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Abstract. The successful application of machine learning techniques to
industrial problems places various demands on the collaborators. The
system designers must possess appropriate analytical skills and technical
expertise, and the management of the industrial or commercial partner
must be sufficiently convinced of the potential benefits that they are pre-
pared to invest in money and equipment. Vitally, the collaboration also
requires a significant investment in time from the end-users in order to
provide training data from which the system can (hopefully) learn. This
poses a problem if the developed Machine Learning system is not suffi-
ciently accurate, as the users and management may view their input as
wasted effort, and lose faith with the process. In this paper we investigate
techniques for making early predictions of the error rate achievable after
further interactions. In particular we show how decomposing the error
in different components can lead to useful predictors of achievable accu-
racy, but that this is dependent on the choice of an appropriate sampling
methodology.

1 Introduction

The successful application of machine learning techniques to industrial problems
places various demands on the collaborators. Vitally, the collaboration also re-
quires a significant investment in time and commitment from the end-users in
order to provide training data from which the system can (hopefully) learn. This
poses a problem if the developed Machine Learning system is not sufficiently ac-
curate, as the users and management may view their input as wasted effort, and
lose faith with the process.

A significant factor that would help in gaining confidence and trust from
end-users would be the ability to quickly and accurately predict whether the
learning process was going to be successful. Perhaps more importantly from a
commercial viewpoint, it would be extremely valuable to have an early warning
that the user can save their effort while the system designer refines the choice of
data, algorithms etc. In a system applied in industrial application, it is necessary
that the learning phase is as short as possible and it is essential that the system
can tell by itself and as early as possible whether the learning process will be



successful. In some cases such as random training input by the operators or
missing information the system will not be able to successfully complete the
learning process.

In this paper we investigate techniques for making early predictions of the
error rate achievable after further interactions. We will consider that we are given
N samples, and that the system is still learning and refining its model at this
stage. We are interested in predicting what final accuracy might be achievable
if the users were to invest the time to create M more samples. In particular we
focus on the following aspects:

— What are suitable descriptors of the system’s behaviour after some limited
number N of samples?

— What is the most appropriate measure of the system’s predictive accuracy
after further training with N + M samples?

— Is it possible to find useful relationships for predicting the second of these
quantities from the first?

— What is the effect of different choices of methodology or sampling regime to
estimate these quantities?

In general the error will be a complicated function, but the hypothesis of this
paper is that we can deal with it more easily if we decompose it into a number of
more stable functions. Therefore this paper concentrates on the use of the well-
known bias-variance decomposition as a source of predictors [1,2]. Although we
will use results from a wide range of classifiers, for the purposes of this paper we
will take them one at a time, rather than considering heterogenous ensembles
of classifiers with different biases. We will also take the pragmatic approach
of constructing an “early warning system”. In other words, rather than trying
to predict the absolute value of the final accuracy, we will consider ways of
estimating upper bounds on the accuracy achievable.

The rest of this paper proceeds as follows. In Section 2 we review related work
in the field, in particular the bias-variance decomposition of error that we will
use. Following that in Section 3 we discuss various suggested methods for using
the available data to estimate the various quantities involved. Section 4 describes
our experimental methodology and Section 5 describes and discusses the results
obtained. Finally in Section 6 we draw some conclusions and suggestions for
further work.

2 Bias-Variance Decomposition: A Review

A number of recent studies have shown that the decomposition of a classifier’s
error into bias and variance terms can provide considerable insight into the
prediction of the performance of the classifier [1,2]. Originally, it was proposed
for regression [3] but later, this decomposition has been successfully adapted for
classification [1, 2, 4]. While a single definition of bias and variance is adopted for
regression, there is considerable debate about how the definition can be extended
to classification [1,5-9]. In this paper, we use Kohavi and Wolpert’s [1] definition



of bias and variance on the basis that it is the most widely used definition [10,
11], and has strictly non-negative variance terms.

2.1 Basic Definitions of Bias, Variance and Noise:
Kohavi and Wolpert define bias, variance and noise as follows [1]:

Squared Bias: “This quantity measures how closely the learning algorithm’s
average guess (over all possible training sets of the given training set size)
matches the target”.

