Extended HTTP Digest Access Authentication

Henning Klevjer, Kent Are Varmedal, and Audun Jgsang

Department of Informatics, University of Oslo
{hennikl, kentav, josang}@ifi.uio.no

Abstract. User authentication to a server is typically done by present-
ing a username and a password in some protected form to the server, and
having the server verify that those credentials correspond to an iden-
tity previously registered and authorized for access. It is crucial that
attackers never get access to operational passwords, which typically is
achieved by encryption in transit, or through a challenge-response pro-
tocol between the client and server computer platforms. However, these
mechanisms do not protect passwords at the moment when they are en-
tered into the client computer, which leaves the password exposed to
attacks by malware on the client. We present a method for protecting
passwords from being exposed on client platforms. The method is an
extension of the well-known HTTP Digest Access Authentication which
is a challenge-response protocol specified as part of HTTP. The method
relies on an external mostly offline personal authentication device called
OffPAD which communicates with the client platform. We show how the
presented authentication scheme increases security as well as enhances
usability with regard to identity management. In addition to describing
the OffPAD device, we argue that the HTTP Digest Access Authenti-
cation standard does not conform to today’s best practices, and suggest
improvements.

1 Introduction

Passwords have for some time been considered old fashioned, difficult to use and
a low quality authentication factor [1]. Poor usability has been the main focus
of the critics: Requiring the user to select secure passwords for every online
service is a major usability issue [20]. Another significant problem is the security
state of the systems on which passwords are entered. According to PandaLabs’
estimates, about a third (31.63 %) of the world’s PCs are infected with some
sort of malware (Q2 2012) of which most (78.92 %) are Trojans [17].

In light of these arguments it is reasonable to assume that passwords are vul-
nerable on the PC; both when they are entered and when they are stored. Pass-
words can be intercepted by Trojans either by keystroke logging, RAM-scraping,
or by screenshots when shown on the screen in clear text. Even automatic log-in
and identity management applications such as LastPass' are not safe, as they
release the clear text password to the web browser (or other application) during

! http://lastpass.com

authentication, leaving it visible in memory for the Trojan to steal. LastPass
is a popular relief among technically literate people who typically have many
passwords to manage, another issue we address in this paper.

Over time, the typical Internet surfer will accumulate a large number of online
identities. Each identity normally consists of a username or other unique identi-
fier, and a password that (ideally) is unique and hard to guess. The increasing
number of accumulated identities leads to identity overload, which means that
the user is unable to manage all her identities (i.e. remembering all the differ-
ent identities and corresponding passwords), at least not without compromising
security in some way.

From the service provider’s (SP) perspective identity management is rela-
tively simple; it consists of storing identities and credentials of all its users in a
single directory, which is typically part of a CRM (Customer Relationship Man-
agement) system. This silo model - where each SP controls the identities of its
own customers - is simple to set up and manage, thus widely adopted in the
industry. A downside of this model is that it quickly leads to identity overload
for users [9], because each new online service gives another identity for the user
to manage. Unfortunately there is currently no widely accepted local user-side
solution for identity management that at the same time is secure and simple to
use. As a result, users tend to cope with identity overload by reusing the same
password for many different services, or by using insecure methods for storing
passwords, which violate policies and best practice. It is shown that most users
reuse difficult passwords for accounts protecting high value data, and use easily
guessed passwords for low value data [2].

Some countermeasures have been introduced, such as federated identity man-
agement (FIM). FIM relies on mutual trust within a group of SPs, and optionally
on a centralised identity provider. Through federation the member-SPs are able
to share identities between their respective silo domains. By this scheme, a user
can assume one single identity for an arbitrary selection of services, as long as
they are in the same federated trust network. Federation between heterogeneous
service providers in particular has never really taken off?, probably due to the
trust issues that arise when an identity is shared between SPs.

While FIM to some degree reduces the identity overload problem, there is no
reason to believe that there will ever be one single identity federation, universally
deployed, covering the needs of all different kinds of identity providers. Identity
federations are faced with the risk of being a single point of failure and com-
promise for all services covered by a federation domain. If a user compromises
his federated password or an attacker gains access to his identity management
account, his federated identity is compromised across all federated domains.

