
Position-aware string kernels with weighted
shifts and a general framework to apply string

kernels to other structured data

Kilho Shin

Carnegie Mellon CyLab Japan

Abstract. In combination with efficient kernel-base learning machines
such as Support Vector Machine (SVM), string kernels have proven to be
significantly effective in a wide range of research areas (e.g. bioinformat-
ics, text analysis, voice analysis). Many of the string kernels proposed so
far take advantage of simpler kernels such as trivial comparison of char-
acters and/or substrings, and are classified into two classes: the position-
aware string kernel which takes advantage of positional information of
characters/substrings in their parent strings, and the position-unaware
string kernel which does not. Although the positive semidefiniteness of
kernels is a critical prerequisite for learning machines to work properly, a
little has been known about the positive semidefiniteness of the position-
aware string kernel. The present paper is the first paper that presents
easily checkable sufficient conditions for the positive semidefiniteness of
a certain useful subclass of the position-aware string kernel: the similar-
ity/matching of pairs of characters/substrings is evaluated with weights
determined according to shifts (the differences in the positions of charac-
ters/substrings). Such string kernels have been studied in the literature
but insufficiently. In addition, by presenting a general framework for
converting positive semidefinite string kernels into those for richer data
structures such as trees and graphs, we generalize our results.

1 Introduction

The string kernel, in combination with efficient kernel-base learning machines
such as Support Vector Machine (SVM), has been applied to a wide range of
research areas (e.g. bioinformatics ([1–3]), text analysis ([4]), voice recognition),
and proves to be significantly effective for clustering string-type data.

Many of the known string kernels were engineered based on simpler kernels
such as trivial comparison of characters and/or substrings, and therefore are
classified into two classes: the position-aware string kernel which takes advan-
tage of positional information of characters/substrings in their parent strings,
and the position-unaware string kernel which does not (e.g. the spectrum kernel
([1]), the string subsequence kernel ([4])). Some of position-aware string kernels
evaluate only those pairs of characters/substrings whose positions in their par-
ent strings coincide with each other (e.g. the locality-improved kernel ([2]) and
the weighted-degree kernel ([3])). This constraint, however, is too restrictive for

some applications, and it may be desirable to allow weighted shifts to improve
generality — a pair of characters/substrings whose positions differ by a shift s
is also evaluated but with a weight w̄s determined according to s. The codon-
improved kernel ([2]) and the weighed-degree kernel with shifts ([3]) are examples
of kernels of this type. A brief survey of string kernels is given in Section 2.

Theoretically, string kernels with weighted shifts are expected to be effective
when applied to string-type data such that discriminative patterns intensively
distribute around plural particular positions (e.g. written/spoken texts, html
documents). On the other hand we have to pay careful attention when engi-
neering kernels of the type, since it is known that näıve selection of weights
could easily harm the positive semidefiniteness of the resulting kernels. A kernel
K(x, y) is said to be positive semidefinite, if, and only if, for an arbitrary set of
data {x1, . . . , xN}, the derived Gram matrix [K(xi, xj)](i,j)∈{1,...,N}2 is positive
semidefinite (i.e. all the eigenvalues are non-negative), and the positive semidef-
initeness of a kernel is a critical prerequisite for kernel-base classifiers to work
properly.

The present paper is the first paper that presents easily checkable sufficient
conditions for position-aware string kernels with weighted shifts to be positive
semidefinite (see Section 3 for the conditions, and Section 5 and Section 6 for
proofs). A limited part of the results of the present paper is presented in [5]
without proofs.

Furthermore, we describe a general framework for transforming positive semidef-
inite string kernels into positive semidefinite kernels for richer data structures
such as trees and graphs (Section 4)

2 A survey of string kernels

In this section, we review 6 important string kernels in the literature, namely the
spectrum kernel ([1]), the string subsequence kernel ([4]), the locality-improved
kernel ([2]), the weighted-degree kernel ([3]), the codon-improved kernel ([2]),
and the weighted-degree kernel with shifts ([3]). The spectrum kernel and the
string subsequence kernel are examples of position-unaware kernels, while the
others are examples of position-aware kernels. In particular, the codon-improved
kernel and the shifted-weighted-degree kernel allow weighted sifts (see Section 1).
Also, a good survey of kernels for structured data is available in [6].

