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Abstract. Microarray technology produces large amounts of infororato be
manipulated by analysis methods, such as biclusteringitiigts, to extract new
knowledge. All-purpose multivariate data visualizatioals are usually not enough
for studying microarray experiments. Additionally, cleisbg tools do not pro-
vide means of simultaneous visualization of all the bidusbbtained.

We present an interactive tool that integrates traditiot®lalization techniques
with others related to bioinformatics, such as transaiptiegulatory networks
and microarray heatmaps, to provide enhanced understaofithe biclustering
results. Our aim is to gain insight about the structure ofdgjizal data and the
behavior of different biclustering algorithms.

1 Introduction

Biclustering methods are techniques that discover intestnacture of data in a non-
supervised way. In the last few years they have been extnspplied to bioinfor-
matics, specially to extract knowledge from microarray exkpents. The first effort
was done by Cheng and Church [5]; many others are surveyd®j238]. Nowadays,
still new biclustering methods are developed [15, 4].

On the other hand, there are tools covering different aspedtiological and statis-
tical analysis. BicAT [2] is a great tool focused in biclustg algorithms, implementing
some of the most important ones along with traditional k-nsesnd hierarchical clus-
tering. BicAT presents the results as ordered lists of kiels, that can be examined
individually through heatmaps and parallel coordinates.

Expander [20, 18] is also a tool that implements clusteringj biclustering meth-
ods. Although Expander implements less biclustering @lgms than BicAT, it has a
great number of visualizations: heatmaps and boxplotadysnicroarray data matri-
ces, dendrogram-+heatmap visualization of hierarchicaketing results [7], clustering
PCA displays and bicluster heatmaps. The PCA display mayhéenost interesting
view because it allows a quick understanding of gene stredtoloring points de-
pending on the cluster which groups them).

gCluto [16] makes use of more advanced information visa#itn techniques. The
microarray data matrix is again represented by a heatmapdouthe interaction with
the representation is allowed, so rows and columns can baneeg, combined or
grouped by hierarchical clustering. gCluto also uses 2[eptions of clusters but in
a 3D space called mountain maps, where perimeter, heigipte €ind color identify
different properties of each cluster.



The Rank-by-feature framework [17] is another powerful foo hierarchical and
k-means clustering. In this case a great level of interadtiallowed, under a high num-
ber of views: heatmaps, dendrograms, histograms, sc&itergmd parallel coordinates.
Finally, Cytoscape [19] is a very different tool, focusedamalyzing biomolecular in-
teraction networks with an optimal degree of interactiavofning, searching, changes
of layout, coloring, database querying and lots more).

Although the aforementioned tools deal with clustering/andiclustering results,
they do not focus on the simultaneous visualization of tH&ICAT visualizes bicluster-
ing results individually, and comparison must be done tghmavigation of lists, which
makes difficult the discovery of relationships among bigus Expander and gCluto
present different solutions to this but for clustering tes he representation of multi-
ple biclustering results of one or more biclustering methleals not been treated.

To overcome these limitations, we have developed a viswadysis tool that allows
the simultaneous display of all the biclustering resultdifferent methods along with
linked views of related information, such as microarrayresgion levels and transcrip-
tion regulatory networks (TRNSs). That way, a full framewtwtelp in decision making
has been implemented and tested.

The following sections are organized as follows. Sectiorgbses the visualization
techniques implemented in the tool: definition of the suuetdata, displays, user inter-
actions implemented and linkages between views. Sectiorsepts a full example of
the use of the framework with a synthetic microarray dataeerpent. Finally, Section
4 draws the conclusions achieved and establishes futwe flor expanding the tool.

2 Bicluster Visualization

The framework manages different data sources and disptay thy using a number
of visualizations techniques. All the visualizations am&eiconnected by means of a
session manager to allow flow of data and interactions amivgsv(see fig. 1). Three
data sources are distinguished. The most important is tieeolsliray Data Matrix, that
contains information about gene names, condition detailsgene expression levels.
Following, TRN network, represented as an XML standard lgrppovides information
about genes and relationships between them (up or dowratem). Finally, bicluster
results are presented as an structured file with informatimut the type of biclustering
algorithm, the dimension of the biclusters and the genescanditions grouped by
them.