In this paper we describe a method for local user-side identity management
based on an authentication device called OffPAD, combined with an extension of

2 One can argue that identity providers such as Google, Facebook (Connect) and
OpenlID have had a huge impact on identity federation; however, the services covered
by these are rather similar (blogs, message boards, etc.), and not reaching across
heterogeneous domains or domains requiring high-level assurance of authenticity.

the well-known HTTP Digest Access Authentication protocol. A brief overview
of the existing HTTP Digest Access Authentication standard is provided next.
We then describe our method of combining the OffPAD with extended HTTP
Digest Access Authentication. The advantage of our method is that it totally
prevents exposure of passwords on potentially vulnerable client platforms, and
thereby represents secure local user-centric identity management solution.

1.1 HTTP Digest Access Authentication

HTTP Digest Access Authentication (short: DAA) originates from the challenge-
response authentication framework described in the original HTTP 1.0 specifi-
cation [3]. It is a web standard for access control to a service or domain called
realm by user authentication over HTTP. DAA was first defined in 1997 in RFC
2069 [5] and refurbished in RFC 2617 [6] in 1999. Its intended use is on the World
Wide Web, but it is perfectly implementable for protection of local resources, or
in any situation where application level access control is required?.

DAA was introduced as an extension to its predecessor Basic Access Authen-
tication, which is insecure without traffic encryption [6, 8]. The most critical
weakness of Basic Access Authentication is that passwords are passed in clear
text (Base64 encoded) over the Internet. DAA does not transmit passwords in
clear, but instead uses a challenge-response protocol. Using DAA to access a
protected realm requires each user to be:

— registered with sufficient credentials (username and password) in the access
control list (ACL) of the system enforcing the realm’s access control (i.e. be
authorized for access to that realm), and

— able to produce those registered credentials during authentication to the
server.

To understand DAA, consider this scenario: A user wants to access some web
resource at http://example.com/protected/. The /protected/ directory (or
realm) is protected with DAA, so that only authorized users shall be able to
access it and its subdirectories.

Trying to access http://example.com/protected/ initiates the following
challenge-response communication between the client and the server, over the
HTTP protocol:

1. The client’s web browser (user agent) issues a HT'TP GET to retrieve http:
//example.com/protected/

2. The server responds with a 401 Authorization Required HTTP status
code, indicating to the user that access to this resource is protected, requires
access approval by the system? and that he is currently not authenticated.

3 The challenge-response theory behind the scheme is applicable also outside HTTP.

4 In the RFC specification, this stage alerts the need for what the 401 header refers
to as authorization, but this is a misnomer. What the 401 header actually says is
that the user must provide authentication credentials, so that the system can verify
that the user is registered and authorized for access. The system can then approve or
reject access to the resource, depending on the stored access authorization policy.

Along with the status code, the server passes a WWW-authenticate header,
containing information needed for the system to calculate the correct re-
sponse for the server.

3. The web browser interprets the 401 status code and prompts the user for
username and password.

4. The entered credentials and the information extracted from the incoming
WWW-authenticate header are hashed. The client issues another GET, now
with an appended Authorization header, containing a response value (i.e.
the previous hash, the user’s proof of identity) and other values.

5. The server receives the response value and the name of the protection realm
to which he requests access. As hashing algorithms are one-way functions,
there is no way for an adversary to simply extract the password from the
hash value. The protection of the response value relies on the quality (en-
tropy) of the password, or at least on the preimage resistance of the hash
function. At the server side, the credentials that were stored locally at the
time of registration are used to calculate another hash value by the same
rules and algorithm as on the client side. If the server side calculation is
equivalent to the one received from the client, the server can be certain of
the client’s identity, and approve access based on the access policy. If the user
is authenticated and authorized, the server responds with a 200 0K status
code and the contents of the protected resource that the user requested. If
either authentication or access control fails (i.e. the user is not authenticated
or not authorized), he is presented another 401 Authorization Required
and given another try at proving an authorized identity.

