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Abstract: Retiming has been originally proposed as an optimization technique for
clocked sequential digital circuits. It has been successfully applied for optimiz-
ing loops during the compilation of loop-intensive programs. After applying a
retiming, the original loop transforms to another loop which is preceded by a
segment of code called prologue and is followed by a segment of code called
epilogue. To optimize a loop, there are many possible retimings that allow to
achieve the same value of the objective function. Depending on the retiming
used, the number of operations in the prologue and epilogue can increase or
decrease. Decreasing the code size for retimed loops is of great importance in
particular for memory-constrained system-on-chip and embedded systems. It
has also an impact on power dissipation. This paper addresses the problem of
reducing the code size for retimed software loops under timing and resource
constraints. We mathematically formulate this problem and develop algorithms
to optimally solve it. Experimental results are also provided. 
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1 INTRODUCTION

While it was proposed originally for optimizing synchronous sequential
digital circuits, retiming9 has been successfully used for optimizing loops as
well1,7,8. Retiming moves registers to achieve a certain objective function.

There is a relationship between a register in the context of hardware imple-
mentations and an iteration in the context of software implementations. In the
context of software implementations, moving for instance one register from
the inputs of an operator to its outputs transforms to: i) delaying by one itera-
tion the consummation of the result produced by this operator, and ii)
advancing by one iteration the consummation of the operands of that operator. 



IESS’20072
Applying retiming on a single loop leads to another code composed by
three consecutive parts in the following order. The first one is a segment of
code called prologue. The second one is a new loop which runs faster than the
former one when the goal from retiming is optimizing timings. The third and
last one is a segment of code called epilogue. The new loop can start execut-
ing once the execution of the prologue has terminated. The execution of the
epilogue can begin once the new loop terminates executing.

There is more than one way to retime a loop for achieving a certain target.
Depending on the retiming used, the code size of the prologue and epilogue
can increase or decrease. Reducing the size of that code is very important in
the case of embedded systems as well as of system-on-chip1,3. Both of these
two kinds of systems have constraints on the memory size, and hence the code
size must be reduced for them. The size of the code has also an implicit
impact on both the execution time as well as the power consumption.The
problem of reducing the code size has been widely addressed in the
literature2,4,5, but only few papers have recently addressed this problem when
techniques like retiming has been used1,3. 

In the rest of this paper, we mean by “code size” the number of operations
in the prologue and epilogue after retiming a loop. We address the problem of
reducing the code size for retimed loops under timing and resource con-
straints. We formulate this problem mathematically and develop algorithms to
optimally solve it. We provide a polynomial run-time algorithm to optimally
solve the problem for the case of unlimited resources. In its general form, our
target problem becomes NP-hard in the case of limited resources since to
solve it, one needs to solve the problem of scheduling under timing and
resource constraints which is already known as an NP-hard problem in its
general form. We also propose an exact but not polynomial run-time algo-
rithm to solve this latter version of our target problem. 

There are many real-life examples of loop-intensive applications where
the loops can be modeled as for-type loops. Moreover, the body of these loops
does not contain conditional statements like if-then-else, etc. Such examples
include digital filters like the correlator, the finite impulse response, and the
infinite impulse response. In this paper, we focus on solving our target prob-
lem for these class of applications. This kind of applications is at the heart of
many concrete embedded systems.

The rest of this paper is organized as follows. Section 2 shows how we
model a loop. In Section 3, we give an introduction to basic retiming and
some of its related background required for our proposed approach. In Section
4, we define valid periodic schedules that we target in this paper and propose
an algorithm to compute them. We develop in Section 5 an algorithm to gen-
erate the transformed code after applying a retiming on a single for-loop. In
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Section 6, we develop a polynomial-time exact method for computing a retim-
ing leading to a small code size for the case of unlimited resources. In Section
7, we propose an exact but not polynomial-time algorithm to compute a retim-
ing leading to a small code for the case of limited resources. Experimental
results and conclusions are given in Sections 8 and 9.

