

MODELING OF SOFTWARE-HARDWARE
COMPLEXES
Position Statement

Nikil Dutt
ACES Laboratory, Center for Embedded Computer Systems.
Donald Bren School of Information and Computer Sciences.
University of California, Irvine, CA 92697-3435, USA.
dutt@uci.edu

Complex embedded systems typically comprise a large number of

interconnected software and hardware components operating in highly
dynamic environments that need to deliver user-specified QoS under
demanding design constraints: performance, energy consumption, system
cost, system reliability, etc. As the software content of such embedded
systems continues to increase, it would appear that the boundary between
reasoning about hardware versus software begins to blur. However,
modeling strategies for such software-hardware complexes need to
holistically embody key characteristics of both hardware and software
domains in order to effectively capture various facets of design, analysis,
verification and synthesis. It becomes even more important in the context of
effective co-design of such software-hardware complexes. This is true for
the entire gamut of embedded systems that range in size and complexity
from “small” embedded Systems-on-Chip (SoCs) to large “system-of-
systems” that comprise multiple, distributed, heterogeneous embedded
systems working in consort to deliver a desired set of services for the end
user.

Such complex embedded systems have several distinguishing
characteristics, including, but not limited to:
• Complexity and scale. The distributed nature of emerging embedded

systems poses significant challenges for managing the complexity of
interactions among distributed components, and managing the
computational and network resources to keep the system coordinated.

424 Nikil Dutt

• Dynamic and uncertain operating environments. Embedded systems

often operate in dynamic and uncertain environments due to a variety of
reasons, including unpredictable user requests, hardware and software
resource failures, environmental noise, and incomplete knowledge of the
system operating state.

• Stringent timing requirements. Timing plays a critical role in the correct
performance of any embedded system. Indeed, timing is part of key
functionality for mission-critical applications that must execute tasks
reliably within stringent deadlines.

• Energy awareness. Modern embedded systems (regardless of their scale
and complexity) increasingly need to address energy as a first-class
design constraint.

• Cross-Layer interactions. Complex embedded systems are highly
networked, and involve end-to-end interactions among multiple layers
(application, middleware, network, OS, hardware architecture) in a
distributed environment. Thus there is a need for a holistic modeling
mechanism that captures such cross-layer interactions.

To operate such systems effectively while maintaining the desired QoS,

multiple performance-related parameters must be dynamically tuned to adapt
to changing application modes and operating conditions. In addition to
performance management, the system’s operational constraints and timing
characteristics must be verified at design time to ensure its correctness,
feasibility, and safety. To verify correct operation, the designer must make
necessary (and sometimes strong) assumptions about the services provided
by the underlying execution platform, such as guaranteed task execution
rates and deadlines, reliable message communication between system
components, etc. These requirements must therefore be satisfied by the
execution platform (i.e., the middleware, operating systems, and networks)
to ensure that the management framework performs correctly at runtime.

Model-based techniques have recently been proposed as a promising
approach for capturing, managing and refining overall system behavior in a
reliable and efficient manner. Domain specific models can be generated to
match the idiosyncrasies of specific application domains, while a generic
model-based framework can provide a backbone to address a variety of
problems (e.g., power management, efficient resource allocation and
provisioning) using well-established concepts and techniques.

The software and hardware communities have much to give, as well as to
learn from each other. A holistic integration of best practices and proven
technologies from each domain is only the start; we will need to develop
modeling techniques that are simultaneously domain-aware and platform-

Modeling of Software-Hardware Complexes 425

compliant, in order to tame the ever increasing complexity and challenges
posed by tomorrow’s software-hardware complexes.