In this section, we use the following notations. We define Cn,m and Dn,m as
follows for integers n ≤ m.

Cn,m = {(i, i + 1, . . . , i + n− 1) | 1 ≤ i ≤ m− n + 1}
Dn,m = {(i1, . . . , in) | 1 ≤ i1 < · · · < in ≤ m}

Strings are defined over an alphabet A, and, for a string x = x1x2 . . . x|x| and
a vector i ∈ Dn,|x|, we let x[i] denote the n-length string xi1xi2 . . . xin . The
function δ(a, b) indicates Kronecker’s delta function — it returns 1 if a and b are
“identical”, and 0 otherwise.

2.1 Position-unaware string kernels

Fix an integer n ≥ 1 in this subsection. The spectrum kernel ([1]) was introduced
for protein classification, and counts up the contiguous substrings of length n
shared between input strings x and y.

K(x, y) =
∑

i∈Cn,|x|

∑

j∈Cn,|y|

δ(x[i], y[j])

On the other hand, the string subsequence kernel ([4]) has proven to be effec-
tive for text classification. Compared with the spectrum kernel, the restriction
on substrings with respect to contiguity is relaxed, and instead, the decay factor
λ ∈ (0, 1) is introduced to emphasize contiguous substrings.

K(x, y) =
∑

i∈Dn,|x|

∑

j∈Dn,|y|

λin−i1+jn−j1δ(x[i], y[j])

Both kernels only evaluate matching of substrings as sequences of characters,
and don’t take the positions of substrings into account at all.

2.2 Position-aware string kernels with precise position matching

In some applications, it has proven true that positional information of substrings
is an important factor to improve generality of machine learning.

The locality-improved kernel ([2]) is a successful example of string kernels
exploiting positional information, and compares between nucleotide sequences
x and y in order to recognize translation initiation sites (TIS). The locality-
improved kernel K(x, y) inspects matching between nucleotides at the same po-
sition in x and y, and is defined as follows with non-negative weights γ|k|.

winp(x, y) =

(∑̀

k=−`

γ|k|δ(xp+k, yp+k)

)d1

, K(x, y) =




L−∑̀

p=`+1

winp(x, y)




d2

The weighted degree kernel ([3]) is another successful example of position-
aware kernels, and is defined as follows.

K(x, y) =
d∑

n=1

βn

∑

i∈Cn,L

δ(x[i], y[i])

The kernels are different from each other in that the former performs character-
by-character comparison, while the latter compares substrings. They, however
are the same in that the character/substring pairs to be compared with each
other are located at the same position in their parent strings.

2.3 Position-aware string kernels with weighted shifts

The codon-improved kernel ([2]) is a modification of the locality-improved kernel
so as to exploit the a priori knowledge “a coding sequence (CDS) shifted by
three nucleotides still looks like CDS ([2])”. In fact, in addition to the matches
of nucleotides placed at the same position, it compares the pairs of nucleotides
whose positions differ exactly by 3. When T3 denotes the 3-shift operator that
chops off the leading 3 nucleotides, the window score winp(x, y) at position p of
the locality-improved kernel is modified as follows.

kp(x, y) =
∑̀

k=−`

γ|k|δ(xp+k, yp+k)

winp(x, y) = [kp(x, y) + w̄ {kp(T3x, y) + kp(x, T3y)}]d1

Although it is claimed in [2] that the codon-improved kernel is uncondition-
ally positive semidefinite, the fact is that the weights should be chosen carefully.
For simplicity, assume γ|k| = 1, d1 = 1, ` = 3q and p = 3q+1. When x and y are
the strings of length 6q + 1 defined as follows, winp(x, x) = winp(y, y) = 6q + 1
and winp(x, y) = 4q + 4w̄q hold.