2 CYCLIC GRAPH MODEL

In this paper, we are interested in for-type loops as the one in Fig. 1 (a).
We assume that the body of the loop is constituted by a set of computational
and/or assignment operations only (i.e., no conditional or branch instructions
like for instance if-then-else is inside the body). 

We model a loop by a directed cyclic graph , where V is
the set of operations in the loop’s body, and E is the set of edges that represent
data dependencies. Each vertex v in V has a non-negative integer execution
delay , where N is the set of non-negative integers. Each edge

, from vertex  to vertex , has a weight ,
which means that the result produced by  at any iteration i is consumed by 
at iteration .

Fig. 1 presents a simple loop and its directed cyclic graph model. For Fig.
1 (b), the execution delay of each operation  is specified as a label on the
left of each node of the graph, and the weight  of each arc  is
in bold. For instance, the execution delay of  is 1 unit of time and the value
2 on the arc  means that operation  at any iteration i uses the result
produced by operation  at iteration . 

3 INTRODUCTION TO BASIC RETIMING 

Let  be a cyclic graph. Basic retiming9 (or retiming for
short in this paper)  is defined as a function , which transforms 
to a functionally equivalent cyclic graph . The set  rep-
resents natural integers. 

The weight of each edge  in  is defined as follows:
.  (1)

Since in the context of hardware the weight of each edge in  represents
the number of registers on that edge, then we must have:

.  (2)
Any retiming  that satisfies inequality (2) is called a valid retiming. From

expressions (1) and (2) one can deduce the following inequality:
.  (3)
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Let us denote by  a path from node u to node v in V. Equation (1)
implies that for every two nodes u and v in V, the change in the register count
along any path  depends only on its two endpoints:

,  (4)
where:

.  (5)

Let us denote by  the delay of a path  from node u to node
v.  is the sum of the execution delays of all the computational
elements that belong to .

A 0-weight path is a path such that . The minimal clock
period of a synchronous sequential digital design is the longest 0-weight path.
It is defined by the following equation:

.  (6)
Two matrices called W and D are very important to the retiming algo-

rithms. They are defined as follows9: 
,  (7)

and
 (8)

The matrices W and D can be computed as explained in9.
Minimizing the clock period of a synchronous sequential digital design is

one of the original applications of retiming that are reported in9. For instance,
for Fig. 1 (b), the clock period of that design is (see its definition above):

, which is equal to the sum of execution delays of computational
elements    (i.e., ).
However, we can obtain  if we apply the following retiming vector

 to the vector of nodes  in . The retimed graph
 is presented by Fig. 1 (c). Notice that the weight of each arc in  is

computed using expression (1). 
Once a retiming defined on  is computed for solving a target problem, it

can then be transformed to a non-negative retiming without impact on the
solution of the problem. In the rest of this paper, we consider non-negative
retiming only, unless it is explicitly specified otherwise. For the purpose of this
paper, we extract from9 the following theorem, which is also proved in9.   

Figure 1.A simple loop, its directed cyclic graph model, and a retimed version of graph (b). 
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#define  U    1000
main () {

int a[U], b[U], c[U], d[U], e[U], i;
for (i=2; i<= U; i++) 

v1: a[i] = 1 + d[i]; 
v2: b[i] = 1 + a[i-2]; 
v3: c[i] = b[i] * e[i]; 
v4: d[i] = 2 * c[i];
v5: e[i] = 1 + c[i-2]; 

}
          (a) Simple loop. (b) Directed cyclic graph model.
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Theorem 1 :  Let  be a synchronous digital design, and let
 be a positive real number. Then there is a retiming r of G such that the clock

period of the resulting retimed design  is less than or equal to  if and only
if there exists an assignment of integer value r(v) to each node v in V such that
the following conditions are satisfied: (1) ,
and (2) .         

4 VALID PERIODIC SCHEDULE

Let  be a directed cyclic graph modeling a loop. A
schedule is a function  that, for each iteration  of the
loop, determines the start execution time  for each operation  of the
loop’s body. Here, N is the set of non-negative integers.

