CONFIGURABLE HYBRIDKERNEL FOR
EMBEDDED REAL-TIME SYSTEMS

Timo Kerstan, Simon Oberth(r
Heinz Nixdorf Institute, University Paderborn
Firstenallee 11, 33102 Paderborn, Germany

timo.kerstan@uni-paderborn.de, zottel@uni-paderborn.de

Abstract: When designing a kernel for an operating system the developer has to choose
between an microkernel or monolithic kernel approach. Bases for the decision
is mostly the tradeoff between security and performance. Depending on applica-
tion demands and on the available hardware a microkernel or a monolithic kernel
approach or something between is desired. In this paper we present a hybrid ker-
nel for embedded real-time systems which can be configured to the application
demands in an easy way. To realize the hybrid kernel we present a technique to
guarantee memory accessl) with virtual memory. With our approach the

same codebase can be used for system services to be placed either in userspace
or in kernelspace.

Keywords: real-time operating system, microkernel, monolithic kernel, virtual memory,
memory management unit, MMU, translation look-aside buffer, TLB

1. INTRODUCTION

The operating range of embedded systems is varying from simple toys up
to aircrafts. Hence real-time, performance and security demands are varying
from negligible to indispensable. On the other hand most security features im-
plemented in modern real-time operating systems [5] are at the expenses of
performance, if not implemented or supported in dedicated hardware. A usual
approach to increase security is application/operating system separation in em-
bedded systems by using a kernel architecture. To increase security of service
of the operating system, the services can be separated from basic operating
system functionality as well. This is implemented by placing each service in
userspace in a own separated address space.

When using the kernel approach the question is which functionality to keep
in the kernel and which functionality to put in the userspace. As motivated
from the security point of view putting as much as possible functionality in
separated userspace sections is desired. From the performance point of view

280 Timo Kerstan, Simon Oberthir

putting as little functionality in separated userspace sections is desired, to
avoid expensive context switches and communication between different ad-
dress spaces. Which direction of this tradeoff to choice depends highly on the
applications demands and scenario.

In this paper, we present an extension of our fine granular configurable
RTOSDREAMS [2]. We introduce a flexible configurable kernel implemen-
tation: A configurable Hybrid Kernel. Our approach allows an efficient way to
configure which service to place in kernel and which in userspace. The main
goal is to give the developer the possibility to adapt the kernel to his special
needs regarding fault isolation for security and speed for efficiency.

To make system services in userspace as fast as possible high-performance
context switching is crucial. High-performance context switch requires hard-
ware specific tweaks. This paper presents an approach for our operating system
on the PowePC405 architecture.

We first present the related work (2) which inspired our approach. The of-
fline configurabilty of our approch is realized by the Skeleton Customization
Language (SCL) (3.1). After presenting our hybridkernel (3.2), we shortly
discuss an approach to minimize context switching time on our hardware ar-
chitecture and to guarantee memory acce§¥) using virtual memory (3.3).

2. RELATED WORK

In the field of operating systems the pros and cons of microkernel vs. mono-
lithic kernel approaches have been largely discussed (eg. [1], [8]). Looking at
the market leading operating systems and real-time operating systems today
both kernel designs can be found. The benefit of the microkernel approach is
the isolation of operating system components in userspace. In the microkernel
only basic and fundamental functions are implemented other features are sep-
arated in different address spaces. This increases fault tolerance, because bugs
can only affect a small area of other code. In a big monolithic kernel a bug can
effect on the whole functionality in the huge kernel. A small microkernel min-
imizes the number of bugs in the critical kernel routines because lines of code
and number of bugs is related to each other (cp. [7]). The design paradigm
of micro kernels (component seperation/development and standardized inter-
action model) implies a more structured design. Of course such a design can
likewise be used in a monolithic kernel. The most mentioned benefit of mono-
lithic kernel is the performance, because in microkernel each context switch is
an overhead. The performance of micro kernel implementations can be mas-
sively improved by optimizing the kernel to special hardware. A technique
to minimize context switch time is shown in this paper in section 3.3 or from
Hildebrand in QNX [3].

