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Abstract. There are lots of validation indexes and techniques to stlugstering
results. Biclustering algorithms have been applied in @yst Biology, princi-
pally in DNA Microarray analysis, for the last years, wittegt success. Nowa-
days, there is a big set of biclustering algorithms each awed in different
concepts, but there are few intercomparisons that measeirgoerformance. We
review and present here some numerical measures, new ated\¥mom tra-
ditional clustering validation techniques, to allow compans and validation of
biclustering algorithms.

1 Introduction

Biclustering is one of the main options to find structure ingeicroarray data. In the
last years, lots of biclustering methods have been proddéddiuthors apply different
procedures to individually validate them. Also, with thegimg number of algorithms,
its comparison is now being addressed [12]. Though not amapalgorithm exists,
these comparisons help to understand biclustering behawebmake easier the choice
of the bests algorithms in each context.

Several measures for validation exist in clustering aregthey are usually not ap-
plied for biclustering methods. The authors that have ¢égbatore in deepness compari-
son methodologies for biclustering are Prelic et al. [12] @arner et al. [14]. Validation
and comparison are made by external indices. Non-biolbgideces as sensitivity and
specificity are used when information of clustering is knpusually in synthetic data
where biclusters are embedded. Only constant and addiiiesters are treated, as
they are the most extended. Biological indices are used wbénformation intrinsic
to the data is known. Internal and relative indices are seldsed because biclustering
concepts are hard to adapt to clustering indices.

In this paper, we review these validation and comparisohriiggies, explaining
the adaptations done in literature and proposing some athegtations to biclustering
characteristics. Specially, internal and relative indpgl&ation to optimize input pa-
rameters and coherence measures have been developedtitm 2eave discuss the
different kinds of biclusters offering measures to deteeréach type. Section 3 covers
the use of internal, external and relative indices, revigwhe most used and extending
some of them to biclustering context. Section 4 makes a bppfication of measures
discussed in Section 2 and 3 on two biclustering algorittimally, Section 5 presents
the conclusions and future work.



2 Bicluster structure

2.1 Bicluster classification

A bicluster can be defined as ‘a subset of objects (rows onwad) that jointly respond
across a subset of other objects (columns or rows)‘. In foomatics, rows usually refer
to genes and columns to experiments or organism condifidadeira and Oliveira [10]
classify biclusters depending on what is considered fantjp responds’:

— Constant value biclusteCj: all elements have exactly the same valug. Ele-
ments of constant biclust&= [b;j] with n rows andm columns are defined as

bij = u 1)

— Coherent value biclusteH(): row and/or column variations are somehow related.
This relationship may be additivéd("), multiplicative (H*) or by sign H%). In
case ofH™ andH*, each row and/or column differs from others in an additive or
multiplicative factor (egs. 2 and 3, respectively). In caéél*, it is just a qualita-
tive rule of change in tendency (and are binary vectors representing increasing
or decreasing respect to another row or column —such as pbuit it's not im-
posed any quantitative restriction o, ¢;j variations)

bij = 1+ ai+ Bj (2)
bij = paip; (3)
bij = (bi_1,j) + airij) + (0 j—1) +CijBj) (4)

— Coherent evolution biclusteE]: expression levels are first mapped to labels under
certain criteria, such as order or proximity.

The above definitions can be applied to rows, columns or imthmeasures are
usually used in both dimesionS.biclusters are almost ideal, so algorithms searching
for C biclusters usually treats 'constant’ as a range of nearegahy a mapping with
coherence evolution.

This bicluster classification presents overlaps. For exan@pbiclusters on rows
and columns@;.) are included irC biclusters on rowsd; )andC biclusters on columns
(Co). C biclusters of any type are includedtih’ biclusters and overlap witH * biclus-
ters.H* includes them all (Fig. 1). This will be important when corripg biclustering
algorithms that search for different kinds of biclusters.

Cis the most used group because of direct interpretatiordiogical dataH™ bi-
clusters, representing more subtle relations in data &eebond group in references.
H>* andH®* are rarely used, being their biological relevance diffitmijustify or inter-
pret.



Fig. 1.A) Bicluster sets. Each of the sets is internally dividedaw,rcolumn and both dimensions
biclusters of the corresponding type. B) Heatmaps of dfiembiclusters: 1)Cc bicluster, 2)
Cr¢ bicluster with high noise, 3f; bicluster, 4)C; column constant, 5H* bicluster, 6)H*
bicluster and 7H* bicluster. 5),6) and 7) become, after row/column transtdrom,C; and/or
C. biclusters 3) and 4).