The schedule  is said to be periodic with period  iff it satisfies (9):
,  (9)

where  is the start execution time of the first instance of the operation .
Without loss of generality, we assume through this paper that: 

.  (10)
In this paper, the schedule  is said to be valid iff it satisfies both data

dependency constraints and resource constraints. 
Data dependency constraints mean that a result computed by operation 

can be used by operation  only after  has finished computing that result. In
terms of start execution time, this is equivalent to the following inequality:

.  (11)
Using equation (9), inequality (11) transforms to:

.  (12)
In this paper, resource constraints mean that at any time, the number of

operations that require execution on the processing unit number k must not
exceed 1. For resource constraints, we handle in this paper each processing
unit individually since this allows us to also realize the binding task (i.e., once
the schedule is computed, we will automatically know on which resource each
operation will execute). 

The following notations and definitions will be used in this paper. 
•  The number of all the available functional units.
• The set of labels of processing units that can execute . It is:

.
• 0-1 unknown variable associated to each . This variable

will be equal to 1 if operation  starts executing at time  on
the functional unit number k, otherwise it will be equal to 0. 
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Notice that, in this paper, we assume that the functional units are not pipe-
lined. Moreover, we are interested in the class of valid periodic schedules that
satisfy the following constraint while  must be the smallest possible. 

.  (13)
If the operation  is executed using the functional unit number k, then the

execution delay of  will be  instead of . Using  as an execu-
tion delay of , the operation  will execute in the discrete interval of time

. By using binary variables  as well as other
notations defined above and the expression (13), we can write each  as
follows:

 (14)
where:

,  and  (15)
 (16)

In this paper, we are interested in identical binding for all the iterations of
the loop. The operation  and all its future instances will execute on the same
functional unit k. Hence, assuming the expressions (15) and (16) are available,
the execution delay of  is :

.   (17)
Notice that thanks to the binary variables , the binding task will be

implicitly carried out once the values of these variables become known.
Now, we will show how to derive a formal expression for the resource

constraints. Any operation  which is executing at time  implies that 
has started to execute somewhere in the discrete interval

, which transforms to (18):

  (18)
Using expression (13), any operation  must start executing no later

than . Thus, equation (18) transforms to:

  (19)
The schedule  must be computed in such a way that at any time

, the number of operations which are executing on any
functional unit number k, , must not exceed 1 (recall that each
functional unit is handled individually in this paper). This transforms to (20):

 
 (20)

Π
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Putting all these developments together, our target valid periodic schedule
in this paper must satisfy the following set of constraints expressed by (21)-
to-(26). Notice that the constraint expressed by (13) is implicitly incorporated
into (21)-to-(26) and hence it is implicitly satisfied.
• Constraint#1: Each operation must start to execute at one and only one 

point of time.
 .  (21)

• Constraint#2. Data dependencies must be satisfied.

 (22)
• Constraint#3. Only one operation can execute on a functional unit at any 

point of time.

 
 (23)

• Constraint#4. It is just a re-writing of the expression (16). So we have:
  (24)
  (25)
  (26)

MinPeriod Algorithm: To compute a valid periodic schedule that satisfies the
constraints expressed by (21)-to-(26) (which implicitly include (13) as well)
while minimizing , then one can initialize  to a lower bound (0 by
default) and iteratively do  (or do a binary search) until the sys-
tem expressed by (21)-to-(26) can be solved.  must be fixed before solving
this system to allow for the linearity of (21)-to-(26). The tool 10 can be used to
solve this system at each iteration, as we did for the algorithm in Section 7.

5 CODE GENERATION AFTER RETIMING

In the rest of this paper, to avoid repetition, we denote by  the length of
the longest 0-weight path in a given loop (including the retimed loop).
Assuming no resource constraints at this time,  can be minimized by using
one of the retiming algorithms for clock period minimization proposed in9. 

Our objective in this section is to show how to generate the transformed
code after applying a retiming on a given loop to minimize . The trans-
formed code is constituted by three parts: prologue, new loop, and epilogue.
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Recall that the prologue is the segment of the original code that must be exe-
cuted before a repetitive processing appears that corresponds to the new loop.
The epilogue is the segment of the original code that cannot be executed by
the new loop and the prologue. Let us use the example of a loop in Fig. 1(a).
As provided in Section 3, the value of  for this loop is 6 units of time. By
applying the retiming vector  on Fig. 1 (b), we can get the
retimed graph given by Fig. 1 (c), where the value of  is now 3 units of
time. The transformed code after applying this retiming is given in Fig. 2(a).