x = ATGCGT ATGCGT . . . ATGCGT︸ ︷︷ ︸
6q

A, y = CTGAGT CTGAGT . . . CTGAGT︸ ︷︷ ︸
6q

C

Therefore, the determinant of the corresponding Gram matrix is (1 − 2(2w̄ −
1)q)(1 + 2(2w̄ + 5)q), and is not always non-negative for w̄ > 1

2 .
In [3], the weighted degree kernel is modified along the same line as the

codon-improved kernel except that the modified kernel includes w̄s for plural
s. Let k(x, y) =

∑d
n=1 βn

∑
i∈Cn,L

wi1δ(x[i], y[i]). When Ts denotes the s-shift
operator, the following kernel is introduced in [3]1.

K(x, y) = k(x, y) +
S∑

s=1

w̄s{k(Tsx, y) + k(x, Tsy)} (1)

The positive semidefiniteness of K(x, y) was investigated as follows in [3].
Since k(x, y) is positive semidefinite, so is k(x, y) + k(Tsx, y) + k(x, Tsy) +
k(Tsx, Tsy). If wi remain constant irrespective of i2, it follows that 2k(x, y) +
k(Tsx, y) + k(x, Tsy) is positive semidefinite. Therefore,

∑S
s=1 2w̄s ≤ 1 is a

sufficient condition for K(x, y) to be positive semidefinite. We can relax the
constraint of w1 = · · · = wL to w1 ≤ w2 ≤ · · · ≤ wL: The key property
of 2k(x, y) + k(Tsx, y) + k(x, Tsy) remains true, since k(x, y) − k(Tsx, Tsy) =∑d

n=1 βn

∑
i∈Cn,L

(wi1−wi1−s)δ(x[i], y[i]) and wi1−wi1−s ≥ 0 hold with wi = 0
for i ≤ 0.
1 Although S varies according to n in [3], we assume that S is a constant just for

simplicity.
2 This seems to be assumed in [3] with no declaration.

3 Our contributions

As seen in the previous section, many existing string kernels are based on evalu-
ation of comparison between characters/substrings of input strings. Also, to im-
prove the performance of such character/substring-base string kernels, exploita-
tion of the positional information of the characters/substrings is important, and,
in fact, has proven to be effective at least in certain applications.

On the other hand, positive semidefiniteness of kernels, in principle, must be
guaranteed, since kernel-based learning machines may not treat them properly,
otherwise. In contrast to the position-aware string kernel which requires precise
matching of the positions of characters/substrings (2.2), the positive semidefi-
niteness of the position-aware kernel with weighted shifts (2.3) is subtly affected
by choice of weights, and, yet worse, only a little has been known about condi-
tions on good weights.

The first contribution of this paper is to give an answer to the problem. In the
remaining of this paper, without loss of generality, we assume that any strings
are of length L over an alphabet A. Given positional weights wi, a positive shift
s, a shift weight w̄s and a kernel k over A, we define K(x, y) as follows.

K(x, y) =
L∑

i=1

wi [k(xi, yi) + w̄s {k(xi+s, yi) + k(xi, yi+s)}] (2)

For non-negative integers a and b such that a ∈ {1, . . . , s} and s(b−1)+a ≤ L,
we define γ

(a)
b by the recurrence formulas described below.

γ
(a)
0 = 1, γ

(a)
1 = wa, γ

(a)
b = ws(b−1)+aγ

(a)
b−1 − w̄2

sw2
s(b−2)+aγ

(a)
b−2 (3)

Then, our main theorem is stated as follows, and its proof is given in Section 5.

Theorem 1. If γ
(a)
b > 0 holds for every (a, b) such that a ∈ {1, . . . , s} and

s(b − 1) + a ≤ L, the character-base string kernel K(x, y) defined by Eq.(2) is
positive semidefinite for an arbitrary positive semidefinite kernel k(xi, yj).