These data are visualized by means of five main visualiz&tichmiques: heatmaps,
parallel coordinates, scatter plots, bubble maps anddrgnti®n graphs (Fig. 2). The
first three visualizations represent microarray expressoels as multivariate data
where each gene or sample is a variable and each conditiotperiment is a dimen-
sion. The tool also allows the presentation of this data estaal table. The bubble map
represents biclustering results while the transcripti@pl represents a TRN of the or-
ganism studied in the microarray. For description purpogewill usegeneto address
to a variable an@ondition for dimensions. We will have genesG = {gs,...,gn} and
mconditionsC = {cy, ...,cm}. A biclusterB is a subset ofi, genes G, = {9}, ....9,})
andmy, conditions Cp = {7, ...,C/p })-
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Fig. 1. Diagram of the structure of the framework. Three data s@uce@ be used in the visual-
ization of different displays by means of a session mandggrimterconnects them all.

2.1 Microarray data visualizations

Heatmaps (Fig. 2¢) are the most usual representation obam@y data. In order to in-
spect genes or conditions individually, the heatmap impletsibifocal distortion [12]
by rows and/or columns, as well as zoom and navigation thraxpression levels.
Selection of rows, columns or individual expression lewkslinked to the other visu-
alizations of the framework.

Parallel coordinates (fig. 2d) repres&@as a set of lines aitrdimensional points.
Selection of ranges of values on any condition can be donadi@ons also can be
reordered as desired.

2.2 Bubble map

Bubble maps (fig. 2b) are related to gCluto mountain mapsublike gCluto maps,
this visualization makes use of two dimensions to avoid 3Briaypping and improve
time performance, allowing simultaneous comparison ofgelaumber of biclustering
results from different methods.

Each biclusteB is represented as a circle (bubble), where color identiiebiclus-
tering method that computed it. The radius of the shapegédehe size of the bicluster,
computed as,my,. The transparency depends on bicluster homogeneity, dediméhe
inverse of the within variation described in eq. 1:

(1)

wherea;; is the expression level of the gegeunder the conditior; anda; is the
mean of the expression levels of the genes group&dfar conditionj.

The position is determined by the genes and conditions gauphe horizontal
coordinate depends on conditions while the vertical comt#i depends on genes. To
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Fig. 2. Overview of the framework. Data belongs to the example dised in Section 3. The
most relevant visualizations are (a) TRN network, (b) babhblp, (¢) microarray heatmap and
(d) parallel coordinates.

compute the positions, biclustBr grouping gene subs€&, and condition subs&, is
mapped to the multidimensional poingsandyy, as in egs. 2 and 3.

Xo = (P1,P2,---,Pn) | Pi =1 g C G, pi = 0otherwise 3

Yo = (P1; P2, -, Pm) | Pj = 1< Cj C Gk, pi = 0 otherwise )

These two points af andm coordinates are projected to one dimension with either
a classical metric [8] or non-metric [10] multidimensiosaéling. This way botly-axis
andx-axis components of the representation for each biclusteolatained. Therefore,
biclusters at the same horizontal/vertical line are exgatd share genes/conditions,
although this is not always precise due to the reductionragdisionality, that obviously
loses information.

The result is a set of distributed, colored, sometimes fgsed circular shapes,
where an analyst can easily identify biclusters distaninftbe trend, differences be-
tween biclustering methods or other relevant knowledggs(F2b, 3a). The user can
select any number of biclusters, a change that is transfésrether views to highlight
the corresponding genes and/or conditions. Bubbles camrdgged to change their
positions in case the user wants to reorder them using amy otlterium.



2.3 TRN visualization

In a TRN, nodes represent the set of all ge@esvhile a directed edge fromy to g
means thag; encodes for a transcription factor protein that transiniatlly regulates
0; [14]. Itis important to distinguish at least two types of edgactivation and repres-
sion edges. When a gene up-regulated connects with antamtiesige to another gene,
this one is favored to up-regulation. If it connects with presssion edge, will be favored
to down-regulation.

