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Abstract. Hidden Markov Models (HMMs) are very popular genera-
tive models for sequence data. Recent work has, however, shown that on
many tasks, Conditional Random Fields (CRFs), a type of discrimina-
tive model, perform better than HMMs. We propose Hierarchical Hidden
Conditional Random Fields (HHCRFs), a discriminative model corre-
sponding to hierarchical HMMs (HHMMs). HHCRFs model the condi-
tional probability of the states at the upper levels given observations.
The states at the lower levels are hidden and marginalized in the model
definition. We have developed two algorithms for the model: a param-
eter learning algorithm that needs only the states at the upper levels
in the training data and the marginalized Viterbi algorithm, which com-
putes the most likely state sequences at the upper levels by marginalizing
the states at the lower levels. In an experiment that involves segment-
ing electroencephalographic (EEG) data for a Brain-Computer Interface,
HHCRFs outperform HHMMs.

1 Introduction

Hidden Markov Models (HMMs) are very popular generative models for sequence
data. Recent work has, however, shown that Conditional Random Fields (CRFs),
a type of discriminative model, perform better than HMMs on many tasks [1].

There are several differences between CRFs and HMMs. (1) HMMs are gener-
ative models and thus model the joint probability of input (i.e., observations) and
output data (i.e., states), whereas CRFs are discriminative models that model
the conditional probability of output data given the input data. (2) HMMs make
independence assumptions on observations given states, whereas CRFs do not.
(3) For model parameter estimation, HMMs do not need the states, whereas
CRFs do.

Hierarchical HMMs (HHMMs) are a generalization of HMMs with a hier-
archical structure [2]. Murphy [3] has shown that HHMMs are a special kind
of Dynamic Bayesian Networks (DBNs), and has derived an efficient inference
algorithm [3].

In this paper, we propose the Hierarchical Hidden CRF (HHCRF), a discrimi-
native model that corresponds to the HHMM, a generative model. In hierarchical
models, we are mainly interested in the states at the upper levels, and hence,



HHCRFs model the conditional probability of the states at the upper levels given
observations. The states at the lower levels are hidden, and marginalized in the
model definition.

We have developed two algorithms for the model. One is a parameter learning
algorithm that needs only the states at the upper levels in the training data. Note
that we need all the states to train standard CRF models. The other algorithm
is the marginalized Viterbi algorithm, which computes the most likely state
sequences at the upper levels by marginalizing the states at the lower levels.
Note that a direct extension of the well known Viterbi algorithm computes the
most likely joint sequence at the upper and lower levels, which is different from
the sequence computed by the marginalized Viterbi algorithm.

In an experiment that involves segmenting electroencephalographic (EEG)
data for a Brain-Computer Interface, HHCRFs outperform HHMMs.

2 Related Work

HHMMs were originally defined by Fine et al. [2]. Later, Murphy and Paskin
[3] devised a DBN representation for HHMMs and a linear time inference algo-
rithm. We have developed a semi-supervised learning algorithm for HHMMs [4].
Applications of HHMMs include handwritten character recognition, information
extraction, video structure discovery, and topic transition detection.

CRFs were originally proposed by Lafferty et al. [1]. Since then, CRFs have
successfully been applied to many problems including parsing, named entity
recognition, object recognition, and activity recognition.

Sutton et al. [5] proposed Dynamic CRFs (DCRFs), an extension of CRFs,
corresponding to factorial HMMs. Liao et al. [6] proposed hierarchical CRFs, an-
other extension of CRFs, corresponding to HHMMs. Unfortunately, hierarchical
CRFs do not have hidden states, hence all the states must be labeled for model
parameter estimation.