Variance: “This quantity measures how much the learning algorithm’s guess
bounces around for the different training sets of the given size”.

Intrinsic noise: “This quantity is a lower bound on the expected cost of any
learning algorithm. It is the expected cost of the Bayes-optimal classifier”.

2.2 Kohavi and Wolpert’s definition of Bias and Variance

For a particular target function f and a size of the training set m, the expected
misclassification rate E(C)(an error has cost 1 and a correct prediction cost 0)
is defined as

EC) = Z P(z)(02 + bias® + variance,) (1)
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Here = ranges over the instance space X, Y is the predicted variable with
elements ye{0, 1} [12]. The actual target function f is a conditional probability
distribution and the hypothesis or model h generated by learner is also condi-
tional probability distribution P(Yg = y|z). Although not clear from the equa-
tions, the conditional events in the conditional probabilities are parameterised
over f and m. In other words, P(Yy = y|z) must be rewritten as

d

where P(d|f, m) is the probability of generating training sets d from the target
f, and P(Yy = y|d, x) is the probability that the learning algorithm predicts y
for point x in response to training set d.



2.3 Bias as an upper limit on accuracy

An alternative perspective on the above analysis is that the bias term reflects
an inherent limit on a classifier’s accuracy resulting from the way in which it
forms decisions boundaries. For example even in a two-dimensional space, an
elliptical class boundary can never be exactly replicated by a classifier which
divides the space using axis-parallel decisions. Therefore we can treat the sum of
the inherent noise and bias terms as an upper limit on the achievable accuracy for
a given classifier. A number of studies have been made confirming the intuitive
idea that the size of variance term drops as the number of training samples
increases, whereas the estimated bias remains more stable, e.g. [2]. Please note
that in many prior works it is assumed that the inherent noise term is zero, and
also for a single classifier it is not possible to distinguish between inherent noise
and bias, so we will adopt the convention of referring to these collectively as
bias.

The hypothesis of this paper is that if we can estimate the value of the
bias term it will form an accurate predictor to bound the error rate observed
after more training examples. The way that we will do this for a given size
sample N is to repeatedly draw test and training sets from the sample and
observe what proportion of the items are always misclassified, what proportion
are sometimes misclassified, and what proportion are never misclassified. As we
will next discuss, this raises the issues of how we should do this repeated process.

3 Prediction Methodology

As discussed in Section 2, a number of recent studies have shown that the de-
composition of a classifier’s error into bias and variance terms can provide con-
siderable insight into the prediction of the performance of the classifiers [1,2].
However, identifying the quantities that we wish to measure merely leads us to
the next question - what is the most appropriate methodology for estimating
the values of those quantities?

To give a simple example of why this is important, the hypothesis of this pa-
per relies on being able to distinguish between those data items that are always
going to be misclassified by a given classifier, and those which will sometimes
be misclassified, depending on the choice of training set. Since the well known
N—fold cross-validation approach only classifies each data item once, it does
not permit this type of decomposition and cannot be used. Luckily alternative
approaches have been identified and studies by other authors. Leveraging this
work, in this paper, we will compare the approaches proposed by Kohavi &
Wolpert [1] and Webb & Conilione [10].

Kohavi & Wolpert Hold-out Procedure: Kohavi & Wolpert used a holdout
procedure for estimating the bias and variance of a classifier C from a dataset D.
In their approach, samples D are randomly divided into 2 parts: Training sam-
ples T, and Testing samples T,. T, samples are further divided into N training



sets tp,,try, ..o.o, tp,, by uniform random sampling without replacement. To get
training set of size m, they chose T, to be size 2m. That allows (%”) different
possible training sets; and thus guarantees that there are not many duplicate
training sets in the set of N training sets; even for small values of m. Each
classifier is trained using each training sets and bias and variance are estimated
using test set T.. The outcome of this is a set of IV class precisions for each of
the elements in the test set.