2.2 Coherence measures

Having in mind the different groups of biclusters, we can mefineasures that de-
termine how constant or how (additive, multiplicative,jigoherent is our bicluster.
Biclustering algorithms define internally what is consgtkcoherent, but not always
under an specific measure or value. Coherence measures gsadi® define synthetic
biclusters for testing or to check if the results over redgadds the bicluster definition
of the algorithm. Constancy by rows of biclus&(C;, (B)) and by columnsG.(B)) are
easy to measure by means of Euclidean distance

1n—1 n m
B) == bik — bjk)? 5
G (B) n 2 J_:lzl k:1( k—Dbijk) (5)
@) =25 5 |5 (bu-by? ©
m ;< j:|2+1 k; o
Overall constancg;c(B) can be derived fror@, (B) andC.(B):
_ nG(B)+mC(B)
Cre(B) = B — (7)

The average measure for all the biclusters found by an dfgoris the weighted
mean of the measure for each bicluster. These measuratotratlly used to determine
cluster compactness will give bad scores for coherent$tiets. To measure coherency,
an incremental treatment of the data can be applied to make tonstant’, then ap-
plying above formulas to the transformed biclustér [bi’j]. In case oH™:

bij = bij — bi_1); (boj = 0) (8)

bij = bij — bi(j 1) (bio =0) 9)



That way, as seen in Fig. 1bl™ bicluster become€; and/orC; bicluster, and
can be measured by egs. 5, 6 and 7. A similar transform can e with H* using
division instead of substraction, but now there is necgssamnclude an exception to
avoid divisions by zero:

bij = bij/bi-1)j (boj =1) (10)
bij = bij/bjj_1) (bio=1) (11)
Finally, H* has a similar treatment:
bi’j =1&bij > by, bi’j = —lotherwise. (bg; =1) (12)
be =1l b|J >bi(jfl)7 bl/j = —1otherwise. (bmzl) (13)

Proximity to zero on all these measures points that the tieithas the correspond-
ing coherence property. There is no limit in the value thay teke, but values above
1.5 usually tells us that coherency is lost (see Section 4dore practical cases).

3 Validation Indices

Clustering validation indices are divided into three catés [7]: external, internal and
relative. External indices measure the similarity betwelestering results and a priori
knowledge. Internal indices compare the intrinsic streeetf data with cluster results.
Internal indices are much harder to apply to biclusteriramtbxternal indices because
much of the internal concepts (such as compactness or siepauare not applying to
biclusters, where overlapping and coherent variationsiswel. Finally relative indices
compare different configurations of input parameters auasdter results, trying to find
optimal or stable parameters for a given input data.

In the context of biclustering, external validation is mginsed, preferring bio-
logical indices to traditional ones. Internal and relatindices are seldom used, be-
cause of the non trivial task of adapting biclustering cque@s overlapping and bi-
dimensionality to clustering indices.

3.1 Biological external indices

Biological knowledge used in validations are usually gemecdations as those of Gene
Ontology (GO) [2] or KEGG [8]. We will call them external ingks because imply in-
formation external to the data. Given a bicludemwe get all (in example) GO terms
annotated to any of the genesBrand then apply a statistical significance test to deter-
mine if each term appearance is relevant.

Biclustering algorithms presented in [12, 3] use GO and®&G enrichment. Other
biological knowledge applied in the same way than annatatie related with Tran-
scription Regulatory Networks (TRNs). A TRN is a directegi@dic graph where nodes
are genes, and an edge between geaed gend3 means that genkencodes for a tran-
scription factor protein that transcriptionally regua{activate or repress) geie In
this case it is considered the number of genes connected ini@uster or the average



distance between genes in it [12]. It's expected that thebmrraf genes connected will
be greater and the average distance lower than in randoostacs, which is checked
with a significance test. Another interesting characterist check is the number of
network motifs (substructures that appear in TRNs [11]) #na included in a bicluster,
but it is seldom used in bibliography.

Although useful for the objective of knowledge discoverglbgical significance
has a major disadvantage as a validation method: biologitalledge is not complete.
When a bicluster does not group known GO/KEGG annotationsponected genes
in a TRN, it may be because it's a bad bicluster, but also mramformation about
TRN connectiveness or GO annotations are not completeadust example, E. coli
TRN grew from 424 genes and 577 interactions in 2002 [13] {681¢enes and 2724
interactions in 2004 [9]. Also statistical significancetsesre controversial [6, 1].