 Let . With the help of Fig. 2, one can easily
double-check that the Prologue, the new Loop and the Epilogue for the
retimed loop can be obtained by the algorithm PLE below.
Algorithm: PLE
/* The index i of the original loop is in [L, U].  */
1- Prologue Generation

1.1 .
1.2 While ( ) do

, if ( ) then generate a copy of v at iteration i as it was in the original
loop’s body. And, do: .

2- New Loop Generation
2.1 The index of the new loop is in [(L + M), U].
2.2 Determine the body of the new loop as follows. , generate a copy of v where the index

of each array in v of the original loop’s body has now to be decreased by .
3- Epilogue Generation

3.1 .
3.2 While ( )

, if ( ) then generate a copy of v by evaluating its expression derived
from Step 2.2. And, do: .

End of the algorithm PLE.      

6 COMPUTING A RETIMING WITH REDUCED CODE SIZE 
UNDER TIMING CONSTRAINTS FOR THE CASE OF 
UNLIMITED RESOURCES

Recall that ,    is the value assigned by the retiming r to the
vertex v. Also, notice that . With the help of the
PLE algorithm above and Fig. 2(a) and 2(b) below, one can deduce that for
the code after retiming a loop, we have:
• The prologue contains  copies of the operation modeled by . 
• The epilogue contains  copies of the operation modeled by . 
• For the code composed by the prologue and the epilogue, the number of

instances of each operation is exactly M times.
• If the original loop execute K times, the new loop execute  times.

 Consequently, to reduce the code size for the retimed loop, one needs to
reduce the value of M. The value of M depends on the retiming used and is not

Π
2 1 1 2 0, , , ,{ }

Π

M Max r v( ) v V∈∀,{ }=

M Max r v( ) v V∈∀,{ }=

i L=
i L M+( )<

v V∈∀ i r v( )+( ) L M+( )<
i i 1+=

v V∈∀
r v( )

i U 1+=
i U M+( )≤

v V∈∀ i r v( )–( ) U≤
i i 1+=

v V∈∀ r v( )
M Max r v( ) v V∈∀,{ }=

M r v( )–( ) v V∈
r v( ) v V∈

K M–( )
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Figure 2.Transformed code after retiming a loop.      
unique. Indeed, we showed in the previous sections that the value of  for
the loop in Fig. 1 can be reduced from 6 units of time to 3 units of time by
applying the retiming vector  on Fig. 1 (b). But, the retiming
vector  can also be applied to obtain 
units of time, where x is a non-negative integer. For the first retiming vector,
we have , and for the second one we have . The last retim-
ing vector is then not a good choice and can lead to completely unroll the loop
if . While the first retiming vector (i.e., ) is better
than the second one (i.e., ) for this example,
it is not a good one as well. Indeed, one can achieve  units of time by
applying the retiming vector  on Fig. 1 (b). In this case, the
resulting retimed graph is given by Fig. 2(c), and the transformed code is pro-
vided on Fig. 2(b). For this vector, we have . Also, by comparing Fig.
2(a) and Fig. 2(b), one can easily notice that the size of the code has been
reduced (which is consistent with the statements in the previous paragraph).   

Recall that we are assuming non-negative retiming as explained in the end
of Section 3. To determine a retiming that leads to a small value of M, one can
add a variable upper bound  on the retiming value for each  as in (27). 