Conversely, if γ
(a)
b < 0 holds for some (a, b), there exists a positive semidefi-

nite kernel k(xi, yj) such that the resulting K(x, y) is not positive semidefinite.

The sufficient condition presented in Theorem 1 is very close to a necessary
condition, since the positive semidefiniteness of K(x, y) is left undetermined only
in the marginal cases where γ

(a)
b ≥ 0 for all (a, b) and γ

(a)
b = 0 for some (a, b).

On the other hand, when w1, . . . , wL are fixed, the condition is reduced to
an equivalent inequality of 0 ≤ w̄s < b

(s)
w1,...,wL for some b

(s)
w1,...,wL . While it is

not easy to determine the actual values for b
(s)
w1,...,wL , Corollary 1 gives an easily

computable lower bound for b
(s)
w1,...,wL .

Corollary 1. Assume that all the weights are positive. The kernel K defined by
Eq.(2) is positive semidefinite for an arbitrary positive semidefinite k(xi, yj), if
the following inequality holds for w1, . . . , wL and w̄s.

w̄s ≤ min
{

wi

wi−s + wi

∣∣∣∣ i = s + 1, . . . , L

}
(4)

Now, let us consider the kernel of the following form. In the same way as in
the above, k(xi, yj) is a positive semidefinite kernel over A.

K(x, y) =
L∑

i=1

wi

[
k(xi, yi) +

S∑
s=1

w̄s {k(xi+s, yi) + k(xi, yi+s)}
]

(5)

Let b′(s)w1,...,wL
be positive numbers such that, if 0 ≤ w̄s ≤ b′(s)w1,...,wL

, the kernel
of Eq. (2) is positive semidefinite. If we have

∑S
s=1 αs = 1 such that 0 ≤ w̄s ≤

αsb
′(s)
w1,...,wL

, Ks(x, y) defined below is positive semidefinite, and therefore so is
K(x, y) =

∑S
s=1 Ks(x, y).

Ks(x, y) =
L∑

i=1

wi [αsk(xi, yi) + w̄s {k(xi+s, yi) + k(xi, yi+s)}]

Thus, we have obtained Theorem 2.

Theorem 2. If the following inequality holds for w̄s, the character-base string
kernel of Eq. (5) is positive semidefinite for an arbitrary positive semidefinite
k(xi, yj).

S∑
s=1

w̄s

b′(s)w1,...,wL

≤ 1

Proof. We have only to take αs such that w̄s

b′(s)
w1,...,wL

≤ αs and
∑S

s αs = 1. ut

The sufficient condition by [3], which was also described in 2.3, is obtained
as a corollary to Corollary 1 and Theorem 2.

Corollary 2. If w1 ≤ · · · ≤ wL, the character-base string kernel of Eq. (5) with∑S
s=1 w̄s ≤ 1

2 is positive semidefinite.

In Section 4, we introduce a general framework to transform character-base
string kernels into not only substring-base string kernels but also kernels for
richer data structures than strings. Here, with the framework, we derive from
Eq. (5) two types of position-aware substring-base string kernels with weighted
shifts: one is the weighted-degree kernel with shift described in 2.3 (Eq.(1) and
[3]), and the other is its variation for non-contiguous substrings (Eq.(6)).

4 A framework for transforming character-base string
kernels into kernels over other structured data

In this section, we present a general framework to transform given character-
base string kernels into not only substring-base string kernels but also kernels
for richer data structures such as trees and graphs.

We start with defining the framework in a formal manner, and then look
closely at it using examples. Let χ, χ′, {χ′x | x ∈ χ}, µ and k′ be as follows.

– χ is a space of data points.
– χ′ is a space of subparts (e.g. characters, substrings, subtrees, subgraphs)
– Per each x ∈ χ, a finite set χ′x j χ′ is assigned.
– µ : χ′ → N is a positioning mapping. Further, we denote maxµ(χ′x) by |x|.
– k′ : χ′ × χ′ → R is a positive semidefinite kernel.

Given (χ, χ′, {χ′x}, µ, k′), we define an alphabet A, a mapping L : χ → A∗

and a kernel k : A× A → R as follows.