Gunawardana et al. [7] proposed Hidden CRFs (HCRFs) for phone classifica-
tion. HCRFs have two advantages over the previous CRF extensions. First, they
have output feature functions which can express continuous Gaussian outputs.
This is in contrast to binary valued output feature functions for most CRFs. The
second advantage is that HCRFs have hidden states. HCRFs have 2 levels. The
states at the bottom level are hidden and thus do not need to be labeled for train-
ing. The problem with HCRFs is that the states at the top level do not change
with time. Therefore, whilst HCRFs can be applied to sequence classification,
they cannot be applied to sequence segmentation or sequence labeling.

We were influenced by the above-mentioned approaches, and our HHCRFs
share many characteristics with them. In HHCRFs, however, not only are the
states at the lower levels hidden, but the states at the upper levels also change
with time. This makes it possible to apply HHCRFs to sequence segmentation
and sequence labeling without labeling the states at the lower levels for training.



(a) (b)

Fig. 1. (a) An HHMM represented as a DBN. (b) An HHCRF represented as an undi-
rected graph. Both (a) and (b) describe only the part of the model from t − 1 to
t.

3 HHMMs

Hierarchical HMMs (HHMMs) are a generalization of HMMs with a hierarchical
structure [2]. HHMMs have three kinds of states: internal, production, and end
states. They also have three kinds of transitions: vertical, horizontal, and forced
transitions. Murphy [3] has shown that an HHMM is a special kind of DBN, and
has derived an efficient inference algorithm [3]. In what follows, we show how to
represent an HHMM as a DBN.

3.1 Representing an HHMM as a DBN

We can represent an HHMM as a DBN as shown in Fig. 1(a). (We assume for
simplicity that all production states are at the bottom of the hierarchy.) A state
of the HHMM is denoted by qd

t (d ∈ {1, . . . , D}), where d is the hierarchy index:
the top level has d = 1, and the bottom level has d = D.

fd
t is the indicator variable which is equal to 1, if qd

t has transited to its end
state, otherwise it is 0. Note that if fd

t = 1, then fd′

t = 1 for all d′ > d; hence
the number of indicator variables that are equal to 0 denotes the level of the
hierarchy we are currently on. The indicator variables play an important role in
representing the HHMM as a DBN.

Defined below are the transition and output probability distributions. These
complete the definition of the model. When qd

t has transited to its end state,
fd

t = 1. This is the signal that the states at the upper levels can be changed.
Furthermore, it is a signal that the next value of qd

t+1 should be determined by a
vertical transition, instead of a horizontal transition. Formally, we denote these



as follows:

p(qd
t = j′|qd

t−1 = j, fd+1
t−1 = b, fd

t−1 = f, q1:d−1
t = i) =


δ(j, j′) if b = 0
Ad

i (j, j
′) if b = 1 and f = 0

πd
i (j′) if b = 1 and f = 1

p(fd
t = 1|qd

t = j, q1:d−1
t = i, fd+1

t = b) =
{

0 if b = 0
Aed(i, j) if b = 1 (1)

E[ot|q1:D
t = i] = µ(i)

Cov[ot|q1:D
t = i] = σ2(i)

where the state vector q1:d
t = {q1

t , . . . , qd
t }d∈{1,...,D} is represented by an integer

i (i.e. i is the index for ”mega state”). In Eq. (1), we assume the dummy state
q0
t = 0 (i.e. the root state) for notational convenience. We also assume dummy

indicator variables f2:D
0 = 1 and fD+1

t = 1 for the first slice and for the bottom
level, respectively.

δ(j, j′) is Kronecker’s delta. Ad
i (j, j

′) is the horizontal transition probability
into the j′th state (except into an end state) from the jth state at level d. πd

i (j′)
is the vertical transition probability into the j′th state from the ith state at level
d. Aed(i, j) is the horizontal transition probability into an end state from the
jth state at level d.

µ and σ2 are the mean vector and covariance , respectively, of the Gaussian
distribution of the observations emitted at each time. Note that for simplicity, we
use scalar observations and a single Gaussian density output. We could of course,
use the vector valued observations and a Gaussian mixture density output.