Calculating the response value The response value is calculated by the
user agent as an answer to the server’s authentication challenge (the Www-Auth-
enticate header). It is the result of hashing two independent parts. The first,
called HA1 is a hash of the realm and the user’s credentials. The second, HA2,
is a hash of the HTTP request method and location. Consequently, one can
distinguish HA1 and HA2 as the secret and non-secret pair, or static and dynamic
components of response respectively. The static component is the one stored
in the ACL at the server side and is used in calculations to produce the correct
response value on either side for comparison and validation at the server. The
dynamic component changes on every HTTP GET.
Here, we assume an ordinary run of DAAS:

HA1 = MD5(username:realm:password) [6, p. 12]
HA2 = MD5(method:uri)® [6, p. 13]

When both HA1 and HA2 have been calculated, the response value is finalized
® We do not consider the algorithm or qop fields’ impact on the calculation.

5 Where method is the HTTP request method that was used (i.e. any of the methods
described in the HTTP standards, such as GET, POST, etc. [4]).

response = MD5(HA1:nonce:mnc:cnonce:qop:HA2)7 [6, p. 13]

1.2 Extended HTTP Digest Access Authentication

Extended Digest Access Authentication (short: XDAA) represents an extension
of traditional HTTP DAA in two respects: The actual IETF standard RFC 2617
is extended to allow more than just username and password as valid credential
sets®. The authentication process itself is also extended, physically, in that it is
moved to another location. All client-side calculations done in the authentication
phase are outsourced to the OffPAD. The OffPAD will be discussed in length in
section 3.

Our XDAA is beneficial both for security and usability. By managing the user
credentials on an external device, we get a local user-centric identity management
system, and no longer require users to remember their passwords. Moving the
challenge-response calculations and handling of the values critical to authentica-
tion over to a mostly offline device, we reduce the risk of exposing these values.
Moving the identity management over to such a device alleviates the cognitive
and physical strain on the user during authentication, as well as removing the
time penalty brought by user interaction in most situations®.

In its simplest form (using the OffPAD and no further protection mecha-
nisms), XDAA can be used with any HTTP server supporting original HTTP
DAA without change to the server system. The immediate benefit is that the
user’s credentials themselves are never present. They are never shown on the
screen, never exposed in any vulnerable state in the computer’s memory and
never transferred in clear text.

2 The Problem of Password Exposure

Since identity management on a post-it note, under the keyboard or in the user’s
brain is not particularly secure or user friendly, a better solution may be to store
identities in the computer. Various software password managers exist, both on-
line and offline. Web browsers’ password managers is one example of a software
password manager, where users store their credentials in the browser and have
them automatically entered upon request. In Mozilla Firefox, managed identi-
ties are stored locally in encrypted format using a key that is stored alongside.
The stored identities (consequently the passwords) are easily decrypted, if not
protected by a master password [16]. Thus, any Firefox identity store not pro-
tected by a master password can be collected by a Trojan or other malware,
and the passwords can be decrypted at another location. However, the quality

" Details on the contents of response are omitted in this paper, for brevity. Refer to
[6] for details on HTTP DAA.

8 This is particularly important for the topics raised in section 7.

9 Situations where no identity or multiple identities are available for the user to au-
thenticate with, the password is wrong, or another error appears, user interaction is
necessary.

of protection provided by a master password is as usual dependent on the qual-
ity (entropy) of that master password. Mounting brute force or other guessing
attacks is trivial.

In addition, when a specific password has been decrypted it is exposed in
clear text in the memory of the client platform and can be intercepted by e.g.
by a Trojan or other malicious parties with access to the client system or its
memory. In order to protect passwords from exposure, they must be stored in
an offline device that communicates with the client platform. More specifically,
this device is an Offline Personal Authentication Device (OffPAD) described in
detail next.

3 The OffPAD

As noted, traditional identity management on the user side consists of remem-
bering, and in most cases either writing down or reusing passwords. Storing
identities on a secured external device is a possible solution — analogous to writ-
ing down passwords and keeping them in a safe. In [10] Jgsang and Pope describe
the Personal Authentication Device, a secure device external to the computer.
The PAD is used as an identity management system to which the user authenti-
cates once (with a PIN number, password or similar), and for one session!?, the
user can authenticate to every supported service automatically using the PAD
as his authenticator. It allows for authentication of the user, and facilitates user-
centric identity management (i.e. a user’s management of his own passwords) to
happen on this device, rather than in the user’s brain.

