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Abstract. SVM-based active learning has been successfully applied when
a large number of unlabeled samples are available but getting their labels

is costly. However, the kernel used in SVM should be fixed properly be-

fore the active learning process. If the pre-selected kernel is inadequate

for the target data, the learned SVM has poor performance. So, new

active learning methods are required which effectively find an adequate

kernel for the target data as well as the labels of unknown samples.

In this paper, we propose a two-phased SKM-based active learning method
and a sampling strategy for the purpose. By experiments, we show that

the proposed SKM-based active learning method has quick response

suited to interaction with human experts and can find an appropriate ker-

nel among linear combinations of given multiple kernels. We also show

that with the proposed sampling strategy, it converges earlier to the

proper combination of kernels than with the popular sampling strategy

MARGIN.

1 Introduction

Active learning are used when a large number of unlabeled samples are available
but getting their labels is costly, usually in cases that human experts assess
the labels of unlabeled samples. Support vector machine (SVM)-based active
learning has been successfully applied but the kernel used in SVM should be
fixed properly in advance. If the pre-selected kernel is inadequate for the target
data, the learned SVM has low predictive power. In batch learning, we can use
time-consuming cross validation or other methods to find a proper kernel. But in
active learning interacting with a human expert, the turnaround time, i.e., the
time it takes to show an unlabeled sample for next labeling after one labeling,
should be kept short. So a quickly responding active learning method is necessary
which effectively finds an adequate kernel for the target data as well as the labels
of unknown samples by interacting with experts.
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In this paper, we propose a support kernel machine (SKM)-based active
learner for the purpose. Because solving SKM is more time-consuming than
SVM, we propose a two-phased SKM solver to reduce the turnaround time and
also propose a sampling strategy SKM-SHIFT for SKM-based active learning.

2 Support Kernel Machines

Both SVM]J1] and SKM]|2] learn a separator f(z) and predict the label y € {£1}
of input = by y = sign(f(z)).

For a given set of training samples {(z;, y;)}i=1,...~ and a given (non-linear)
feature mapping ¢(x) or kernel K (z,2) = ¢(x) " ¢(z), SVM finds a large margin
separator f(z) = w'é(x) + b by solving the following optimization problem.

min g|jw|* +C Y2, & subject to yi(w d(zi) +b) > 1§ (1)
£;=20
The first term is for maximization of the margin 1/||wl|| and the second term is
for the minimization of errors and the cost parameter C controls the trade-off
between them. We shall henceforth refer to the optimal objective function value
(1) as the error index which is closely related to the generalization error [1].
By duality, the following max, S(a) equals to the error index.
1
max Z @iy = 5 Z a0 K (24, 25) (2)
i 0.

@i €[A;,B;
> ;=0

S(a)
where [4;, B;] = [min(y; C,0), max(y; C,0)]

By the optimal o*, the optimal w = > o ¢(z;) and f(x) = > of K (x;, z)+D.
The samples whose o # 0 are called support vectors.

In contrast to the SVM which uses a given single kernel K (z;, z;), the SKM
searches the SVM with the least error index whose kernel is a linear combination
of given M kernels 22/121 B Ki(xi, ;). Therefore SKM solves the following min-
max or dual max-min problem [2].

n o, S(h) ®)
X BE=1 X a;=0
= max min S(a; ) (4)

a; €[A;,B;]  Bp=0
Ya;=0 X B=1

where S(o; 3) =3, auyi — %Zi’j ;0 <Z B Kk (i, x])>
k

K(zi,xj;08)

1
=3B | D iy — 3 > @i Ki(wi,z;)
i

4,3

Sk (a)
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We refer K (z;,x;; 3) as a composite kernel and Ky (x;, z;) as the k-th component
kernel. Si(a) is the objective function of the SVM with k-th component kernel.

SKM problem (3),(4) is an SVM problem w.r.t. o and a linear programming
(LP) w.r.t. 8, so the optimal a*,5* are sparse. The samples whose o # 0 and
the kernels whose 3;; > 0 are called the support vectors and the support kernels
respectively. The optimal w = [87 w1, -+, B3 wa] " where wy = Y, of dr(w;)
and f(z) = >, 05> o Ki(zi,2) + b. Thus, SKM can extract only critical
samples and kernels for classification from given samples and component kernels.