– The alphabet A is the power set P(χ′) of χ′.
– For x ∈ χ, the lift of x, denoted by L(x), is the string of length |x| whose

i-th character L(x)i is {x′ ∈ χ′x | µ(x′) = i} ∈ A.
– A kernel k : A× A → R is defined by k(X,Y) =

∑
x′∈X

∑
y′∈Y k′(x′, y′).

Let K(ξ, η) be an arbitrary character-base string kernel, which includes a
character kernel k(ξi, ηj). Furthermore, we assume that K(ξ, η) has the property
that it is positive semidefinite, if so is k(ξi, ηj) (as Theorem 1, Corollary 1 and
Theorem 2 assert). We define K(x, y) for x, y ∈ χ by substituting k(L(x)i, L(y)j)
for k(ξi, ηj) in K(ξ, η). Since Haussler’s theorem ([7]) asserts that k(L(x)i, L(y)j)
is positive semidefinite, K(x, y) remains positive semidefinite.

With this framework, the substring-base string kernels described in Sec-
tion 2, namely the spectrum kernel (Sp), the string subsequence kernel (SSs), the
weighted-degree kernel (WD), the weighted-degree kernel with shifts (WDwS)
and the non-contiguous substring version of WDwS (Eq. (6)), are all derived
from some of the character-base string kernels that we discuss in the present
paper. Table 1 describes the necessary settings for the derivation. In particu-
lar, Theorem 1, Corollary 1 and Theorem 2 provide sufficient conditions on the
weights for K(x, y) of WDwS and Eq. (6) to be positive semidefinite.

w̄0 = 0, K(x, y) =
∑

i∈Dn,L

∑

j∈Dn,L

S∑
s=0

wmin{i1,j1}w̄sδ(|i1 − j1|, s)δ(x[i], y[j]) (6)

Furthermore, we can apply the framework to structured data other than
strings. For example, let χ be a set of rooted trees, and let χ′x denote the set
of the subtrees of x. When the depth of a vertex v of a tree x is defined as
the number of edges of the upward path from v to the root of x, we define
dpth(x′) for x′ ∈ χ′x as the depth of the root of x′ in x. Then, with the setting
of µ(x′) = dpth(x′) and k′(x′, y′) = δ(x′, y′), we will obtain from the character-
base string kernel of Eq. (5) a tree kernel that counts isomorphic subtree pairs
(x′, y′) ∈ χ′x × χ′y with the weights wmin{dpth(x′),dpth(y′)} · w̄|dpth(x′)−dpth(y′)|.

K(x, y) =
∑

x′∈χ′x

∑

y′∈χ′y

S∑
s=0

wmin{dpth(x′),dpth(y′)}w̄sδ(|dpth(x′)− dpth(y′)|, s)δ(x′, y)

This tree kernel would be useful to classify web page trees, where the distance
of a page from its root page has significance. Also, we can use the order preodr(x′)

Table 1. Settings for applying the framework to respective string kernels

Kernel χ′x = µ((i, x)) = k′((i, x), (j, y)) = Char.-base kernel

Sp Cn,|x| × {x} i1 δ(x[i], y[j])
∑|ξ|

i=1

∑|η|
j=1

k(ξi, ηj)

SSs Dn,|x| × {x} i1 λin−i1+jn−j1δ(x[i], y[j])
∑|ξ|

i=1

∑|η|
j=1

k(ξi, ηj)

WD
(⋃d

n=1
Cn,|x|

)
× {x} i1 β|i|δ(x[i], y[j])

∑min{|x|,|y|}
i=1

k(ξi, ηi)

WDwS
(⋃d

n=1
Cn,|x|

)
× {x} i1 β|i|δ(x[i], y[j]) Eq. (5)

Eq. (6)
(⋃d

n=1
Dn,|x|

)
× {x} i1 β|i|δ(x[i], y[j]) Eq. (5)

derived from the pre-order traversal of trees instead of the depth dpth(x′). The
resulting tree kernel would be useful to classify parse trees of natural languages,
for example, where the word order in sentences has important meaning.