In [9], Josang describes a more secure PAD, the physically decoupled OffPAD.
The OffPAD is a PAD that is restricted with regard to connectivity (as offline
as possible), meaning that it should only be able to communicate by authorized
request. This decoupling from networks improves security on the device, as it is
less vulnerable to outside attacks.

3.1 Requirements for an OffPAD
We require the following of the OffPAD:

1. Limited connectivity — We suggest Near Field Communication (NFC) or
other physically activated communication (so-called contactless communica-
tion). Caveat: While other (live) means of communications may seem appro-
priate, depending on the required assurance level, but will demote the device
to a PAD.

2. Secure element — An infrastructure for secure messaging and storage such as
described in ISO 7816-4'1.

3. Access control on the device — Requiring the holder of the device to au-
thenticate via passphrase, biometry, etc. restricts unauthorized access to the
device.

10 Timited either in time or number of connections.
" http://www.iso.org/iso/iso_catalogue_catalogue_tc/catalogue_detail.htm?
csnumber=36134

3.2 Using a Mobile Phone as the OffPAD

The current trend of mobile phone malware strongly indicates that the mobile
phone is joining the computer as a vulnerable platform. “In 2011, the Juniper
MTC identified a 155 percent increase in mobile malware across all platforms,
as compared to the previous year” [11]. The number of features in mobile phones,
especially connectivity features, increase the number of attack vectors, thus the
overall vulnerability of the device.

As a counterexample, the French company TazTag which specializes in secure
contactless devices are developing a mobile phone (TPH-ONE)!'? which is said
to be able to separate the secure element from the phone’s operating system
(Android), in having a secure state, that can be toggled on or off by the user when
required. The secure state is a security context in which the phone works with
the secure element only. The secure element is capable of handling encryption,
and hashing of the credentials used for authentication. In the phone scenario,
the phone is an OffPAD whenever it is in the secure state.

4 Related Work

Several authentication solutions (particularly unimplemented designs and recom-
mendation) relying on an external device are present in the literature. Examples
include the Pico by Stajano [21], MP-Auth by Mannan and Oorschot [14] and
Nebuchadnezzar by Singer and Laurie [13]. Below we will briefly introduce each
and show the OffPAD is different.

Pico Pico is a device that authenticates a user through a challenge-response pro-
tocol. It stores private keys for communication with every application it supports
authenticating to, in its on-board encrypted memory. Each supported applica-
tion has one asymmetric key pair to communicate with Picos. Stajano explains
authentication with the Pico in the following:

The Pico challenges the app to prove ownership of the app’s private
key. Once the app does, the Pico sends its long-term public key for that
pairing, thus identifying itself to the app, and then, as challenged by
the app, proves ownership of the corresponding private key [...], thus
authenticating itself to the app [21].

Challenges are presented as 2D visual codes (e.g. QR codes) to the Pico, and
collected by the device’s embedded camera. Transmission of the response is done
over Bluetooth. The Pico solution requires changes to both the client and the
server side. Most SPs are probably reluctant to consider changing their visual
appearance to support another authentication scheme. Where the Pico is re-
stricted to its own authentication scheme, the OffPAD authentication is done
building on a pre-existing technology. Also, the Pico targets authentication to
any device, both on- and offline.

12 http://taztag.com/index.php?option=com_content&view=article&id=104

MP-Auth In 2010, Mannan and Oorschot suggested the MP-Auth (or Mobile
Password Authentication) protocol as a means for moving password authen-
tication (not the passwords themselves) to a personal device, protecting them
against being collected by malware. In this protocol, an SSL tunnel is established
between the user’s mobile phone and the server to which he will authenticate.
The user’s password or credential is then entered on the phone and transmitted,
protected by the SSL tunnel, to the server, authenticating the user [14].

MP-Auth’s solution relays the communication and entering of a password to
a mobile phone, but does not provide the benefit of identity management.