Webb & Conilione sub-samples Cross Validation Procedure: In the
second set of experiments, we will decompose error into bias-variance using sub-
sampled cross-validation proposed by Webb & Conilione [10] but using same
definitions for bias and variance as above. Webb & Conilione have argued that
hold out approach proposed in [1] is fundamentally flawed and resulting in small
training sets and thus provide instability in the estimates it derives. They pro-
posed that sub-sampled cross-validation (CV) procedure is superior to both the
holdout and bootstrap procedures and thus provides greater degree of variabil-
ity between training sets. Webb’s procedure repeats N-Fold CV [ times. This
ensures that each sample x of the dataset D is classified [ times. The bias, and
variance, can be estimated from the resulting set of classifications. The final
bias and variance is estimated from the average of all zeD [10,11].

4 Experimental methodology

Choice of Classifiers: Ten different classification algorithms are selected each
with different bias and variance characteristics namely: Naive Bayes [13], De-
cision Tree [15], Nearest Neighbor [16], Bagging [18], AdaBoost [19], Random
Forest [20], Decision Table [21], Bayes Network [13], Support Vector Learning
[22], and Ripple-Down Rule learner [17]. All these classifiers are implemented in
WEKA library [17].

Data sets: The experiments are carried out on the following Four Artificial and
Five Real-World Surface Inspection data sets described in Table 1. Each artificial
dataset consists of 13000 contrast images with a resolution of 128 x 128 pixels.
The good/bad labels were assigned to the images by using different sets of rules
of increasing complexity. The proposed prediction analysis is also evaluated out
on real world data sets of CD-print and Egg inspection. The data set for CD
print consists of 1534 images and each image is labeled by 4 different operators.
Thus, 4 different CD print data sets are available. From each set of images, we
derive 2 feature vectors (FVs) consisting of 17 and 74 features respectively. The
first FV contains only image-level information while second FV also contains
features from objects within the image.

Trend Line using Linear Regression Linear regression is a statistical tool
used to predict future values from past values. Regression lines can be used as



Table 1. Datasets Description

Name Samples Description
Artificial 1-3 13000 Used for Linear Regression Analysis
Artificial 4 13000 ||Used after Linear Regression Analysis for Prediction
CD Print Op1-Op3| 1534 Used for Linear Regression Analysis
CD Print Op4 1534 ||Used after Linear Regression Analysis for Prediction
Egg 4238 Used for Linear Regression Analysis

a way of visually depicting the relationship between the independent (x) and
dependent (y) variables in the graph. A straight line depicts a linear trend in
the data. In this paper, we will use linear trend line between bias (For first N
samples only) and error (For N + M samples) to predict the Success or Failure
of Learning for Industrial Applications. We will use squared Pearson correlation
coefficient R? as a measure to analyze the quality of prediction. The closer R2
is to 1.0; the better is the prediction. This is of course an extremely simple
way of measuring the relationship between estimated bias and final error, and
more sophisticated techniques exist in the fields of statistics and also Machine
Learning. However, as the results will show it is sufficient for our purposes. An
obvious candidate for future work is to consider approaches which will give us
confidence intervals on the predicted error for a given observed bias, as this will
fit in better with the concept of providing an upper bound on the achievable
accuracy.

5 Results and Discussion

As discussed in Section 1, we have estimated the bias using {100, 200, 300, ...1000}
samples and then the error using all samples of artificial /real data sets by both
Kohavi and Webb sampling approaches.

Results with Kohavi’s sampling procedure: Figure 1 shows linear regres-
sion analysis for bias-error when Kohavi’s approach is used for bias-error de-
composition. Bias is estimated using 100 and 1000 samples respectively. 7 data
sets are used for regression analysis (3 Artificial data sets, CD Print labeled by
3 operators, and 1 Egg data set). Each data set consists of 2 different feature
vectors and is evaluated using 10 classes as discussed in Section 4. The goodness
of fit of regression model is measured using Correlation R?. As clearly indicated
from these graphs, R? is very low when model is fit using only 100 samples while
correlation is high when 1000 samples are used. Furthermore, straight line using
1000 samples depicts a linear trend in the data.

Results with Webb’s sampling procedure: Figure 2 shows linear regression
analysis for Bias-Error when Webb’s approach is used for bias-error decompo-
sition. Again, as clearly indicated from these graphs, the R? is very low when
model is fit using only 100 samples while correlation is high when 1000 samples
are used. However, these values are consistently higher than those obtained using
Kohavi’s approach.
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Fig. 1. Graphs showing linear regression analysis for Bias-Error using 100 and 1000
samples respectively. Kohavi approach is used for bias-error decomposition.
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Fig. 2. Graphs showing linear regression analysis for Bias-Error using 100 and 1000
samples respectively. Webb approach is used for bias-error decomposition.