SKM’s error index S(a*;3*) equals to all support kernels’ Si(a*) 3 and
is smaller than any single kernel SVM’s error index max, Si(a) because only
weak duality (max, miny Sk(a) < ming max, Sk(a)) holds. Consequently SKM
is expected to have higher precision than any single kernel SVM.

3 Two-phased SKM-based Active Learning: LASKM

SKM problem (3) is equivalent to the following semi-infinite LP (SKM-ILP).

9II[?§1>I%) 0 s.t. Y, BrSk(a) <0 forall @ € {a|oy; € [A;, Bi],> ;05 =0} (5)
Zky ﬁ;=1
SKM-ILP can be solved by repeating the following steps starting from the
initial constraint set CS = {8 > 0,>", B = 1} and some a°,3° [3].

S1. find af s.t. S(at; B171) > S(at~1; g7 1).
S2. add constraint )", 5pSk(a’) < 0 to the constraint set CS of LP.
S3. get * by solving the LP problem ming gecs 6.

al = argmax S(a; B171), the solution of SVM with kernel K(-,-; 371), gives
the tightest constraint at 4*~! in S2. However solving SVM is time-consuming
and moreover it takes M times more time to solve max.S(a; 3'~1) because the
composite kernel has M component kernels. So the reduction of computation
time of SVM is important to keep quick response during the active learning.

We therefore take a two-phased approach. During the active learning phase,
we partially solve the SVM quickly using LASVM [4] and in the post-optimization
phase, we completely optimize the SVM for all labeled data using a normal solver.
The proposed two-phase active learner LASKM is shown in Algorithm 1.

LASVM is an efficient online SVM algorithm competitive with misclassifica-
tion rates and out-speeding state-of-the-art SVM solvers. It is convenient to get
a! quickly in the active learning phase because it keep the set S of candidates
of support vectors small by discarding blatant non-support vectors. It maintains
three pieces of information: the set S and the coefficients «; and the gradients
gi = %S(a) =y, — y a;jK(z;,z;) for i € S. Its building block operations are
PROCESS and REPROCESS. PROCESS (i) attempts to insert sample 4 into

3 S(a*; 8*) = max, ming Sk(a) = ming Sg(a”*) because the inside of (4) is the LP-
formulation of ming Sk (). 8% can be determined because it satisfies > 3" Sk(a) <
S(a*; 8*) for all a.



4 Y. Sinohara and A. Takasu

S and updates oy and g; fori € S. REPROCESS removes blatant non-support
vectors from S and updates «;, g; for i € S.

In LASKM, we extend PROCESS and REPROCESS to PROCESS(i,3)
and REPROCESS() which maintain the gradients of each component kernel
Gkl = Yi — Ej a; Ky(xj,x;) as well as that of the composite kernel g;.

Algorithm 1 Two-Phased SKM-based Active Learner: LASKM

Require: Cost parameter C' and Component kernels Ky(-,-), k=1,--- , M

Require: samples (z;,y;),2 = 1,--- , N and Sampling Strategy S5
//Initialization

1: t 0.

2: constraint set CS «— {8k >0, Br = 1}.

3: initial (a’, go,g&]) —(0,y,1), B — (1/M,--- ,1/M).

4: Seed L with a few samples of each class.

5: update (o, g, g[tk])
//Active Learning Phase

6: repeat

7 t—t+1

8:  Pick a sample i; by sampling strategy SS and L «— L U {i:}.

9:  update (o, ¢°, g[tk]) by PROCESS(i¢, 3°7') and REPROCESS(5'™1).
10: Sy« Sp(a'),k=1,---, M

11:  CS«— CSU{Y, BkSk < 6}. //remove redundant constraints

12: (6", 8") < argmin{0|(9, B) € CS}. //LP solution 6" = S(a*; 3").