Nebuchadnezzar Nebuchadnezzar, or the Neb, is a 2008 idea by Singer and
Laurie. They argue that attempting to establish a trusted path of communication
between a “general purpose” operating system and a server is a bad idea [13].
They also present another unreasonable extreme: trying to do every operation
on a minimal, secured, locked down operating system, and argue that the only
sensible solution is a combination of the two. The position paper further describes
the schematics behind a trusted device, the Nebuchadnezzar, which much like
the OffPAD is an external device, maximally reduced with regard to features.
The OffPAD may be seen as a physical implementation of the Nebuchadnezzar
for user authentication over HTTP.

5 A weakness in the original HTTP Digest Access
Authentication

Here we present the most important weakness of the original DAA scheme and
how it can be exploited. In section 6 we look at what protection mechanisms
can be used to avoid it. The original specification of HTTP DAA [6] warns of
several weaknesses and vulnerabilities, such as:

1. RFC2617 is backwards compatible with its less secure first specification
RFC2069;

2. A server challenge may be intercepted and modified to a Basic authentication
challenge by a Man In The Middle;

3. Mounting an attack leveraged by an intercepted authentication response
value;

4. Mounting an offline attack on the stored password hash.

The first two weaknesses rely on the ability to force the client into using
another, more vulnerable authentication scheme. We assume that the OffPAD
system can be configured to require authentication to happen without the ability
to downgrade. The third vulnerability is shown in the following attack, and the
theory can be applied to exploit the fourth.

This situation is analogous to the classic problem of cracking a hashed and
salted password: In the HA1 calculation, the static values (username, realm and
colons) are analogue to salt. In the response calculation (section 1.1) we consider

Al HA1 response
user0123:protected:a 798C3C ... 774307 || 985F960CCAO0C4CCBE854EE4D3D260CBE
user0123:protected:b 138821 ...68B4AA || 2F3B4280ESEFFB16BBF27AB827D024FF
user0123:protected:c 9BI9D7A ...8DCD5B||ES83AEA5SBE94BBEA91263A4CDD4FC9A24

user0123:protected:passworc | 2CEE85 ... 9CETE6 || 123CC39EA2290D01556505C5BCD4BBDA
user0123:protected:password | 3FESDB ...0FFD38 || 64B3C3C5091EE8FC16BB22D0FD838389

Table 1. An exhaustive search for response

the HA1 value and the static values (nonce, nc, cnonce, qop and HA2 separated
by colons) analogue to password and salt respectively.
An Authorization header’s response value is an expression on the form:

HA1 = MD5(s1||password)
response = M D5(H Al||sz)

Where || denotes string concatenation, and s; and so are the static values, of
the format “username:realm:” and “nonce:nc:cnonce:qop:HA2” respectively.

Attempting to break the one-way property of MD5 is not practical at the
time of writing; the most effective known preimage attack has a computational
complexity of 21234 [19]. To find a usable password, however, we must find
a preimage of the HA1 value, which itself is hashed into response. A successful
brute force attack on the password will reveal the static secret HA1 value, which
in turn can be validated by the response calculation above.

Consider a scenario where an attacker has successfully collected an Author-
ization header. He is then prepared with all the values needed to calculate the
HA1 except the password. Actually, all values making up the entire final response
are accessible should we find the correct password. Exhaustively searching the
available preimages’ character space is a usual approach to password cracking
on hashed passwords. In this scenario we must customize the password cracking
algorithm to first hash the guessed password together with the rest of the A1'3
parameters to recreate a suggestion for HA1. Second, we must use that HA1 value
in the response calculation (using the retrieved nonces and other collected pa-
rameters) to produce a possible response value. In the event that the response
value equals the one collected, we have found a password that would have been
usable in the same session with the same system. In table 1, we show how this
approach is possible, using these example values.

username: user0123 realm: protected password: password
nc: 00000001 uri: /protected/ method: GET
nonce: aGVsbG8=feffda052abl1e0707b0dledeff74eableb7cafesd

cnonce: VGhpcyBpcyBhIG5vbmN1LCBub3RoaWsnIGZhbmN5DQo=

correct HA1: 3FES8DB7B9A01F9715BB4285D300FFD38
correct HA2: 6AA3FBF46FDDCDE617B741460F5411B8
correct response: 64B3C3C5091EE8SFC16BB22D0FD838389

13 Note that x1 is the original preimage of Hx1 (i-e. the contents of the value before
hashing).

If we can validate the found password against several nonces, we can conclude
with high certainty that it is indeed the original preimage, and we have decoupled
the password from the nonce- and client nonces.