4 HHCRFs

4.1 Model

HHCRFs are undirected graphical models (as shown in Fig. 1(b)) which encode
the conditional probability distribution:

p(Q1|O; Λ) =
1

Z(O;Λ)

∑
Q2:D

∑
F 1:D

exp

(
K∑

k=1

λkΦk(Q1:D, F 1:D, O)

)
(2)

where Q1 = {q1
1 , . . . , q1

T } is the state sequence at the top level 1, O = {o1, . . . , oT }
is the sequence data (observations) and Λ = {λ1, . . . , λK} is the model param-
eter. We represent the state sequence Q1:D = {Q1, . . . , QD} and the indicator
variable sequence F 1:D = {F 1, . . . , FD}. Z(O; Λ) is the partition function that
ensures that p(Q1|O; Λ) is properly normalized.

Z(O; Λ) =
∑
Q1

∑
Q2:D

∑
F 1:D

exp

(
K∑

k=1

λkΦk(Q1:D, F 1:D, O)

)
(3)

1 For simplicity, we assume that only the state sequence at the top level is not hidden.
We could of course assume that the state sequences at multiple upper levels are not
hidden.



Φk(Q1:D, F 1:D, O) is a feature function that can be arbitrarily selected.
In order to compare the performance of HHCRFs with that of HHMMs,

which have a Markov structure in the state sequence, we restrict the feature
function as Φk(Q1:D, F 1:D, O) =

∑T
t=1 φk(q1:D

t−1, q
1:D
t , f1:D

t−1 , f1:D
t , ot) and make

the model structure equivalent to that of the HHMMs. Each feature function
φk(q1:D

t−1, q
1:D
t , f1:D

t−1 , f1:D
t , ot) is as follows.

φ
(Hor)
j,j′,i,d(q

1:D
t−1, q

1:D
t , f1:D

t−1 , f1:D
t , ot) =

(
δ(qd

t−1 = j) · δ(qd
t = j′) · δ(q1:d−1

t = i)

· δ(fd+1
t−1 = 1) · δ(fd

t−1 = 0)
)

∀j ,∀j′ ,∀i,∀d

φ
(V er)
i,j′,d (q1:D

t−1, q
1:D
t , f1:D

t−1 , f1:D
t , ot) =

(
δ(qd−1

t = i) · δ(qd
t = j′)

· δ(fd+1
t−1 = 1) · δ(fd

t−1 = 1)
)

∀i,∀j′ ,∀d

φ
(End)
i,j,d (q1:D

t−1, q
1:D
t , f1:D

t−1 , f1:D
t , ot) =

(
δ(q1:d−1

t = i) · δ(qd
t = j)

· δ(fd+1
t = 1) · δ(fd

t = 1)
)

∀i,∀j ,∀d

φ
(Occ)
i (q1:D

t−1, q
1:D
t , f1:D

t−1 , f1:D
t , ot) = δ(q1:D

t = i) ∀i

φ
(M1)
i (q1:D

t−1, q
1:D
t , f1:D

t−1 , f1:D
t , ot) = δ(q1:D

t = i) · ot ∀i

φ
(M2)
i (q1:D

t−1, q
1:D
t , f1:D

t−1 , f1:D
t , ot) = δ(q1:D

t = i) · o2
t ∀i

where δ(q = q′) is equal to 1 when q = q′ and 0 otherwise. The first three feature
functions are transition features. φ

(Hor)
j,j′,i,d counts the horizontal transition into the

j′th state (except into an end state) from the jth state at level d. φ
(V er)
i,j′,d counts

the vertical transition into the j′th state from the ith state at level d. φ
(End)
i,j,d

counts the horizontal transition into an end state from the jth state at level
d. φ

(Occ)
i , φ

(M1)
i , φ

(M2)
i are output features which are necessary to represent the

Gaussian density output [7].
It can be shown that setting the parameter Λ (i.e., the weight of the feature

functions) as follows gives the conditional probability distribution induced by
HHMMs with the transition probability distributions and the output probability
distributions defined in Eq. (1):

