cross-validation, the corresponding
ROC curves cannot be obtained. For the second dataset, the classification performance
is comprised within a smaller interval.

The GMM with a full covariance matrix has produced above average results for
both AUC and AUC-CV, while the GMM with a diagonal matrix has performed
poorly. The SVDD method, even though providing a poor training AUC, seems
to be by far the most robust. The AUC has not decreased at all between the
training AUC and AUC-CV. In fact, the performance improved, but this can
probably be explained by an “optimistic” partitioning during cross-validation.
K-means and the Gaussian distribution performed below average. The latter
even performed worse than random guessing on AUC-CV, as did GMM 1.

On the cocaine dataset, most methods are more consistent. Indeed, the AUC-
CV is much more closer to the training AUC for all the methods. All algorithms
performed reasonably well, although SVDD has again appeared slightly more
robust. Some methods have improved significantly when applied to this dataset.
While the Gaussian distribution was among the worst classifiers for heroin data,
it outperforms all the other methods on cocaine data. Some of these observations
are summarized in Table 3.

Heroin dataset Cocaine dataset

best lworst best lworst
AUC KNN |GMM I ||Gauss |GMM I
AUC-CV SVDD|GMM I ||Gauss |GMM II
Computational cost||Gauss [SVDD Gauss [SVDD
Robustness SVDD|KNN SVDD|GMM II
Easiness Gauss |GMM I-11||Gauss |GMM I-11

Table 3. Comparison of the methods with respect to AUC, AUC-CV, computational
cost, robustness and easiness. Easiness is defined as the number of parameters to tune
(the smaller the better).



Results of classifier combinations are somewhat mitigated. The ensemble clas-
sifier performs well above the average of the base classifiers for both training and
cross-validation AUC. However, the result reaches at best the performance ob-
tained with the best one-class classifier. The product combination rule gives
slightly superior results, but the difference is not significant. Considering the
additional computational cost induced by using more than one classifier, combi-
nations are not extremely interesting on these datasets if the base classifiers are
already good. However, combinations might still be interesting when no knowl-
edge of the methods’ performance is known (i.e., with unlabeled data).

The addition of outliers in the training process significantly increased the
training AUC of SVDD and GMM I and II on both datasets. However, when
looking at the AUC-CV, there is no significant change in the performance of the
one-class classifiers, given the standard deviations of the results. Oddly enough,
the CV performance of SVDD decreases when outliers are presented during
training. This, however, is likely a particularity of this specific dataset. The
same remarks can be made regarding combination of classifiers. At best, the
AUC reaches that of the best classifier.

From these results, it can be inferred that the structure of cocaine data is
close to well-separated Gaussian-like clusters. Indeed, the simple Gaussian dis-
tribution performed very well, and the prediction performance of all the methods
is in general very high. The class separation in heroin data seems to be quite
more complicated. All methods, whilst sometimes achieving a good separation
(Parzen, KNN, GMM II), have a poor prediction performance. In both cases, the
SVDD method has shown to be the most robust. Most importantly, given these
results, it is reasonable - at least for cocaine data - to suppose that information
regarding the network from which comes a sample might be extracted on the
basis of its chemical composition.

6 Conclusion

Several one-class classifiers have been applied and assessed using the AUC crite-
rion for novelty detection in chemical databases of illicit drug seizures. The two
datasets have proven very different: far better prediction performance has been
obtained with the cocaine dataset, as it could be seen with cross-validation. In
most cases, the SVDD method has appeared more robust, even though other
methods have outperformed it in some cases. No significant difference was noted
between general types of outlier detectors, i.e., density-based, boundary or re-
construction methods. Combinations of classifiers provided better than average
results, but at best a similar performance as the best classifier. In addition, pro-
viding outliers during training improved the training AUC, but did not change
significantly the cross-validation AUC.

In general, results suggest, especially for cocaine, that information regard-
ing the origin of a sample (more precisely, the distribution network) might be
extracted from its chemical constituents. This is a very interesting result, since
nothing would indicate a prior: that this is the case. Indeed, products circu-



lating in the same network could come from different producers. Overall, these
results have highlighted one-class classification methods that could contribute
to the profiling methodology in forensic analysis. Future research topics include
considering the time variable. Chemical compositions might exhibit seasonality,
and integrating time would likely provide different results.
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