130 g 32, B9l

14: until |L| > N

//Post-Optimization Phase

15: repeat

16: t—t+1

17 get (o', g%, g) by solving max S(a; 8°!) using normal SVM algorithm.
18:  Sf < Sk(a"),k=1,---,M and 05 — 3 By 'Si. //06 = S(a’;371)
19: CS«— CSU{Y, BkSk < 6}. //remove redundant constraints
20: (0%, ") « argmin{6|(0, ) € C'S}. //LP solution 0* = S(a'; 3")
210 g3, Bk
22: until 6§ > 0 and |1 — 60"/0§| < e

4 Sampling Strategies for SKM-based Active Learning

The typical sampling strategies for SVM-based active learning are the followings:

1. RANDOM selects a sample randomly

2. MARGIN selects the sample nearest to the boundary (argming | f(x)]).

3. KFF (Kernel Farthest First) selects the sample farthest to the boundary
(argmasx, | /().

4. SHIFT selects the sample initially by KFF and by MARGIN depending on
the stability of the model.
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MARGIN strategy is known to be the most effective when the current model
() is near optimal. However, when the current model is far from the optimal,
true support vectors can exist far from the current boundary and exploration
is more important than exploitation of the current boundary. SHIFT[5] initially
uses KFF for exploration and shifts to MARGIN when the model becomes stable.

In case of SVM-based active learning, SHIFT’s improved performance was
limited on data sets that require extensive exploration such as checkerboard
or COREL dataset, while remaining competitive on data sets that do not[5].
But SKM’s model space (a, () is larger than SVM’s. So in SKM-based active
learning, we think balancing exploration and exploitation is more important and
propose to use an extended SHIFT strategy for the SKM-based active learning.
The algorithm is shown in Algorithm 2. Along the line in [5], we defined the

instability of SKM by the instability of angles between w' = (81 wi, - -, Bar why)
and w'~1.
to,t—1
corr(alt, 3%, ot g1 = fw, w)
Vi w (w)
where ( Zﬂkﬁ o' o Ki (i, )
.3,k

Algorithm 2 SKM-SHIFT (o, 3,U)

Require: U:unlabeled samples, O:oracle
Require: ), ¢, A:learning algorithm
1: if U # {} return ({}, U) end if
2: ¢ « corr(a, 8,a°, 5°).
3: p «— max(min(poe #7901 —¢), ¢).
// probabilistic switching of strategy
4: r «+ random number generated uniformly between 0 and 1.
5: if r < p then
6: x «— argmax,c; minies K(zi, ) //exploration: KFF(U)
7
8

: else
: x <« argmin, |f(z)|. //exploitation:MARGIN(U, a, 3)
9: end if
10: y « O(x). //get the label of z from the oracle
11: (po,a®, 3% — (p,a, B). //update state variables
12: return ((z,y),U — {z})

When there are many unlabeled samples and we use all unlabeled samples
as U in SKM-SHIFT/MARGIN/KFF, it takes much time to evaluate |f(x)| or
K(x;,2) of all  in U. To keep the turnaround short, we use a fixed number
of randomly selected unlabeled samples as U. We set |U| = 50. This setting is
practical because the probability that the maximum in U is over the 95th or
90th percentile of all is about 92% (= 1 — 0.95%%) or 99.5% (= 1 — 0.9059).
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MARGIN and KFF need the evaluation time proportional to M x |S]| to
compute kernels between each sample in U and each sample in S.

SKM-SHIFT needs additionally to compute corr(at, 3%, o=t 3=1). How-
ever, because LASKM stores (w'~!,w'™!) and gfy); = y; — 2, aj Ky (zi, ;) in
memory and (w',w®) =37, ai6; 87 (32, oKy (i, 25)), SKM-SHIFT needs to
calculate Y, alKy(x;, z;) only for the samples j which are the support vector
candidates at time ¢ — 1 but excluded at time ¢ (usually a few at most). So,
SKM-SHIFT can select samples in almost equivalent time to MARGIN’s.

