TOWARDS DYNAMIC LOAD BALANCING FOR

DISTRIBUTED EMBEDDED AUTOMOTIVE
SYSTEMS

Isabell Jahnich and Achim Rettberg
University of Paderborn/C-LAB, Germany
{isabell.jahnich, achim.rettberg} @c-lab.de

Abstract: This paper describes a middleware architecture for distributed automotive sys-
tems that supports dynamic load balancing of tasks. Load balancing could be
applied if an external device is added to the vehicle. The middleware architec-
ture has to deal with the fusion of such non-built-in devices. An important factor
to set up such a system is the identification of the requirements that should be
handled by the middleware architecture. Enriching the middleware with tradi-
tional load balancing strategies allows an easy exchange of tasks.

Keywords: Dynamic Load Balancing, Automotive Systems, Middleware Architecture

1. INTRODUCTION

Future application scenarios for vehicle electronic systems include the ac-
cess to mobile devices that build ad-hoc networks with the built-in devices of
the vehicle. Computer power and services of connected external devices to
the built-in vehicle system allow the realization of new resource-intensive and
innovative applications.

Nowadays powerful mobile consumer electronic devices like mobile phones
and PDAs are very popular. Their connection to the vehicle system allows the
migration of resource-intensive applications or tasks to increase the driver’'s
comfort by faster processing, and to offer additional services.

To realize a seamless connection of mobile consumer electronic devices to
the vehicle infrastructure, a middleware architecture is needed that supports the
fusion of the additional device and the vehicle. Thus the attachment and the
detachment of non-built-in devices have to be discovered and detailed device
information and resources have to be registered. Furthermore the architecture
is also responsible for the possible load balancing by migrating tasks from the
vehicle system to the additional device.

98 Isabell Jahnich and Achim Rettberg

In the following a vehicle middleware architecture is presented that supports
the attachment of additional devices. Furthermore it offers services to realize a
load balancing based on different strategies. The rest of the paper is organized
as follows: Section 2 will describe the related work in the field of research
where our architectural approach is located. As a motivation for this paper
Section 3 describes a use case scenario followed by the requirements of the
architecture that is addressed in Section 4. Section 5 explains our architecture
which is finally mapped to the use case scenario of Section 3. Some possible
strategies of load balancing are regarded in Section 6 and finally Section 7 will
give a conclusion and future work motivations.

2. RELATED WORK

There are several publications regarding load balancing and extensive re-
search has been done on static and dynamic strategies and algorithms [6].

On the one hand, load balancing is a topic in the area of parallel and grid
computing, where dynamic and static algorithms are used for optimization of
the simultaneous task execution on multiple processors. Cybenko addresses
the dynamic load balancing for distributed memory multiprocessors [3]. In [5]
Hu et. al. regard an optimal dynamic algorithm and Azar discusses on-line
load blancing [5]. Moreover Diekmann et. al. differentiate between dynamic
and static strategies for distributed memory machines [4]. Heiss and Schmitz
introduce theParticle Approactthat deals with the problem of mapping tasks
to processor nodes at run-time in multiprogrammed multicomputer systems
solved by considering tasks as particles acted upon by forces.

All these approaches have the goal of optimizing the load balancing in the
area of parallel and grid computing by migrating tasks between different pro-
cessors, while our approach focuses the direct migration of selected tasks to a
newly added resource. Furthermore we regard load balancing that is located
on the middleware-layer.

Moreover there are static approaches, like [11], that address a finite set of
jobs, operations and machines, while our approach deals with a dynamic set of
tasks and processors within the vehicle system.

Balasubramanian, Schmidt, Dowdy, and Othman consider in [7], [9], and
[8] middleware load balancing strategies and adaptive load balancing services.
They introduce theCygnus an adaptive load balancing/monitoring service
based on CORBA middleware standard. Their concept is primarily described
on the basis of a single centralized server, while decentralized servers that col-
lectively form a single logical load balancer is not explained in detalil.

Moreover the topic of dynamic reconfigurable automotive systems is re-
garded in [2] and [1].

Towards Dyn. Load Balancing for Dist. Embedded Automotive Systems 99

Figure 1. Use case scenario.