5 Proof of Theorem 1

Here, we will take advantage of the result of [5]. Indeed, our key lemma, namely,
Lemma 1, is a degenerated corollary to Theorem 1 in [5], which gives a general
sufficient condition of multivariate polynomials of arbitrary degrees such that
polynomial kernels derived from the polynomials become positive semidefinite.

Lemma 1 ([5]). Let A be an alphabet, and let xi denote the i-th character of an
L-length string x ∈ AL. For an L-dimensional real matrix C = [ci,j](i,j)∈{1,...,L}2 ,
the following are equivalent to each other.

1. C is positive semidefinite.
2. For an arbitrary positive semidefinite k : A × A → R, the kernel that re-

turns
∑L

i=1

∑L
j=1 ci,jk(xi, yj) on input of (x, y) ∈ AL × AL is also positive

semidefinite.

When we define ci,j by: ci,j = wi, if i = j; ci,j = w̄swi, if j = i+s; ci,j = w̄swj ,
if i = j + s; and ci,j = 0, otherwise. Then, K(x, y) =

∑L
i=1

∑L
j=1 ci,jk(xi, yj)

holds for K(x, y) of Eq.(2). Therefore, Lemma 1 implies that, to prove the first
assertion of Theorem 1, it suffices to show that the matrix C = [ci,j](i,j)∈{1,...,L}2
is positive semidefinite.

We let a be one of {1, 2, . . . , s}, and let the submatrix C
(a)
b denote the b-

dimensional matrix [cs(i−1)+a,s(j−1)+a](i,j)={1,...,b}2 . For L = sq + r such that
r ∈ {1, 2, . . . , s}, b moves in the interval [1, q + 1] if a ≤ r, and does in the
interval [1, q] if a > r. For example, when b = 4, C

(a)
4 looks as follows.

C
(a)
4 =




wa w̄swa 0 0
w̄swa ws+a w̄sws+a 0

0 w̄sws+a w2s+a w̄sw2s+a

0 0 w̄sw2s+a w3s+a




By applying the same permutation to the rows and the columns of C if necessary,
C is decomposed into a direct sum of its sub-matrices as follows.

C = C
(1)
q+1 ⊕ · · · ⊕ C

(r)
q+1 ⊕ C(r+1)

q ⊕ · · · ⊕ C(s)
q

Therefore, C is positive definite (i.e. C has only positive eigenvalues), if, and
only if, so are C

(a)
q+1 for a ≤ r and C

(a)
q for a > r.

On the other hand, C
(a)
q+1 for a ≤ r (resp. C

(a)
q for a > r) is positive definite,

if, and only if, det(C(a)
b) > 0 for all 1 ≤ b ≤ q+1 (resp. 1 ≤ b ≤ q)3. Since, by the

Laplacian determinant expansion by minors, we have the recurrence formula (7)
for det(C(a)

0) = 1 and det(C(a)
1) = wa. This indicates that det(C(a)

b) coincides
with γ

(a)
b . Thus, the first assertion of Theorem 1 has been proved.

det(C(a)
b) = w(b−1)s+adet(C(a)

b−1)− (w(b−2)s+aw̄s)2det(C(a)
b−2) (7)

The second assertion is also derived from Lemma 1. If γ
(a)
b < 0 for some

(a, b), det(C) is negative, and hence C is not positive semidefinite. By Lemma 1,
there exists a positive semidefinite kernel k(xi, yj) defined over the alphabet A
such that K(x, y) is not positive semidefinite.

6 Proof of Corollary 1

In this section, assuming that w̄s satisfies the inequality (4), we will prove that
γ

(a)
b > 0 holds for an arbitrary pair of non-negative integers (a, b) such that

a ∈ {1, . . . , s} and s(b− 1) + a ≤ L.
To start with, we define B

(a)
b as the matrix obtained by replacing the (b, b)-

element ws(b−1)+a of C
(a)
b with w̄sws(b−1)+a, and let β

(a)
b = det(B(a)

b). For ex-
ample, B

(a)
4 looks as follows (compare with C

(a)
4).