5 Experiments

In the experiments, we use the USPS database * which contains 9298 handwrit-
ten digits (7329 for training, 1969 for testing). Each digit is a 16 x 16 image with
zero mean and variance 1. We prepared 6 RBF kernels exp(—7||z; — x;||?) with
v =1,2,5,10, 20,50 and make each single kernel SVM and the SKM using all
6 kernels learn the training data in batch or active learning. In batch learning,
we use libsvm [6] for SVM and post-optimization part of LASKM for SKM. In
active learning, we use LASVM and LASKM for SVM and SKM respectively.
We set the cost parameter C' = 1000 assuming the dataset is nearly separable,
and tolerance 7 = 173 (libsvm’s default) for both SVM and SKM and the upper
bound of 1 —6/6% = 176 for SKM. We use RANDOM, MARGIN, SKM-SHIFT
as sampling strategies. KFF is excluded because it is obviously ineffective. The
parameters in SKM-SHIFT (Algorithm 2) are A = 0.5, ¢p = 0.3, ¢ = 0.05 ° and
the size of random sampling is |U| = 50.

Usually assessing labels of over 1000 samples are very stressful. So we set
the maximum number of learned samples to 900 in active learning. The analysis
of changes of turnaround time, precision etc. are based on the data when the
numbers of learned samples are 12, 14, ..., 28, 30, 40, 50, ..., 90, 100, 200,.. .,
800, 900.

We made 20 trials for each experimental setting. In each trial, we randomly
select a pair of one positive and one negative sample as the initial sampling data.

We use a Pentium-4 2.6GHz Windows XP machine for the experiments.

5.1 Comparison between single kernel SVMs and SKM

We first compared the optimal single kernel SVMs and the optimal SKM when
learning all training data in batch.

Table.1 lists the error index (max, Si(e) of SVMs and S(a*; 5*) of SKM)
and precision against the test data for digit '0’.

SKM'’s error index is the lowest among all and the optimal weights 37 of
the support kernels are 0.5 (y=5), 0.2 (y=10), 0.3 (y=20) and those of the non-
support kernels (y=1, 50) are 0. SKM successfully selected the three kernels with

* ftp://ftp.kyb.tuebingen.mpg.de/pub/bs/data/
5 X, ¢o,€ are not optimized. we set them referring to [5].
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Table 1. Error Index and Precision for ’0’ Table 2. 3" selected by SKM
~v |Error Index|Precision digit RBF parametery
1 1334.1| 99.44% 1125 (10]20]50
2 467.6| 99.49% 0.00]0.00{0.52{0.19{0.29|0.00
5 175.6| 99.54% 0.00]0.00{0.48|0.24]0.22|0.06
10 163.3| 99.64% 0.00{0.00{0.48|0.280.13(0.11
20 331.4| 98.93% 0.00]0.00]0.53|0.17{0.29(0.01
50 1082.4| 93.30% 0.00]0.00{0.44|0.36{0.11|0.09
SKM 149.8] 99.54% 0.00{0.00{0.46]0.29(0.15(0.10

0.00{0.00/0.47|0.21]0.32/0.00
0.00|0.00|0.52{0.20{0.24|0.04
0.00|0.00|0.44|0.37]0.03|0.16
0.00{0.00{0.42|0.38]0.16{0.05

O© 0O T Wi+~ OoO

low error index as the support kernels and composed a composite kernel with
a lower error index. The precision of the optimal SKM is 99.54% which is the
second best behind the SVM’s with v = 10 (99.64%) and the SMV’s with v = 50
is the worst (93.30%). For other digits, SKMs also had the least error index and
the best or second best precision compared with the single kernel SVMs 6.

In active learning, this feature is a great advantage of SKM against SVM.
Because the user doesn’t know the labels of data when selecting kernels, there
are relatively high risks that the user selects an inefficient kernel (such as v = 50
for digit ’0’) in SVM-based active learning but in SKM-based active learning, we
can reach to the solution comparable to the best single kernel SVM’s starting
from a set of candidate kernels.

Table. 2 shows the optimal 5* of SKM for each digit. For all digits, the
SKM’s major support kernels are v =5, 10, 20 and v =5 has the highest weight.
However, the SVM with the least error index among the single kernel SVMs is
v =10 and not v =5. In the optimal SKM, the RBF kernel with v = 5 gives a
rough shape of the decision boundary and the RBFs with v = 10 or 20 refine it.

5.2 Comparison of Sampling Strategy in SKM-based active learning

Turnaround Time Figure. 1 shows the average turnaround time (dotted line)
and the average number of support vector candidates |S| (solid line). The num-
bers of learned samples are on the horizontal axis.