3. MOTIVATION

To run applications or tasks for example of the vehicle infotainment system
more efficiently, a migration to the additional mobile device makes sense to
use its unused resources. Thus it is possible to migrate for example tasks of
the navigation system to the connected PDA for faster and more detailed map
rendering and more optimal calculation of routing information.

After the connection of the PDA to the vehicle infotainment network with
the aid of standardized interfaces like Bluetooth or WLAN, the device is dis-
covered and the appropriate device information, locally running processes, and
device and network resources are registered by a dedicated service.

In consideration of all running processes and the resources situation within
the vehicle infotainment system appropriate services decide on a possible load
balancing according to different strategies and initiate the task migration where
required. Thus the appropriate navigation system tasks migrate from the navi-
gation system to the PDA. And after the calculation the results of the tasks are
sent back to the navigation system, where they are used.

4. REQUIREMENTS OF THE ARCHITECTURE

To realize the use case scenario described above a middleware architecture
is required that fulfills several requirements.

= Event management

— Additional devices have to be discovered by the vehicle infrastruc-
ture.
— Device removals have to be discovered by the vehicle infrastruc-
ture.
m Device registration

— Detailed information and capabilities of the newly added devices
have to be registered.

100 Isabell Jahnich and Achim Rettberg

= Resource management

— Status information and resource load of each device of the vehicle
have to be known.

= Load balancing

— Potential task migrations have to be initiated based on different
strategies.

S. ARCHITECTURE

In this section, we will give an overview of the proposed architecture. The
architecture fulfills the requirements described in the previous section.

The operating system builds the interface between the hardware and the
middleware (see Figure 2). Additionally, device drivers are necessary for spe-
cific hardware parts. The tasks run on top of the middleware. Middleware is a
software layer that connects and manages application components running on
distributed hosts. It exists between network operating systems and application
components. The middleware hides and abstracts many of the complex details
of distributed programming from application developers. Specifically, it deals
with network communication, coordination, reliability, scalability, and hetero-
geneity. By virtue of middleware, application developers can be freed from
these complexities and can focus on the application’s own functional require-
ments.

Before explaining the design of our automotive middleware and the specific
services, we enumerate the five requirements of automotive middleware. These
requirements are resource management, fault-tolerance, specialized communi-
cation model for automotive networks, global time base, and resource frugality.
These requirements are derived from the distributed, real-time, and mission-
critical nature of automotive systems and differentiate automotive middleware
from conventional enterprise middleware products.

A vehicle has a real-time nature. It is a system in which its correctness
depends not only on the correctness of the logical result, but also on the re-
sult delivery time. Since a vehicle is subject to various timing constraints,
every component in a vehicle should be designed in a way that its timing con-
straints are guaranteed a priori. At the same time, the timing constraints of
a vehicle should be guaranteed in an end-to-end manner since an automobile
is a distributed system and its timing constraints are usually specified across
several nodes. For example, let us consider a typical timing constraint of an
automobile. If pressing a brake pedal is detected at the sensor node, then the
brake actuator node must respond to it within 1 ms. To meet this constraint,
there must be a global resource manager that calculates the required amount of
resources on each node and actually makes resource reservations to network

Towards Dyn. Load Balancing for Dist. Embedded Automotive Systems 101

Figure 2. Self-configurable Architecture.

interface controllers and operating systems on distributed nodes. Automotive
middleware is responsible for such resource management.

The middleware in our approach includes four components that offer spe-
cific services: Registry Event Manager Resource Manageand Load Bal-
ancer(see Figure 2).

The Event Manager is responsible for the device discovery. If a new device
is added to the automotive system via technologies like Bluetooth or WLAN
for example, it is recognized by the Event Manager component. Vice versa the
Event Manager also notices the detaching of the device. In both cases it will
inform the Registry of the middleware about the availability or the detaching
of the additional device.

New devices are registered and detached devices are unsubscribed within
the Registry service. During the registration the specific characteristics of the
device (like memory, CPU, etc.) are stored within the Registry. Due to the dis-
tributed system the Registries of each vehicle ECU (Electronic Control Unit)
communicate with each other to guarantee that each Registry of an ECU knows
the actual status of all devices within the network inclusive of the newly added
devices.