In our framework, TRNs have been represented as directaddiagyaphs led by
forces (Fig. 2a). Nodes are labeled with gene names and edge®lored in dark or
light grey depending if the interaction is activation oriisition, respectively. To avoid
edge cluttering, they are displayed with splines insteasdraight lines. We also imple-
ment a gene search by name. The interacting forces dispayoithes so the overlapping
of nodes and edges is minimized.

2.4 Linked Visualizations

All the visualizations are linked so changes in a view ar@pgated to the rest of views
(Fig. 3). The ability of visualizing changes in a repres@otabecause of interaction
with another representation helps to reveal patterns. ©mwtiher hand, linkage limits
the screen area because it has to be divided by differenalizations. All linkages
implemented are bidirectional, so flow between visualatican be followed at user’s
demand.

In our case, the usual flow of information that communicatews are subsets of
genes and/or conditions. Thus, a selection of a node in thé Wik imply the flow of
the gene represented by that node to other views, highlighticlusters that contain
this gene or focusing on the gene in the microarray heatmsapxtimple. The user can
configure which visualizations to monitor simultaneousid & they are linked or not,
thus adapting screen areas to her necessity.

3 Case Study

3.1 Example Dataset

In order to make the discussion simpler, we have chosen &eediynthetic example
obtained by SynTReN [6] from Shen-Orr’s E. coli TRN [21]. RFrahis network, with
424 nodes, SynTReN builds a synthetic TRN with 200 nodesnbgi@s based in Shen-
Orr’s definition and 10 random nodes, without biologicalibaSynTReN will also
generate a microarray data matrix simulating 10 experimergch one repeated two
times.

We apply three different biclustering algorithms to the roarray data matrix: Bi-
max [15], Plaid models [11] and Spectral biclustering [9¢ Wave chosen methods that
differ in its interpretation of biclusters, so it is expettthat their results will be quite
distinct.



Fig. 3. Example of how linkage works. A Bimax (red) bicluster is stégl in bubble map (a)

and this provokes gene highlighting in TRN (b), reorderifigoavs and columns in heatmap (c)
and highlighting of lines and reordering of axis in paratiebrdinates (d). Similar flows can be
followed by interaction with other visualizations.

3.2 Objectives

The framework has been designed in such a way that analyisatirally follow
the Information Visualization Mantra: "Overview first, zmoand filter, details on de-
mand” [22]. This way, it will start with a general overview ofir problem, to continue
with filterings by biclusters, genes and conditions. Witsh flows, supported by linked
views, we will prove the potence of the framework to analymernentioned dataset re-
garding the following: 1) detecting relationships betwé#aa two replications of each
experiment, 2) determining characteristics in the bidisstomputed by different meth-
ods, 3) checking if related groups in TRN are grouped by bielis and 4) detecting
random genes, and determining if they appear in the bickistanputed.

Additionally, we want to discover: 1) new relationshipsveén genes not related
in the TRN, 2) biclusters deviated from the trend and 3) d#ffees and similarities of
the three biclustering methods and its performance foretkésnple.



3.3 Overview

A simple overview using different visualizations givesergsting information. The
TRN layout (fig. 2a) shows how genes are related accordinitirg biological
knowledge. A group of random genes is easily detected as aratepgraph at the
bottom-left. The bubble map (fig. 2b, 3a) shows bicluster8fmax (red), Plaid model
(green) and Spectral (blue). With just a glance, we canhat tPlaid model gives big-
ger, heterogeneous (transparent) biclusters (due to sxena dy a reported problem of
this algorithm [24]), while Spectral biclustering givegysmall ones and are displayed
linearly, revealing the checkerboard structure of SpétiEustering. Bimax returns
middle-size, homogeneous (solid) biclusters. Also, lsigts deviated from the trends
and groups of neighbor biclusters are easily detectedjipssorth a deeper study
with the tool. The microarray heatmap and parallel cooréimare not very helpful on
an overview, being the expression level information overiwting without previous fil-
tering. Finally, a scatter plot comparing expression leeéldifferent replications of the
same experiment (fig 2, bottom left) reveals its correlation

3.4 Bicluster-oriented analysis

Once the overview has given us a context to draw preliminaajlysis, deeper ex-
ploration is needed. This usually starts with biclusterspldyed with different colors
depending on their method of biclustering. Interestindusiters because of their homo-
geneity, size or position are salient in the bubble map Vizatzon and can be selected,
provoking changes in other visualizations that give ugjimsabout what is grouped in
the bicluster and why.