λ
(Hor)
j,j′,i,d = log Ad

i (j, j
′) λ

(Occ)
i = −1

2

(
log 2πσ2(i) +

µ2(i)
σ2(i)

)
λ

(V er)
i,j′,d = log πd

i (j′) λ
(M1)
i =

µ(i)
σ2(i)

(4)

λ
(End)
i,j,d = log Aed(i, j) λ

(M2)
i = − 1

2σ2(i)



4.2 Parameter Estimation

Just as in HHMMs, parameter estimation for HHCRFs is based on the maxi-
mum likelihood principle given a training set D = {O(n), Q1(n)}N

n=1. The differ-
ence is that we maximize the conditional probability distribution p(Q1|O; Λ) for
HHCRFs, whereas we maximize the joint probability distribution p(Q1, O; Λ1)
for HHMMs. Here, Λ1 is the parameter for HHMMs. The conditional log-likelihood
for HHCRFs is as follows.

L(Λ) =
N∑

n=1

log p(Q1(n)|O(n);Λ)

=
N∑

n=1

log

 ∑
Q2:D

∑
F 1:D

exp

(
K∑

k=1

λkΦk(Q1(n)
, Q2:D, F 1:D, O(n))

)
−

N∑
n=1

log Z(O(n); Λ) (5)

The gradient of Eq. (5), which is needed for estimating the parameter Λ̂, is
given by

∂L
∂λk

=
N∑

n=1

∑
Q2:D

∑
F 1:D

Φk(Q1(n)
, Q2:D, F 1:D, O(n))p(Q2:D, F 1:D|Q1(n)

, O(n); Λ)

−
N∑

n=1

∑
Q1

∑
Q2:D

∑
F 1:D

Φk(Q1:D, F 1:D, O(n))p(Q1:D, F 1:D|O(n); Λ) (6)

The right hand side of Eq. (6) is the difference between the expectation of fea-
ture values under the probability distribution p(Q2:D, F 1:D|Q1(n)

, O(n); Λ) and
that under p(Q1:D, F 1:D|O(n); Λ). Since Φk(Q1:D, F 1:D, O) =

∑T
t=1 φk(q1:D

t−1, q
1:D
t ,

f1:D
t−1 , f1:D

t , ot), the sufficient statistics to compute the first expectation are the
transition probabilities {p(q2:D

t−1, q
2:D
t , f1:D

t−1 , f1:D
t |Q1(n)

, O(n); Λ)|1 ≤ t ≤ T} and
the occupancy probabilities {p(q2:D

t , f1:D
t |Q1(n)

, O(n); Λ)|1 ≤ t ≤ T}. Note that
the state sequences are partially labeled because Q1 is given. These probabili-
ties can be computed using the junction tree algorithm [8], or by converting the
hierarchical model to a flat model with mega states and applying the backward-
forward-backward algorithm [9]. (We use the latter method in our experiment.)
Here, the backward-forward-backward algorithm is an extension of the standard
forward-backward algorithm to partially labeled state sequences.

The sufficient statistics to compute the second expectation are the transition
probabilities {p(q1:D

t−1, q
1:D
t , f1:D

t−1 , f1:D
t |O(n); Λ)|1 ≤ t ≤ T} and the occupancy

probabilities {p(q1:D
t , f1:D

t |O(n); Λ)|1 ≤ t ≤ T}, which can be computed using
the junction tree algorithm, or by converting the hierarchical model to a flat
model with mega states and applying the forward-backward algorithm. (Once
again, we use the latter method in our experiment.)