The Load Balancer spread tasks between the vehicle ECUs in order to get
optimal resource utilization and decrease computing time. It evaluates possible
migration of tasks based on different load balancing strategies. To guarantee a
suitable migration the Load Balancer considers the current resource situation

102 Isabell Jahnich and Achim Rettberg

ECU ECU

?

= =

? ?

== =

ECU ECU

Figure 3. Distributed architecture.

on the ECUs with aid of the Resource Manager. Once a load balancing on
an additional device is started, and this device is detached while the migrated
tasks are executed, they will be re-started on the original ECU again. In this
case the Event Manager is responsible to inform the Load Balancer to initiate
this re-start.

The Resource Manager supervises the resources of the local ECU. To be
aware of the complete network resource situation all Resource Managers syn-
chronize with each other. Thus the Load Balancer gets the current resource
situation of the complete vehicle infrastructure with aid of its local Resource
Manager.

In our approach, the middleware is located on each ECU in the vehicle (see
Figure 3). Every ECU has a unique ID. The ECU with the lowest ID is the
master. Thus it is responsible for the control of the entire vehicle network, and
newly connected and the detaching of additional devices are discovered by its
Event Manager, device information is registered by its Registry, and its Load
Balancer is responsible for the evaluation of the possible migration with the
aid of the local Resource Manager. If the master ECU fails a new master will
be chosen with the aid of the Bully-Algorithm [10].

5.1 SERVICE COMMUNICATION

According to the use case scenario description of Section 3 the connection
of a mobile device like a mobile phone or PDA to the vehicle infrastructure is
followed by several actions and communications (see Figure 4). In the follow-
ing these activities will be regarded:

After the PDA has been attached to the vehicle infrastructure, the Event
Manager of the master ECU recognizes the attachment of the additional device

Towards Dyn. Load Balancing for Dist. Embedded Automotive Systems 103

Event . Load Resource igati
PDA M Registry Navigation
anager Balancer Manager System
—
PDA connection
New device
l———p—————
Get device informgtion
F—— PP
Device information
Device (PDA) information
P
New device
Lewtl
Get resource inforfnation
Ll
-
Resource informaion
Evaluate
potential
task
migration Initiate task migrafion
P
— — N — e P e e e ———_———
Task migration
e e | —] — — N —— e — —
Results

Figure 4. New device connected to the system.

and informs the local Registry about the newly added node. In the following
this Registry asks the PDA for device and actual resource information. This
information is stored by the Registry. Furthermore the resource details are for-
warded to the local Resource Manager. The communication between the Reg-
istries of all ECUs makes sure that every ECU is informed about the additional
device.

The event of the added PDA is also forwarded to the local Load Balancer
by the Event Manager. To decide for a suitable load balancing strategy (see
Section 6) it needs resource information about the current status within the
network with aid of the Resource Manager.

According to the use case description of Section 3 the navigation system
tasks migrate from the navigation system to the PDA and the results are sent
back after the calculation.

6. LOAD BALANCING STRATEGIES

There are several possibilities to balance the load after additional devices
have been connected to the vehicle network. Initiated by the Load Balancer
component the new resources can be used and applications or tasks can be
migrated to the additional device.

104 Isabell Jahnich and Achim Rettberg

Netw
Device

Tasks Tasks

Figure 5. Round-Robin.

In the following three strategies will be explained: Task migration based
on the Round-Robin algorithm, a strategy based on a migration from the most
loaded processor and a cost based algorithm.

6.1 ROUND-ROBIN

As one of the simplest scheduling algorithms for procesdmsnd-Robin
assigns time slices to each process in equal portions and in order. All processes
are handled without priority.

Based on this idea the Load Balancer assigns tasks to the processor of the
additional device for a dedicated time slice. These tasks are migrated to the
connected device and all resources of the vehicle infotainment network are
relieved in an even manner (see Figure 5).

6.2 MOST LOADED

With the aid of the Load Monitor the current load of all nodes within the ve-
hicle infotainment network will be monitored. The Load Balancer can request
that information to decide whether to relieve busy devices by initiating a mi-
gration of tasks to the newly connected device. For this it generates a priority
list which ranks the tasks from the busiest processor. In that way the tasks with
the highest priority will be migrated to the resources of the additional device
(see Figure 6).