3.2 Non-biological external indices

Non-biological external indices are used to check if bidusesults match with previ-
ous knowledge of biclusters in the data. They also can beinssmmparing biclusters
of two different biclustering methods. There are two maahteéques to generate exter-
nal indices: two-matrix and single-matrix techniques.

In case of two-matrix technique, two binary matrices ardtb® and R, of size
n x n, wheren is the number of objects (genes or conditions) of our dat&presents
the grouping of objects in the a priori partition aRdhe grouping in our results. Frow
those two matrices, indices are defined, as Rand index, réacoafficient, Minkowski
measure or Folkes and Mallows measure [5]. Though the atitaptd two-matrix tech-
nique to bi-dimensionality is not very difficult, the conte overlapping is harder to
express with this method, so single matrix is preferred.

Single-matrix technique builds a unique bicluster matfinf orderp x r wherepis
the number of biclusters iR andr is the number of biclusters iR. m; will determine
the similarity between the biclusteof P and the biclustej of R. A measure of this
similarity is F; index proposed by Getz et al. [4] and adapted to biclusterSusger
et al. [15].F; is based in the proportion of biclustepresent in biclustej (sensitivity
or module recovery of biclustéy and the proportion of biclustgrpresent in bicluster
i (specificity or relevance of biclustér. Note that the sensitivity of biclustéfor j is
the specificity of biclustey for i, and the same with the specificity idffor j, that is the
sensitivity ofj fori. If gy is the number of genes X, cx the number of conditions iK
andny = gxCyx; sensitivity, specificity ané; are defined as:

sensitivity = M (14)
B

speci ficity = (gAﬂBr)](CAﬂB) (15)
A

Fi(AB) = 2(9anB)(CanB) (16)

Na+NB



When results irR reveal exactly a priori partitio”, M will be (if computed with
Eq. 16) a squarep(x p), symmetric matrix withmy; = 1if i = j andmj =m; <1
otherwise. FronM we can get two measures of the overall matching betvireamdP.

SRP)= 3 max ym) a7)
1P

S(PR) = b Zl max{_y (M) (18)
i=

S(R,P) gives overall bicluster relevance of biclusteriRgwhile S(R,P) gives the
module recovery capacity of biclusterifiy

3.3 Internal indices

Internal indices compare intrinsic information about datt the biclustering results.
In this case, no a priori information further than the rawadiatavailable. Internal in-
dices are not as precise as external indices, but they a@iamp when a priori infor-

mation is not available. To avoid the use of internal indjsgsthetic data with known
structure are built to validate biclustering methods. Wajgplied to real biological data
where no a priori information is known, biological tests ased.

An internal index is computed from two matrices just as naidgical external
indices. In this case, matrR contains information about proximity between expression
levels of genes or conditions. No®,; = P;; = distance(0;,0). Again two pairs of
matrices are needed for biclustering, one wigig@e genes and another for conditions.
Rj is greater whero; and o; are different.R can be built as described for external
indices, but inversed so higher values correspond to abjemttgrouped together. For
exampleCij = 1/(1+ k), wherek is the number of times that objeétand | are grouped
togetherC;; will be in (0,1], being 1 if never grouped together and dovgtim near 0O if
usually grouped. This two matrices can be compared with abzed Hubert statistic:

[(C,P)= ML ZT—Hl(OPIjG— Hp) (Cij — He)
p*¥c

(19)

wheren is the number of objects in the matrix, amd= n(n—1)/2. up, ¢ are the
mean of the matrices ana},, 0y, its variances. As with other measurésjndex must
be computed for the two pair of matrices, then combining d&qn7.

I index and other similar indices, as cophenetic coefficieatless precise than
external indices. For example, Jain and Dubes [7] survégreifit drawbacks of cophe-
netic coefficient, estimating than even a value of 0.9 will be enough to assert that
there is a good correlation betweBrandR.

3.4 Relative indices

Relative indices try to determine the best choice of ourrtligm parameters on each
particular data set. If we want to compare two algorithmsresiahe same data set, we
want to compare its best parametrization for this data set.



However this is a difficult task because of the heterogerditiye biclustering algo-
rithms and its input parameters. Relative indices use tacmmal or internal indices,
depending on the availability of a priori information frofmet data. Independently of
the index, the procedure is to run the algorithm with difféngarameter configurations,
and compute the index for each one. The parameter confignraith best index is
selected as optimal for the data set. Selection of the difftgparameter configurations
is up to the user and is key for the optimal search, so it mysesent all the range of
possibilities, avoiding deviations.