6 Extended HTTP Digest Access Authentication

In this section we discuss the weaknesses noted above and how introducing the
new scheme and the OffPAD helps mitigate these. We also discuss what new
protection mechanisms should be appended to the scheme, and what more should
be done with the mechanisms that did not stand the test of time. Introducing
the OffPAD will remove the risk of clear text password exposure on the client
computer but will not contribute in any way to the security of the authentication
data while in transfer, or to the security of the server-side identity management.
A well-known fact is that it is the server most attackers target when looking for
user’s credentials. Therefore, a number of additional protection mechanisms are
introduced, to ascertain the security on the server side as well.

The changes done to the scheme will be transparent on the communication
links, but modifications on both the client and the server side are necessary to
provide maximal assurance. Introducing the OffPAD as the only additional pro-
tection mechanism will integrate seamlessly with any server supporting the orig-
inal authentication scheme. However, while in line with the challenge-response
authentication framework provided with HTTP!4, the protection mechanisms
beyond the OffPAD only, require some browser and server-side modification.
This is to synchronize the higher quality of protection of the user credentials on
both ends.

6.1 Extending DAA to the OffPAD

By relocating the computation of the DAA response value from the client com-
puter to the OffPAD the user can be authenticated without entering a password
on the client computer. It also provides us with the ability to authenticate auto-
matically, with the credentials stored on the device. Rather than storing creden-
tials in clear, they can be stored as hashed static values HA1, containing ”proof
of possession” of the credentials. The password is never needed in clear text. We
now remove the risk of malware collecting the password from the computer, as
it is never entered or shown on the screen, thus never present in memory. Its
only appearance in the computer’s memory is when the hashed response value
is passed between the OffPAD and the server, via the computer.

6.2 Weaknesses not addressed by the OffPAD

The only mechanism protecting the password is the hash function, which relies
on the randomness and on the qualities of the password itself. As presented in

14 From which HTTP DAA is formed.

section 5, it is feasible for to exhaustively search the character space of a “low
quality” password and find a match for its response value.

Ordinary hash functions have many applications. Many problems are solved
from the hash function’s possibility to quickly convert a large amount of data
into a fixed size value, uniquely identifying the data. Version control systems,
digital signatures and data comparison are among the applications that benefit
from the speed of these highly efficient functions. When hashing a password for
use in user authentication, the MD5 calculation itself is done in an incredibly
short amount of time'?. If the intention is turned around, however, it is easy to
see how fast a brute force attack may be carried out.

In December 2012, Jeremi Gosney reported brute force attacks using the
MD?5 function measuring up to 180 billion calculations per second. The attacks
were carried out on five clustered servers, connecting 25 GPUs' in total [7]. This
means that the character space containing all 95 printable ASCII characters of

95;4_1 — 1), or about 6.7 quadrillion

variable length up to eight characters (i.e.
character combinations, can be calculated!”.

6704780954517120
180000000000

= 37248, 78 seconds = 10, 3 hours. (1)

Because of the effectiveness seen in brute force and dictionary attacks against
hash- and encryption functions, the need to slow them down was introduced al-
ready in the early UNIX time sharing systems [15]. Several thousand iterations
of MD5 can slow down the calculation enough to mitigate most brute force at-
tacks. The Password Based Key Derivation Functions (PBKDF1 and PBKDF?2)
[12] were introduced by RSA in 2000, but do not explicitly mention user authen-
tication. berypt by Provos and Mazieres (1999), and the more current scrypt
by Colin Percival (2012) [18], however, specifically have user authentication and
password protection in mind. Common to all key derivation functions is that
they use slow consuming calculations, thus provide a stronger protection to the
value they protect. The PBKDF functions are used mainly to facilitate password
based encryption by generating a key from a password, but every one-way key
derivation function may be used for user authentication. It is up to the identity
provider to determine the workload of each hash calculation. Despite the age of
the Key Derivation Functions and the technology, their use for password protec-
tion on the server side has become slightly popular only recently. Slowing the
hash calculation down, each user may have to wait a few hundred milliseconds
to be authenticated, but this also applies for each single attack. One must use
the same amount of time for each guessed password'®.