4.3 Marginalized Viterbi Algorithm for HHMMs

The well-known Viterbi algorithm can be used to compute the most likely
mega state sequence [Q̂1:D, F̂ 1:D] = argmaxQ1:D,F 1:D p(Q1:D, F 1:D|O; Λ̂1). On
the other hand, our marginalized Viterbi algorithm computes the most likely
upper level state sequence [Q̂1, F̂ 2] by marginalizing the states at the lower lev-
els.

[Q̂1, F̂ 2] = argmax
Q1,F 2

p(Q1, F 2|O; Λ̂1) = argmax
Q1,F 2

∑
Q2:D

∑
F 3:D

p(Q1:D, F 2:D, O; Λ̂1)(7)

We first explain the marginalized Viterbi algorithm for HHMMs and then for
HHCRFs. The algorithm uses dynamic programming to obtain the most likely
upper level state sequence [Q̂1, F̂ 2].

Initialize: t=1

δ1(i) = log p(q1
1 = i , f2

1 = 1 , o1 ; Λ̂1) ∀i

Iterate: t=2,. . . ,T

δt(i) = max
i′,1≤τ<t

(
δτ (i′) + log A1

0(i
′, i) + ατ,t(i)

)
∀i

ψt(i) = argmax
i′,1≤τ<t

(
δτ (i′) + log A1

0(i
′, i) + ατ,t(i)

)
∀i

where

ατ,t(i) = log p(f2
τ+1:t−1 = 0 , f2

t = 1 , oτ+1:t | q1
τ+1 = i , f2

τ = 1 ; Λ̂1)

Traceback:

q̂1
T = argmax

i
δT (i), t = T

Iterate while t > 0 : 1) (q̂1
t′ , t

′) = ψt(q̂1
t ), 2) t ← t′

δt(i) is the maximum of the log-probability along a single top level path at time t,
that generates the first t observations o1:t and ends in the top level state i. ψt(i)
contains the traceback information of the highest probability path, and records
the previous top level state i′ and its ending time τ . Thus, τ is the segmentation
boundary time between the sub-sequence o1:τ ending with the top level state
i′ and the sub-sequence oτ+1:t generated by the top level state i. ατ,t(i) is the
probability of sub-sequence oτ+1:t generated by the top level state i.

The time complexity of the Viterbi algorithm is O(T ), whereas that of the
marginalized Viterbi algorithm is O(T 2). This is the cost for finding the most
likely upper level state sequence.



4.4 Marginalized Viterbi Algorithm for HHCRFs

The marginalized Viterbi algorithm for HHCRFs is similar to that for HHMMs,
with δ1(i) replaced by log

∑
q2:D
1

∑
f3:D
1

exp
( ∑K

k=1 λkφk(q1:D
1 , f2:D

1 , o1) · δ(q1
1 =

i) · δ(f2
1 = 1)

)
, the horizontal transition probability log A1

0(i
′, i) replaced by

λ
(Hor)
i′,i,0,1, and ατ,t(i) replaced by log

∑
q2:D

τ+1:t

∑
f3:D

τ+1:t
exp

( ∑t
t′=τ+1

∑K
k=1 λkφk(q1:D

t′−1,

q1:D
t′ , f2:D

t′−1, f
2:D
t′ , ot′)·δ(f2

τ = 1)·δ(f2
τ+1:t−1 = 0)·δ(f2

t = 1)·δ(q1
τ+1 = i)

)
−λ

(V er)
0,i,1 .

Its time complexity is the same as that for HHMMs: O(T 2).

5 Experiment

We compare the performance of HHCRFs with that of HHMMs in segmenting
and labeling EEG time series data for a Brain-Computer Interface (BCI). As
reported in literature, the HMM has outperformed Fisher’s linear discriminant
in a synchronous BCI experiment where segmented EEG data is classified [10].
However, HMMs do not perform better than static classifiers in asynchronous
experiments, where non-segmented continuous EEG data is first windowed and
then classified [11, 12]. It is difficult to identify the beginning and end of each
mental task in asynchronous experiments. We get around this problem by using
hierarchical dynamical models and by segmenting and labeling the entire EEG
data at the same time without windowing.