Towards Dyn. Load Balancing for Dist. Embedded Automotive Systems 105

Metw
Device

Priority
List

Figure 6. Most Loaded.

6.3 COST BASED MIGRATION

Within the cost based strategy the Load Balancer evaluates possible migra-
tion of tasks to the additional device. Migration is only a useful option if the
cost of migrating is lower than the cost of keeping tasks with their original de-
vice. The cost benefit ratio for tasks of busy devices is computed which helps
the Load Balancer to form the decision of whether to migrate or not. The cal-
culation of migration costs of task is realized according to the priority list of
the Most Loadedstrategy.

7. CONCLUSION AND OUTLOOK

We presented a middleware architecture for automotive systems that enables
dynamic load balancing. The integration of load balancing is a step towards
a self-configuration within the vehicle. We focus on a specific use case sce-
nario whereby an external device like PDA or mobile phone is added to the
vehicle. With the help of the requirements, we described the middleware ar-
chitecture and their enrichment with new services to support the distribution
and exchange of tasks. Furthermore, we describe how traditional load balanc-
ing strategies could be applied within our approach.

Future work will be a detailed evaluation of the already existing load balanc-
ing strategies in the context of automotive systems. Additionally, the extension
of existing or the development of new load balancing strategies will be done
together with the implementation of the proposed architecture.

106 Isabell Jahnich and Achim Rettberg

ACKNOWLEDGMENTS

This project was funded by the EU Commission within the project DySCAS
(Dynamically Self-ConfiguringAutomotiveSystems).

REFERENCES

[1] R. Athony, C. Ekelin, D. Chen, M. Térngren, G. de Boer, I. Jahnich, and et. al. A future
dynamically reconfigurable automotive software systemPioceedings of the "Elek-
tronik im Kraftfahrzeug,'Dresden, Germany, 2006. Springer.

[2] R. Athony, A. Rettberg, I. Jahnich, C. Ekelin, and et.al. Towards a dynamically recon-
figurable automotive control system architecture. AliRettberg, R.Démer, M.Zanella,
A.Gerstlauer, FRammig. Proceedings of the IESS1&vine, California, USA, 2007.
Springer.

[3] G. Cybenko. Dynamic load balancing for distributed memory multiprocessorsl. In
Parallel Distrib. Comput.1989.

[4] R.Diekmann, B. Monien, and R. Preis. Load balancing strategies for distributed memory
machines. Inin H. Satz F. Karsch, B. Monien, editor, Multiscale Phenomena and Their
Simulation. World Scientificpages 255—-266, 1997.

[5] Y. F. Hu and R. J. Blake. An optimal dynamic load balancing algorithm. cite-
seer.ist.psu.edu/hu95optimal.hfmblume DL-P-95-011, 1995.

[6] Chi-Chung Hui and Samuel T. Chanson. Improved strategies for dynamic load balancing.
In IEEE Concurrency1999.

[7] Balasubramanian Jaiganesh and Douglas. Evaluating the performance of middleware
load balancing strategies. titeseer.ist.psu.edu/635250.ht2004.

[8] O. Othman and D. Schmidt. Optimizing distributed system performance via adaptive
middleware load balancing. I@ssama Othman and Douglas C. Schmidt, Optimizing
Distributed system Performance via Adaptive Middleware Load Balancing, ACM SIG-
PLAN Workshop on Optimization of Middleware and Distributed Systems (OM 2001),
Snowbird, Utah, June 18, 20Q2001.

[9] Ossama Othman and Douglas C. Schmidt. Issues in the design of adaptive middleware
load balancing. ILL.CTES '01: Proceedings of the ACM SIGPLAN workshop on Lan-
guages, compilers and tools for embedded systpages 205-213, New York, NY, USA,
2001. ACM Press.

[10] S. Stoller. Leader election in distributed systems with crash failureS. 8toller. Leader
election in distributed systems with crash failures. Technical report, Indiana University,
april 1997. 169 1997.

[11] S.van der Zwaan and C. Marques. Ant colony optimisation for job shop scheduling. In
S. van der Zwaan, and C. Marques. Ant Colony Optimisation for Job Shop Scheduling.
Proceedings of the Third Workshop on Genetic Algorithms and Artificial Life (GAAL 99),
1999, 1999.