.  (27)
Using this upper bound , we propose the following method to compute a

retiming that leads to a small value of M (and thus to a code with a small size).
We can extend the system of inequalities in Theorem 1 by first adding an

upper bound on the value of the retiming function as we did in inequality (27),

#define  U  1000
main () {
int  a[U], b[U], c[U],  d[U], e[U], i;

/* Prologue */
v2: b[2] = 1 + a[0]; 
v3: c[2] = b[2] * e[2];
v5: e[2] = 1 + c[0];
v5: e[3] = 1 + c[1];
/* New Loop */
for (i=4; i<= U; i++) { 

v1: a[i-2] = 1 + d[i-2];
v2: b[i-1] = 1 + a[i-3];
v3: c[i-1] = b[i-1] * e[i-1];
v4: d[i-2] = 2 * c[i-2];
v5: e[i] = 1 + c[i-2];

}
/* Epilogue */
v1: a[U-1] = 1 + d[U-1];
v4: d[U-1] = 2 * c[U-1];
v1: a[U] = 1 + d[U];
v2: b[U] = 1 + a[U-2]; 
v3: c[U] = b[U] * e[U];
v4: d[U] = 2 * c[U];

}
                                        

#define  U 1000
main () {
int a[U], b[U], c[U], d[U], e[U], i;

/* Prologue */
v2: b[2] = 1 + a[0]; 
v3: c[2] = b[2] * e[2];
v5: e[2] = 1 + c[0];
/* New Loop */
for (i=3; i<= U; i++) { 

v1: a[i-1] = 1 + d[i-1];
v2: b[i] = 1 + a[i-2];
v3: c[i] = b[i] * e[i];
v4: d[i-1] = 2 * c[i-1];
v5: e[i] = 1 + c[i-2];

}
/* Epilogue */
v1: a[U] = 1 + d[U];
v4: d[U] = 2 * c[U];

}

                                         (b)  Code after applying the 

  

    (c) Directed cyclic graph model
         for (b) derived from Fig. 1(b)   
        after applying the retiming 

                                        retiming vector {1, 0, 0, 1, 0}
                                        on Fig. 1b while reducing
                                         the code size.

(a)  Code after applying the retiming 
       vector {2, 1, 1, 2, 0} on Fig. 1b
      without reducing the code size.
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but assuming without loss of generality that retiming will take non-negative
values. And, second minimizing the value of the unknown variable . This
leads to the Integer Linear Program (ILP) composed by (28)-to-(32) below. 
       In the ILP (28)-to-(32), recall that  denotes the length of the longest 0-
weight path in a given loop (including the retimed loop). Also, notice that in
the context of clocked sequential circuits,  is the clock period. Hence, to
solve this ILP, we must first compute the value of  if it is not provided by
the user. To do so, a retiming using one of the algorithms in9 (for clock period
minimization) can be first carried out.     

 (28)
Subject to:

 (29)
 (30)
 (31)
 (32)

The ILP (28)-(32) can be solved using the linear programming solver in10. 
Lemma 1 : The ILP (28)-(32) can be optimally solved in polynomial run-time. 

Proof: Omitted due to the space limitation. 

7 COMPUTING A RETIMING WITH REDUCED CODE SIZE 
UNDER TIMING AND RESOURCES CONSTRAINTS

In this case, one needs to also perform a scheduling under timing and
resource constraints. Since we are dealing with loops, this schedule is peri-
odic. Hence, one needs to compute a valid periodic schedule while
minimizing timings as we have presented in Section 4. For instance, to com-
pute this schedule while minimizing its period, one can use the MinPeriod
algorithm outlined at the end of Section 4. However, notice that this algorithm
will produce a minimal value for the period  relative to the input graph .
This algorithm might miss the absolute minimal value of  since it does not
alter the weight of arcs in the graph (in fact, any algorithm that does not alter
the weight of arcs in the graph might miss the absolute minimal value of ).
Altering the weight of arcs in the graph is the task of retiming. For instance,
assume we have three resources: two identical adders and one multiplier. Sup-
pose that the execution delays of the adder and multiplier are 1 and 2 units of
times, respectively. So for these resources, applying the MinPeriod algorithm
on the graph in Fig. 1(b) will lead to a minimal value of  units of time.
However, we can get  units of time if we apply the MinPeriod algo-
rithm on either the retimed graph in Fig. 1(c) or the retimed graph in Fig. 2(c)
(b). Recall that the retiming used for producing the retimed graph in Fig. 2(c)

β
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Π
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is better than the retiming used to produce the retimed graph in Fig. 1(c), since
it allows to reduce the code size as it was explained in Section 6.