In clustering, another approach to find the best configuragao find an stable
number of clusters, retrieved by a great number of configamat From them, we take
the one in the middle of the range, or the one with the besevalua given index. This
method is also used in some biclustering validations, Wstmfind stability when the
algorithm has pseudo-random behaviour [3], but not to firtcheogd initial parameters.

4  Application

4.1 Algorithms

We have applied some of the performance measures discuss®&d biclustering al-
gorithms, Bimax [12] and improved Plaid Model of Turner efHb]. Bimax is one
of the most compared biclustering methods, by means of immogical and biologi-
cal validation. For example, in [12], non-biological measuare used, but only based
in gene dimension because hierarchical clustering was btieaonethods compared.
Also, in the mentioned comparison only default parametersised for each algorithm,
no parameter optimization is done. Turner plaid model wsigteby their authors with
different synthetic data sets with three to ten (overlagpetifferent proportions) bi-
clusters. Turner and Bimax algorithms have never been coedpa bibliography.

Both methods have been implemented in R according to thefagions in the
corresponding bibliography. Bimax density of 1s againsisQsroved in a range from
1% to 10% (steps of 1%). Turnet’sandt, parameters are provedfas=t, in a range
from 0.4 to 0.8, with steps of 0.1.

Fig. 2. A) Overlapped constant overexpression biclusters. A loisenbas been added to biclus-
ters. Overlapping degree is the same in rows and columns.oB§t@nt and coherent overex-
pression biclusters with random noise. Note how noise &ffd® structure of biclusters, being
constancy undistinguishable from coherency with higheois

4.2 Data sets

Two sets of synthetic data matrices 100x50 are built. Fesb§ matrices will contain
two constant biclusters with overlapping degrees from 0%Q00%, with 10% incre-



ments. Second set of matrices have two non-overlappingdt@ls, one constant and
the other one additive coherent, with normal distributiandom noise. Distribution
deviation increases from 0 (no noise) to 1, with 0.1 incretsiell matrices have a
random noise background (see Fig. 2).

4.3 Methods

The proposed test will briefly apply the techniques discdisBest, we will try to find
the best parameter choice for each biclustering algoritheach data set, by means of
F1 measure (comparing against known biclusters) arfd @omparing against proxim-
ity matrix). That way, we can compare the performancé @& s relative index against
an a priori knowledge techniqué&). Biological significance tests has left out of the
scope of this discussion because studies with them are mterded and do not use
the measures reviewed here. For known biclusters, conatehtoherence measures
will be also computed, analyzing its consistency again&enand overlap.

4.4 Results

Fig. 3a-1 presents the mean of sensitivity and specifi&8) ¢f the results of the best
configuration given by andl™ (or Hubert statistic)F; will give the best configura-
tion at all, whilel" gives the best configuration supposing a priori informatgonot
available. Also, the mea8S for all the tested parametrizations is given. With the ap-
propriate parameter choice, Bimax finds a high percentagaménd columns present
in biclusters embedded, even (sometimes) finding the exelciskers without finding
spurious biclustersSS= 1). Performance is lower when overlapping is around 50%,
being higher when biclusters are nearly separated or arestlime sameSS value of
parameter configuration chosen bymeasure is obviously worse, but still have better
configurations than average. Turner algorithm has lowdopmance than Bimax. The
pruning phase included to improve plaid model fails wheimtyyto prune overlapped
parts of the biclusters.

Overlapping effect on biclusters measures is represent&ifji 3a-2. Because of
additive overlapping, intersecting expression leveldwgher than non-intersecting, so
constant structure is lost with overlapping, in favor of emdnt structure.

In Fig. 3b-1 we can see how Bimax performance is sensibleiseehen it exceeds
0.4 deviations. Bimax discretization threshold is the oesible of this downgrading.
On the other hand, Turner algorithm is not affected by no&segvering data even in the
most noisy cases. Agailfi, statistic does not give the best configuration in each case,
but is better than average. About constancy and coherenasumes (Fig. 3 b-2), the
measures increase with noise, revealing how structureisteslly lost. Additive coher-
ent bicluster has lower (bettet)™ measure tha@ measure, as expected. Note hdw
measures increase with noise until, eventually, surpg€simeasure and coinciding
with Bimax performance downgrade.
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Fig. 3.a) Effect of overlapping in the algorithm and the biclusté)BestSSmeasure achieved by
usingF; andl™ statistics along with the mean 8&for all the proven configurations. 2) Variation
in the measures of constancy and coherency with changes ovérlap degree. b1l) and b2) As
al) and a2), but representing the effect of the noise in tharihms and biclusters, respectively.