15 Albeit a suggestion in the RFC, MD5 has become the de facto standard.

16 Graphics processing unit — a special computer processor tailored for graphics, which
has also proven effective in password cracking.

17 Here we assume that there is no password of length zero (we subtract 95° = 1 from
the original geometric sum formula)

18 Of course; the upper threshold for calculation time is only limited by the local
system’s resources. This means that an attacker’s system, when superior to the

Servers protected by the original DAA scheme advertise their supported one-
way function algorithms to the client following the challenge. This enables servers
to provide support beyond the two algorithms specified in the standard (MD5
and MD5-sess). Advertising a KDF at the server side will benefit both the server
and the client with additional protection of the password at both sides. If the
algorithm used is implemented consistently (i.e. calculates the exact same val-
ues) at both endpoints, any one-way function or KDF should be transparently
applicable to the authentication scheme.

Using KDFs not only protects the user credentials in transit, it provides the
same benefits to either communicating entity storing the credentials locally (i.e.
the server and OffPAD). If a password database is breached, and the stored
passwords are hashed by single MD5, and even salted, most passwords are re-
coverable in a reasonable amount of time. If the passwords are protected by a
KDF and a reasonable workload is applied, brute force attacks are not feasible.
If a KDF uses 100 ms on a specific system to hash a dictionary password, it
follows that the attacker requires over two hours on average to iterate a 150000
word dictionary and locate the correct one, on the same system. Thus, KDFs
provide better protection, even for poorly chosen passwords.

7 Future work

The OffPAD device may support several authentication mechanisms, not lim-
ited to challenge-response protocols. The OffPAD may function as an identity
provider in itself, for example as an OpenlD provider for the owner. It can also
be used as an encryption and signing device, and as a communicating device
that facilitates encrypted communication.

When introducing KDFs in the DAA scheme, we require some extra pa-
rameters to the one-way function. Where a hash function takes only one value,
namely the data to hash, KDFs require (at least) an additional two: The num-
ber of iterations (or workload) of the hash function and a salt. There are no
fields for extra values in the original DAA scheme. One might consider pass-
ing the function parameters in their own fields, workload and salt, which
would of course require changes to the authentication framework. Also, it is
possible to either pass the parameters along with the algorithm field, such
as algorithm=scrypt:1000:Base64([salt]) or in the nonce field, along with the
challenge.

If one is to use the OffPAD against a server that does only support original
DAA, it is still possible to do so securely. The password can either be randomly
selected from the key space of MD5 output (i.e 128 random bits), or have entropy
that exceeds what is produced by MD5. This way, when the password is hashed,
the simplest way to recover the protected password is to mount the best preimage
attack, an infeasible calculation (as stated above, of complexity 2!234). The
passwords can be as long as a book — it is still only the hash that is stored.

verification server in computing power, will be able to guess faster than the remote
verification time.

8 Conclusion

We have shown how HTTP Digest Access Authentication can be extended, relo-
cating authentication from a possibly compromised system to an external secure
device — the OffPAD. We have presented the benefits of the extension, but also
looked at some weaknesses of the current scheme, that are possibly present even
when authenticating with the OffPAD. Suggestions have been proposed as to
how we can replace the old and vulnerable single-iteration response calculation
with modern adjustable key derivation functions or randomized passwords to
evade brute-force attacks. These may provide additional protection to the pass-
words, both while in transit and when stored on each endpoint. The proposed
OffPAD solution also improves the usability of user authentication. Storing and
managing passwords on a secure device rather than in the brain is scalable,
less concerning and removes the physical and cognitive strain of entering and
remembering passwords.

References

[1] Anne Adams and Martina Angela Sasse. “Users are not the enemy”. In:
Commun. ACM 42.12 (Dec. 1999), pp. 40-46. 1ssN: 0001-0782.

[2] Bander AlFayyadh et al. “Improving Usability of Password Management
with Standardized Password Policies”. In: Proceedings of the 7th Confer-
ence on Network and Information Systems Security (SAR-SSI). Ed. by
Christophe Rosenberger and Mohamed Achemlal. 2012, pp. 38-45. I1SBN:
978-2-9542630-0-7.