To get an absolute minimal value of , one needs to optimally unify
scheduling and retiming. To achieve this optimal unification, we propose to
extend the MinPeriod algorithm. The extended version (see the MinPeriod-
WithReducedCodeSize below) of this algorithm should operate on a
dynamically retimed graph . The graph  is as the one
defined in Section 3 except that in equation (1), the values  and  will
be calculated on the fly during the schedule determination; this is why we
said: dynamically retimed graph. Of course the dynamically retimed graph

 must be functionally equivalent to the original graph , which means that
the inequality (3) must hold. Moreover, the inequality (27) must also be
respected since it will allow to produce a retiming with a reduced code size.
Since we are interested in non-negative retiming, then the following expres-
sion (33) must be considered as well.

 (33)
And, for the MinPeriodWithReducedCodeSize algorithm, data dependencies
expressed by (22) now transform to the expression (34) below, since the
weight of each arc  is no longer  but it is now equal to

. Moreover, we have two parameters to minimize: 
and . So, we need to first minimize  for a large value of  in order to get
an absolute minimal value of . Next, we need to minimize  to achieve this
latter value of .

 (34)

Algorithm: MinPeriodWithReducedCodeSize
Inputs: Cyclic graph , the set of available functional units, and the set of processing

units that can execute each operation .
Outputs: Schedule, binding, and minimal values of  and  which is the maximal value of retiming.
Begin
1. The optimal value of  is in the interval [L, U]. L is the delay of the fastest functional unit. U is the

number of nodes in the graph  times the execution delay of the slowest functional unit. If a lower
bound on the minimal value of  is not provided by the user, then let: .  

2. Using a linear programming solver like the one in10, solve the system expressed by:  (3), (21), (23)-to-
(26) and (33)-(34).

3. If the system expressed by (3), (21), (23)-to-(26) and (33)-(34) has a solution, then go to Step 4.
Else  (or do a binary search in [L, U] to determine  ). And go to Step 2.

4. Let L = 0, and U = K. Let  be fixed to the value found in Step 3.
5. Let . If  cannot be reduced further then go to Step 8.
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6. Using a linear programming solver like the one in10, solve the system expressed by: (3), (21), (27),
(23)-to-(26) and (33)-(34).

7. If the system expressed by (3), (21), (27), (23)-to-(26) and (33)-(34) has a feasible solution, then 
7.1. From the solution found in Step 6, extract the values for the schedule and the binding

as well as the values of  and , and save them.
7.2. Let . And go to Step 5.

else  Let . And go to Step 5.
8. Report the result extracted in Step 7.1 and Stop.
End of the algorithm MinPeriodWithReducedCodeSize.  

8 EXPERIMENTAL RESULTS

Although the proposed approaches in this paper solve optimally the target
problem, we however found it logic to experimentally test theirs effectiveness
in terms of: i) the impact of retiming on reducing the length of the critical
paths (i.e., the length of the longest 0-weight path denoted as  in this paper)
in the case of unlimited resources, ii) the impact of retiming on reducing the
period’s length of the schedule for the case of limited resources, and iii) the
impact of controlling the values of retiming on reducing the code size of the
retimed loops. To this end, some real-life digital filters (from the domain of
digital signal processing) are used as input loops to be optimized. The body of
these loops (filters) are composed by additions and multiplications operations
only. The names of these filters and other designs are labeled on Fig. 3 and 4
as follows. L1: The exemple given on Fig. 1b. L2 : Correlator. L3: FIR Filter.
L4: Biquadratic Filter. L5: Polynomial Divider. L6: Three Tape Non-Recur-
sive Digital Filter. L7: Lowpass Reverberator First Order with Feedback. L8:
Allpass Reverberator Canonical Form. L9: Coupled form Sine-Cosine Gener-
ator. L10: Digital Cosinusoidal Generator. L11: Resonator Filter. 