RANDOM responses very rapidly (0.02 sec. at 900 samples) but it fails to
select proper support vector candidates effectively. So the number of candidates
stays 200, the one third of those of the other two strategies at 900 samples.

MARGIN and SHIFT have similar turnaround proportional to the number of
support vector candidates. Even at 900 samples, it responses within one second
(0.9 sec.).

6 The error index is only an “estimate” of generalization error. So the precision of the
optimal SKM is comparable to the best SVM but can be inferior to it in some cases.
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Fig. 1. Turnaround time and the num- Fig. 2. Transition of Precision
ber of SVs of LASKM

As for the simple active SKM learner, which uses MARGIN and incrementally
optimizes SKM completely at each sampling, its average turnaround was 2.5 sec.
for 100-200 samples, 10 sec. for 200-300 samples, 15 sec. for 300—400 samples.
These responses are too slow for comfortable interaction with human experts. In
contrast, the two-phased active learner LASKM has very quick response suitable
to support interactive active learning.

Temporal Transition of Precision We show the changes of precision averaged
over 200 trials (20 trials of ten digits) for each strategy in Figure 2 because the
performance are very similar regardless of digits.

RANDOM is obviously poor and MARGIN and SKM-SHIFT have similar
performance in precision. More precisely, MARGIN is slightly better than SKM-
SHIFT when the number of learned samples is small (less than 200 for digit ’3’
and 4’ and 30 to 80 for other digits) but the differences of precision between
MARGIN and SKM-SHIFT are less than 0.5% even at 50 samples for all digits.

Concerning precision, SKM-SHIFT didn’t make much difference with MAR-
GIN just like the SHIFT in the SVM-active learning as described in [5].

Temporal Transition of Kernel Weight Concerning the changes of kernel
weight 3%, the performances of MARGIN and SKM-SHIFT are different.

Figure 3 shows the temporal changes of kernel weights 3¢ (averaged over 20
trials) of digit ’0’. The optimal 5* = (0,0.5,0.2,0.3,0) is shown in the right most
in Figure3. MARGIN gives more weight to v = 10 until the number of samples
reaches about 200 and requires over 400 samples to reach 5*. On the other hand,
SHIFT reached (3* at about 200 samples.

The same tendency appears in other digits. MARGIN is likely to select v = 10
which has the least error index in single kernel SVMs in the earlier stage (8y=10
is around 0.5 or 0.6 at 20 samples). SHIFT is likely to reach to §* earlier than
MARGIN.
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Figure 4 shows the changes of || 3t —3*||, the estimation error of *. Especially,
SHIFT’s 3! are closer to 3* than MARGIN until 100 samples except for digits
'4’,°8 and '9’ (at significance level 90%).

The reason of the exceptional good performance of MARGIN for digit '4’, '8,
’9’ can be considered as follows. MARGIN is likely to select v = 10 in initial phase
as mentioned above and digits ’4’, '8, 9" have larger optimal weight 87_;, than
other digits as shown in Table 2. So, the initial decision boundary by MARGIN
is likely to be closer to the optimal boundary and this causes the good estimate
of 5* at earlier stages by MARGIN.

But in general, the best kernel for single kernel SVM is different from the
kernel having large weight in SKM. So, SKM-SHIFT can be considered as more
robust and better estimator of optimal kernel weight 5* than MARGIN.

6 Conclusions and Future Works

In this paper, we propose the SKM-based active learning and, for the purpose, a
two-phased algorithm LASKM and a sampling strategy SKM-SHIFT based on
SHFIT strategy whose improvement was limited in case of SVM-based learning.

By experiments, we show that the proposed LASKM has quick response
necessary for interactive active learning and can find an appropriate composite
kernel among combinations of given component kernels which is comparable to
the best component kernel with respect to the predictive power.

We also show that with the proposed sampling strategy SKM-SHIFT it con-
verges earlier to the optimal combination 5* of composite kernel than with the
popular sampling strategy MARGIN with some exception, while it remains com-
parable with MARGIN concerning precision of prediction of labels.

We are now conducting empirical evaluations of the LASKM for different
datasets and are also planning detailed sensitivity analyses of SKM-shift’s pa-
rameters.
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