In our experiment, we use the BCI Competition III Dataset V, which is
characterized as a ”multi class problem, continuous EEG” [13]. The data set
contains data from 3 subjects during 4 sessions, each 4 minutes long 2. The
subjects perform one of three mental tasks for about 15 seconds and then switch
randomly to another task at the operator’s request.

Both the HHMMs and the HHCRFs have 2 levels: the top level has 3 states,
each corresponding to a mental task, while the bottom level has 5 states with a
single Gaussian density output. The parameters of the HHCRFs are initialized
using the corresponding parameters of the HHMMs. For hidden top level state
inference, which is necessary to estimate the mental task at each time, we use
three algorithms: Forward-Backward (FB), Joint Viterbi (JV) 3, and Marginal-
ized Viterbi (MV).

Table 1 shows the accuracy rates for labeling the EEG data (i.e., estimating
the mental task) at each time. The data is labeled according to the inferred top
level state at each time. The FB algorithm, which computes the most probable

2 The data from the first 3 sessions is used as training data, whilst the data from the
last session is used as test data.

3 the Viterbi algorithm in the joint space of the top and bottom level states



Table 1. Accuracy rates for labeling the EEG data. Mean (%) with standard deviation
(%) in brackets. Average of 10 runs.

subject HHMM HHCRF
FB JV MV FB JV MV

#1 79.05 (0.00) 78.52 (0.88) 79.54 (0.00) 94.58 (4.80) 80.75 (6.36) 92.77 (5.31)

#2 61.58 (0.00) 52.27 (0.37) 52.07 (0.00) 70.17 (0.08) 51.80 (4.00) 47.15 (0.00)

#3 34.40 (0.00) 34.40 (0.00) 34.40 (0.00) 32.11 (0.00) 32.11 (0.00) 32.11 (0.00)

average 58.34 55.06 55.34 65.62 54.89 57.34

Table 2. Segmenting the EEG data for Subject #1. Top level state changes within ±
0.5 sec. of the true time of change are considered as true-positive’s. Average of 10 runs.

HHMM HHCRF
FB JV MV FB JV MV

Precision (%) 20.00 16.50 18.18 53.39 23.07 57.32

Recall (%) 37.50 25.00 25.00 52.50 25.00 55.00

F measure (%) 26.09 19.85 21.05 52.92 23.81 56.08

state given all observations, has a high accuracy rate for both HHMMs and
HHCRFs 4 .

In Table 2, we evaluate the performance in segmenting the EEG data (i.e.,
detecting the change of mental task) for Subject #1. The data is segmented when
the top level state changes. We can see that HHCRFs outperform HHMMs in
segmenting the EEG data. See also Fig. 2.

We also evaluate the performance in estimating the segment sequence (i.e.,
the mental task order sequence). During 10 runs, the FB and MV algorithms for
HHCRFs produced the correct segment sequence 5 8 and 6 times, respectively,
whereas HHMMs failed to produce the correct sequence.
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HHMM

Fig. 2. Top level state sequence for Subject #1 as a function of time. Top: true se-
quence. Middle, and Bottom: The best HHMM and HHCRF sequences, respectively,
in terms of the F measure.

4 We found the estimation for Subject #3 extremely difficult, as was the case for all
the submissions to the competition.

5 i.e., 2 − 1 − 3 − 2 − 1 − 3 − 2 − 1 − 3.



6 Conclusion

In this paper, we proposed HHCRFs, a discriminative model corresponding to
the HHMM. We developed two algorithms for the model: a parameter learning
algorithm that needs only the states at the upper levels in the training data,
and the marginalized Viterbi algorithm which computes the most likely state
sequences at the upper levels by marginalizing the states at the lower levels.
In the experiment segmenting EEG data for a Brain-Computer Interface, the
HHCRFs outperformed the HHMMs.
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