[3] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol
- HTTP/1.0. RFC 1945 (Informational). Internet Engineering Task Force,
May 1996. URL: http://www.ietf.org/rfc/rfc1945.txt.

[4] R. Fielding et al. Hypertext Transfer Protocol — HTTP/1.1. RFC 2616.
Updated by RFCs 2817, 5785, 6266. Internet Engineering Task Force, June
1999. URL: http://www.ietf.org/rfc/rfc2616.txt.

[6] J. Franks et al. An Extension to HTTP : Digest Access Authentication.
RFC 2069. Obsoleted by RFC 2617. Internet Engineering Task Force, Jan.
1997. URL: http://www.ietf.org/rfc/rfc2069.txt.

[6] J. Franks et al. HTTP Authentication: Basic and Digest Access Authenti-
cation. RFC 2617. Internet Engineering Task Force, June 1999. URL: http:
//www.ietf.org/rfc/rfc2617.txt.

[7] Jeremi Gosney. Password Cracking HPC. Rump session, Passwords 12,
Dec. 2012. URL: http://passwordsl2.at.ifi.uio.no/Jeremi_Gosney_
Password_Cracking_HPC_Passwords12.pdf (visited on 12/17/2012).

[8] David Gourley and Brian Totty. HTTP: The Definitive Guide. O’Reilly &
Associates, Inc., 2002.

[9] Audun Jgsang. “Identity Management and Trusted Interaction in Internet
and Mobile Computing”. In: IET Information Security.in press (2013).

[10] Audun Jgsang and Simon Pope. “User Centric Identity Management”. In:
AusCERT Conference 2005. 2005.

Inc. Juniper Networks. Juniper Mobile Threat Report 2011. Tech. rep. Ju-
niper Networks, Inc., 2011.

B. Kaliski. PKCS #5: Password-Based Cryptography Specification Version
2.0. RFC 2898 (Informational). Internet Engineering Task Force, Sept.
2000. URL: http://www.ietf.org/rfc/rfc2898. txt.

B. Laurie and A. Singer. “Choose the red pill and the blue pill: a position
paper”. In: Proceedings of the 2008 workshop on New security paradigms.
ACM. 2009, pp. 127-133.

Mohammad Mannan and Paul C. van Oorschot. “Leveraging personal de-
vices for stronger password authentication from untrusted computers”. In:
Journal of Computer Security 19.4 (2011), pp. 703-750.

Robert Morris and Ken Thompson. “Password Security: A Case History”.
In: COMMUNICATIONS OF THE ACM 22 (1979), pp. 594-597.
MorzillaZine. Password Manager - MozillaZine Knowledge Base. Dec. 2011.
URL: http://kb.mozillazine . org/Password _Manager (visited on
12/18/2012).

Panda Security Pandalabs. PandaLabs Quarterly Report. June 2012. URL:
http://press.pandasecurity.com/wp-content/uploads/2012/08/
Quarterly - Report - Pandalabs - April - June - 2012 . pdf (visited on
11/01/2012).

Colin Percival. “Stronger Key Derivation Via Sequential Memory-Hard
Functions”. In: BSDCan 2009: The Technical BSD Conference. 2009.

Yu Sasaki and Kazumaro Aoki. “Finding Preimages in Full MD5 Faster

Than Exhaustive Search”. In: EUROCRYPT. Ed. by Antoine Joux. Vol. 5479.

Lecture Notes in Computer Science. Springer, 2009, pp. 134-152.

M. Angela Sasse and Ivan Flechais. “Usable Security — Why Do We Need
It? How Do We Get 1t7” In: Security and Usability: Designing secure sys-
tems that people can use. Ed. by O’Reilly Books. O’Reilly, 2005. Chap. 2,
pp- 13-30.

Frank Stajano. “Pico: No More Passwords!” In: Security Protocols Work-
shop. Ed. by Bruce Christianson et al. Vol. 7114. Lecture Notes in Com-
puter Science. Springer, 2011, pp. 49-81. 1SBN: 978-3-642-25866-4.