B
(a)
4 =




wa w̄swa 0 0
w̄swa ws+a w̄sws+a 0

0 w̄sws+a w2s+a w̄sw2s+a

0 0 w̄sw2s+a w̄sw3s+a




In the rest of this section, we fix a ∈ {1, . . . , s}, and prove γ
(a)
b > 0 and

β
(a)
b > 0 by induction on b. Furthermore, we can assume b > 1, since γ

(a)
1 =

wa > 0 and β
(a)
1 = w̄swa > 0 hold.

First, we confirm a few key properties.

– The hypothesis (4) implies w̄s < 1.
3 A symmetric real matrix [ai,j](i,j)∈{1,...n}2 is positive definite, if, and only if,

det([ai,j](i,j)∈{1,...m}2) > 0 for all 1 ≤ m ≤ n. It is easy to prove it by induction on
m. Also, the reader may refer to [8] for a proof.

– Therefore, γ
(a)
b > β

(a)
b follows from the hypothesis of induction γ

(a)
b−1 > 0.

This implies that we have only to show β
(a)
b > 0 to complete the proof.

– The inequality w̄s ≤ ws(b−1)+a/(ws(b−2)+a+ws(b−1)+a) implies the following.

1− w̄sws(b−2)+a

ws(b−1)+a
≥ 1− w̄s

(
1
w̄s

− 1
)

= w̄s (8)

To show β
(a)
b > 0, we first expand β

(a)
b and γ

(a)
b−1 by Laplacian determinant

expansion, apply the inequality of (8) (note that γ
(a)
b−2 > 0 holds by the hypothesis

of induction), and then collect up the terms into β
(a)
b−1 by applying Laplacian

determinant expansion in reverse. The assertion follows from the hypothesis of
induction β

(a)
b−1 > 0.

β
(a)
b = w̄sws(b−1)+aγ

(a)
b−1 − (w̄sws(b−2)+a)2γ(a)

b−2

= w̄sws(b−1)+a

{(
1− w̄sws(b−2)+a

ws(b−1)+a

)
ws(b−2)+aγ

(a)
b−2 − w̄2

sw2
s(b−3)+aγ

(a)
b−3

}

≥ w̄sws(b−1)+a

(
w̄sws(b−2)+aγ

(a)
b−2 − w̄2

sw2
s(b−3)+aγ

(a)
b−3

)

= w̄sws(b−1)+aβ
(a)
b−1

References

1. Leslie, C., Eskin, E., Noble, W.: The spectrum kernel: a string kernel for svm protein
classification. In: 7th Pacific Symposium of Biocomputing. (2002)

2. Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T., Müller, K.R.: Engi-
neering support vector machne kernels that recognize translation initiation sites.
Bioinformatics 16(9) (2000) 799 – 807

3. Rätsch, G., Sonnenburg, S., Schölkopf, B.: Rase: recognition of alternatively spliced
exons in c.elegans. Bioinformatics 21 (2005) i369 – i377

4. Lodhi, H., Shawe-Taylor, J., Cristianini, N., Watkins, C.J.C.H.: Text classificatio
using string kernels. Advances in Neural Information Processing Systems 13 (2001)

5. Shin, K., Kuboyama, T.: Polynomial summaries of positive semidefinite kernels. In:
The 18th International Conference on Algorithmic Learning Theory (ALT 07). (to
appear)

6. Gärtner, T.: A survey of kernels for structured data. SIGKDD Explorations 5(1)
(2003) 49–58

7. Haussler, D.: Convolution kernels on discrete structures. UCSC-CRL 99-10, Dept.
of Computer Science, University of California at Santa Cruz (1999)

8. Berg, C., Christensen, J.P.R., Ressel, R.: Harmonic Analysis on semigroups. Theory
of positive definite and related functions. Springer (1984)