5 Conclusions and future work

Due to the variation and drawbacks of validation indices jtbst way to analyze biclus-
tering performance is to use them exhaustively, generatingmework that will define

bicluster specific measures (relative, internal and egténdices), data type definitions
(constant, coherent), benchmark algorithms and examgédé énd synthetic) data sets.

Though external indices use is extended, our approachatvebnd internal index
application is new. That helps in automatic optimizatiomiustering input pareme-
ters, a task seldom considered and critical for obtainieghiighest performance. Data
type definition exists as discussed, but only constant fiefs have been mathemati-
cally measured. We present an approach to measure cohdielusters by using con-
stant measures and transformation of data matrices.



External and internal indices used as relative indices baes applied to two bi-

clustering algorithms to prove their consistency and c#ipato generate information
about performance and bicluster behavior against nois@agrdap, main problems of
biclustering on microarrays. The search of the optimal iauameters for biclustering
algorithms througlf” internal index outperforms the static use of recommendkcbga

Coherence measures have been also proposed and appliedggrelpful in typi-

fying biclusters. Normalization of these measures mustdmedo help in comparisons
between them. We expect to exhaustively prove all theseumneséanalyzing and com-
paring existing biclustering algorithms) and present rresmes in future works.

References

1.

2.

10.

11.

12.

13.

14.

15.

D. R. Anderson, K. P. Burnham, and W. L. Thompson. Null hiipsis testing: problems,
prevalence, and an alternativdaurnal of Wdlife Management, 64(4):912-913, 2000.

M. Ashburner, C. A. Ball, J. A. Blake, D. Bolsteing, H. Bartl J. M. Cherry, A. P. Davis,
K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. HilL. Issel-Tarver, A. Kasarskis,
S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. MiRuand G. Sherlock. Gene
ontology: tool for the unification of biology. the gene omtgy consortiumNature Genetics,
25:25-29, 2000.

. P. Carmona-Saez, R. D. Pascual-Marqui, F. Tirado, J. Mazoaand A. Pascual-Montano.

Biclustering of gene expression data by non-smooth nomthegmatrix factorizationBMC
Bioinformatics, 7(78), 2006.

. G. Getz, E. Levine, and E. Domany. Coupled two-way clirsgieanalysis of gene microarray

data.Proc. Natural Academy of Sciences US, 97(22):12079-12084, 2000.

. M. Halkidi, Y. Batisfakis, and M. Vazirgiannis. On clusieg validation techniqueslournal

of Intelligent Information Systems, 17(2/3):107-145, December 2001.

. R. Hubbard. Why we don't really know what "statistical mificance” means: a mayor

educational failureJournal of Marketing Education, 28:114-120, 2006.

. A. K. Jain and R. C. Dubeglgorithms for Clustering Data. Prentice Hall, 1988.
. M. Kanehisa and S. Goto. Kegg: Kyoto encyclopedia of gamesgenomesNucleic Acids

Research, 28(1):27-30, 2000.

. H.-W. Ma, B. Kumar, U. Ditges, F. Gunzer, J. Buer, and AZ&hg. An extended transcrip-

tional regulatory network of escherichia coli and analysfists hierarchical structure and
network motifs.Nucleic Acids Research, 32(22):6643-6649, 2004.

S. Madeira and A. Oliveira. Biclustering algorithms fological data analysis: a survey.
IEEE/ACM Transactions of Computational Biology and Bioinformatics, 1(1):24—-45, 2004.
R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chidkit, and U. Alon. Network motifs:
simple building blocks of complex networkScience, 298:824-827, 2002.

A. Prelic, S. Bleuer, P. Zimmermann, A. Wille, P. Bhimani. Gruissem, L. Hennig,
L. Thiele, and E. Zitzler. A systematic comparison and estin of biclustering methods
for gene expression datBioinformatics, 22(9):1122-1129, 2006.

S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Networkifadn the transcriptional
regulation network of escherichia cohlature Genetics, 31:64—68, 2002.

H. Turner, T. Bailey, and W. Krzanowski. Improved bi¢kring of microarray data demon-
strated through systematic performance te€mputational Satistics and Data Analysis,
48:235-254, 2003.

H. L. Turner, T. C. Bailey, W. J. Krzanowski, and C. A. Hegivay. Biclustering models
for structured microarray datalEEE/ACM Transactions on Computational Biology and
Bioinformatics, 2(4):316—-329, 2005.