For the results on Fig. 3 and 4, we developed a C++ tool which, from an
input graph modeling the target loop, automatically generates the expressions
of the ILP (28)-to-(32). In this tool, we also implemented the proposed algo-
rithm MinPeriodWithReducedCodeSize. This tool also automatically
generates the expressions of the system to be solved in the steps 3 and 7 of the
MinPeriodWithReducedCodeSize algorithm, and needs to be re-run until the
MinPeriodWithReducedCodeSize finds the optimal values to be computed. 

For results in Fig. 3, we assume unlimited resources. We first compute the
value of  without any retiming. Next, we apply a retiming for minimizing

, by implementing and running an algorithm for clock period minimization
from9. This latter step is done twice: i) we apply a retiming for minimizing 
without controlling the largest value of the retiming, and ii) we apply a retim-
ing to achieve the same minimal value of  but we minimize the largest
value of the retiming (so, in this case we solve the ILP (28)-to-(32)). As it can
be noticed from Fig. 3, it was possible to reduce the value of  for some
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input designs. For the set of input designs in this experimentation, the maxi-
mal relative reduction of  is 57%. When it was possible to reduce  by
applying a retiming, then by controlling the values of retiming, we were able
to reduce the code size of the retimed loops by as high as 66.67%. 

Figure 3.Case of unlimited resources.                       

Figure 4.Case of limited resources. 
 For results in Fig. 4, we assume limited resources. In this case, we sup-

pose that we have an hypothetical processor with 2 non-identical adders and 2
non-identical multipliers. For our adders, one of them has execution delay
equal to 1 unit of time and the second one has execution delay equal to 2 units
of time. For our multipliers, one of them has execution delay equal to 2 units
of time and the second one has execution delay equal to 3 units of time. We
think it makes sense to take a fast functional unit and a slow functional unit
for each type of the resources, since some operations of the loop are not criti-
cal and should be executed using slow units in order to reduce energy/power
dissipation; normally, a fast functional unit consumes more power than its
slow counterpart. Next, for this hypothetical processor, we first compute a
valid periodic schedule with a minimal period  but without any retiming.
For doing this, the C++ tool executes the algorithm MinPeriod. Then, we
compute a valid periodic schedule with a minimal period  but in this case
we perform retiming as well. For this latter case, the C++ tool executes the
algorithm MinPeriodWithReducedCodeSize and we proceed in two steps: i)
we apply a retiming without controlling its largest value (in this case,  has
no effect in the algorithm MinPeriodWithReducedCodeSize), and ii) we apply
a retiming while minimizing its largest value (by minimizing  in this case).
As it can be noticed from Fig. 4, except for the Digital Cosinusoidal Genera-
tor design, it was possible to reduce the value of  for all the other input
designs. For the set of input designs in this experimentation, the relative
reduction of  ranges from 14% to 50%. When it was possible to reduce 
by applying a retiming, then by controlling the values of retiming, we were
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able to reduce the code size of the retimed loops by as high as 66.67%. The
run-time of the algorithms MinPeriod and MinPeriodWithReducedCodeSize
is dominated by the run-time of solving the systems of constraints they con-
tain. The run-time for solving these systems of constraints was less than 4
seconds for these experimental results. The bounds we have introduced in the
expressions of these constraints (i.e., see the Min and Max in some expres-
sions) are helped in achieving such small run-times. 

9 CONCLUSIONS

Retiming has been originally proposed as an optimization technique for
clocked digital circuits. It has been successfully applied for optimizing loop-
intensive programs. Decreasing the code size for retimed loops is of great
importance in particular for memory-constrained system-on-chip and embed-
ded systems. The size of the code has also an implicit impact on both the run-
time and the power consumption. This paper addressed the problem of reduc-
ing the code size for retimed software loops under timing and resource
constraints. We mathematically formulated this problem and devised exact
algorithms to optimally solve it. Experimental results has re-confirmed the
importance of solving this problem. For unlimited resources, the exact poly-
nomial-time method can be used for source-to-source code optimization. For
limited resources, the approach can be used to design optimized libraries, to
develop heuristics and to test their effectiveness. 
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