Stability of Predictions: Figure 3 shows the graph indicating relationship
between varying number of samples {100,200,300,...,1000} and { R?, x-coefficient,
intercept} for both Kohavi’s and Webb’s approaches. This shows how rapidly
the linear regression equation stabilizes in these two cases. It is clear from the
graph that correlation using Webb approach is high and more stable. One of the
reasons that Kohavi’s approach is not stable is the use of hold out approach.
It has been argued that in Kohavi’s approach, samples are randomly divided
into training and testing pools and then training pool is further divided into
training sets and that can results in instability in the estimates [11]. Another
explanation is that a single test set is chosen from the available samples. For
small sample sizes this may not always contain sufficiently representative set of
items so successive test sets might be “easy” or “hard”.

Prediction Testing using Trained/Unseen Datasets from Trained Re-
gression Model: In our experiments, R? is used as a measure to evaluate the
goodness of regression models. Another way to evaluate the goodness of regres-
sion models is as follows:
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Fig. 3. Number of samples vs {R? x-coeff.,intercept} using (a) Kohavi’s (b) Webb’s
bias-error decomposition.

— For each combination of the ten classifiers, the seven data sets used in train-
ing, the two unseen data sets, and the ten sample sizes we repeat the follow-
ing:

ig estimate the bias component of the error using both Kohavi and Webb’s
approaches

e plug this value into the regression equations obtained above to get a
predicted final error

e compare this to the observed final error

— these values can now be subjected to a new regression analysis to see how
well the predictions correlate to observed error from the full dataset.

Figures 4 and 5 show the relationship between number of samples and RZ.
Again, it is clear from both these figures that R? using Webb approach is high
and stable. Artif04 has approximately the same R? as that of trained one es-
pecially when samples are greater than 500 by regression equation using Webb
sampling approach. Correlation is quite low for CD-Print-Op2 and CD-Print-
Op4 data sets. Closer inspection of the results shows that in almost every case
the observed error from 1534 samples of the CD print data is higher than that
predicted by inserting the bias observed from fewer samples into the regression
equation. This is because the observed error still contains a significant compo-
nent of variability due to the effects of the relatively small training and test
sample sizes. By contrast, for the artificial data sets, where we have nearly ten
times more data, the variance components have almost disappeared and so our
predictions correlate highly to the observed error. This illustrates our earlier
point - that the predictions we are making here have to be treated as upper
bounds on the achievable accuracy.

6 Conclusion

In this paper, we have investigated techniques for making early predictions of
the error rate achievable after further interactions. Linear trend line between
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Fig. 4. Number of samples vs R? for trained data using (a) Kohavi’s (b) Webb’s ap-
proach.
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Fig. 5. Number of samples vs R? for unseen data using (a) Kohavi’s (b) Webb’s ap-
proach.

bias and error is used to predict the Success or Failure of Learning for Industrial
Applications. The experiments are carried out on the Artificial and Real-World
data sets. We have shown that squared Pearson correlation coefficient R? is a
good measure to analyze the quality of prediction. We have also shown that
Webb’s approach allows much more accurate and stable estimates of error com-
ponents. These results are valid for ten very different forms of classifier used in
this paper. As the high correlation between the long-term observed error, and
the predictions for that based on observed bias after 1000 samples shows, the
(bias-++implicit noise) term of the error stabilises rather quickly for all of the
different types of classifier tested. Thus it forms not only a good upper bound
on the achievable accuracy, but also a good estimator for the final accuracy
provided enough samples are available for the variance term to decrease.

This is of course an extremely simple way of measuring the relationship
between estimated bias and final error, and more sophisticated techniques exist
in the fields of statistics and also Machine Learning. However, as the results will
show it is sufficient for our purposes. An obvious candidate for future work is



to consider approaches which will give us confidence intervals on the predicted
error for a given observed bias, as this will fit in better with the concept of
providing an upper bound on the achievable accuracy, that can be used as an
“early warning” of impeding failure, so that users’ confidence can be maintained.
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