The microarray heatmap will reorder and highlight genesamdlitions on the bi-
cluster, giving a quick way to identify what is in the biclastAlso heatmaps, along with
parallel coordinates, help to understand why these gerges@mditions are grouped
together by the algorithm in terms of their expression lgvEbr example, when se-
lecting a Bimax bicluster as in fig. 3, genes highlighted iatheap and parallel coor-
dinates present high and constant expression levels thriggcorresponding condi-
tions. These are two of the features of Bimax algorithm, &edefore the information
helps us to confirm that the results are correct or (if theustelring method is not well
known) to learn about the biclustering behavior. On the offaed, when a bicluster is
selected, the corresponding genes highlight in the TRN artvsually, as in fig. 3b,
groupings are reflected in previously biological relatiuips (left bunch of genes) but
in some cases previously unrelated genes are groupedsdketéase of the gene at the
right of the figure. Thanks to the force layout of the TRN gragénes unrelated (very
separated) can be easily detected.

Various biclusters can be selected simultaneously, thgislighting in other visu-
alizations the intersecting genes and conditions. Thisteyésting when clouds of bi-
clusters are detected in the bubble map.

3.5 Gene and condition-oriented analysis

Studying the biclusters, some genes appear grouped witlireat (or obvious indirect)
relation in the TRN. These genes could be actually relatdmbanisgrouped by biclus-



tering algorithms. If that kind of genes are grouped by adargmber of biclusters, the
probability of them being really related increases, jystif further analysis. The same
is valid with conditions.

To analyze these interesting objects, we can change the seapflow of the nav-
igation through the tool and start by selecting particulemes. Picking those genes in
the TRN will highlight all the biclusters that groups thengésher. If a high number
of biclusters is highlighted, it is possible that the genesteuly related and we have
discovered relevant knowledge (Fig. 4).
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Fig. 4. Genes namespec andnr f ABCDEF G are grouped together in seven biclusters from two
different biclustering methods, without known biologiesidence. The framework helps to dis-
cover it quickly.

4 Conclusion and future work

A framework to study biclustering methods in terms of itsutessby different visu-
alizations, including biological knowledge with TRNs, isepented. The use of this
framework, along with benchmark datasets and statistindl l#ological validation
techniques can shed more light on performance of biclusgeriethods. It also will
help analysts in the study of the usually large number ofusitelrs given by bicluster-
ing algorithms, decreasing analysis time and helping irddtection of relevant results.
The tool discussed has relevant advantages over othenttoods:

— Visualization of all biclustersimultaneously by means of the bubble map. This
visualization also allows the representation of biclusfesm different biclustering
algorithms simultaneously. Only gCluto and Expander impdats simultaneous
visualization of simple clusters form a single method, withinteraction.

— Incorporation of biological information from transcripti regulatory networks to
the visualization of microarray data and biclusters, aitmtheir communication.



This is an unusual feature, only implemented by Expanden{eans of visualiza-
tion of transcription binding sites in gene sequences) aytdscape (coloring of
TRNSs by expression levels).

— Simultaneous visualization and linking between diffenaatvs. This is a key con-
cept to increase the user’s insight on the problem, witngstsie changes that in-
teraction with a visualization causes in other views.

— Use of statistical measures such as coherence and variantedns of bubble map,
thus including another relevant aspect of biclusterindyesi validation metrics.

Aside for the aforementioned advantages, new paths to wephe tool are opened:

— The bubble map, although useful, is based in projectioriséuiace dimensionality
at the cost of discarding details. The result is that thelapeing of bubbles does
not exactly convey the real overlapping of biclusters. Amottechnique is being
currently studied to solve this.

— More biological knowledge will be, specially network matif14] identified in
TRNs and GO [1] and MIAME annotations [3], increasing theailston-demand.

— Gene and bicluster-oriented analysis discussed here grenjo ways of revealing
new knowledge. Testing of the tool by analysts will revealrequirements in
both visualization and genomic/transcriptomic areas.
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