Configurable Hybridkernel for embedded real-time systems 281

Kea

Kea [9, 10] was designed for experimentation with kernel structures. It al-
lows a fine-grained decomposition of system services and a dynamic migration
of services between different adress spaces (Domains in Kea) during runtime.
This includes the migration of services between userspace and kernelspace to
accelerate frequently used services. To provide transparency for the developer
and the system inter-domain-calls (IDCs) are introduced. These IDCs make
use of so called portals which map the function call to the appropriate do-
main and service providing this function. This is done in a dynamic manner as
service migration is possible during runtime. For real-time operating system
this dynamic behaviour implies not deterministic latencies of function calls.
Nevertheless the basic idea of a hybrid kernel providing safety, modularity and
performance depending on the system requirements is the same as stated in this
paper. This paper additionally focuses on embedded and real-time constraints.

Emeralds

EMERALDS [11, 12] was developed at the University of Michigan and
is a scientific prototype achieving an efficient microkernel for embedded sys-
tems with low resources. The main goal is to provide extremely fast system
calls which are comparable to regular function calls. This shall expunge the
disadvantage of slow system calls in microkernel architectures compared to
monolithic kernel architectures.

To accelerate the system calls, EMERALDS always maps the kernel into
every user process. The section of the kernel is protected against misuse of the
user process. The advantage of this mapping is that at every system call no
switch of the address space is necessary anymore reducing the complexity of
the context switch from a user adress space to the kernel adress space. Due to
the fact that no exchange of the virtual mappings has to be done, every pointer
keeps its validity preventing the relocation of pointers and the data transfer
between userspace and kernelspace. The developers of EMERALDS showed
that the resulting complexity of a system call in EMERALDS is in the same
dimension as a regular function call.

We need to note that EMERALDS is not really a microkernel as most of the
services are realized in the kernelspace. This leads to a lack of security as an
erroneous service may cause the whole system to crash.

1Extensible Microkernel for Embedded ReAL-time Distributed Systems

282 Timo Kerstan, Simon Oberthir

3. A CONFIGURABLE HYBRIDKERNEL FOR
EMBEDDED REAL-TIME SYSTEMS

The configurable hybridkernel presented is based on the operating system
DRrEAMS which is written in C++. The kernel is build on the minimal compo-
nent Zer®REAMS, is offline configurable and uses virtual memory to separate
processes into different address spaces. The offline configurability is based on
our Skeleton Customization Language (SCL).

3.1 Skeleton Customization Language

SCL [2] is used for the configuration of our hybrid kernel architecture. The
SCL is a framework for offline fine granular source code configurability and
was introduced together with the developmenbafEAMs. The main aspects
provided by SCL are the configurability of the superclass and the members of
a C++ class. The framework uses a configuration file to generate code out of
the configuration file and the assigned source files.

To configure thesuperclas®f a subclasghe following expression is used

SKELETON SubClass IS A [VIRTUAL] path/SuperClass([(args)];}

The keywordVIRTUALIs optional and instructs the SCL framework to gen-
erate virtual methods. It is possible to specify the constructor of the superclass
to be used for initialization by providing the parameters of the corresponding
constructor.

To add a configurable member object to a class the developer has to provide
the following line for each configurable member object:

MemberName ::= [NONE|DYNAMIC] path/ClassNamel[(args)];

That allows to configure the class of the member object and the constructor to
be used. One of the key features here are the optional keywDiéE and
DYNAMIC The keywordNONEallows to define the abscence of this member
object and the keyworBYNAMIC states that the member object is initialized
when the first access occurs.

Because of the possibility to declare members absent the developer needs to
consider this when writing his code. Therefore SCL creates managing methods
for every configurable Member:

hasMemberName () ;
getMemberName () ;
setMemberName () ;

A short example shows how the resulting code would look like after the SCL
Framework processed it. The example is used in a Single-Threading Environ-
ment in which no scheduling is necessary. This abscence of the scheduler is

Configurable Hybridkernel for embedded real-time systems 283

described by the keywoldONE The used architecture accesses the memory
through a MMU (Memory Management Unit) and therefore a member object
for the configuration of this MMU is available.

SKELETON PowerPC405 IS A Processor{
MMU ::= path/PowerPC405MMU;
Scheduler ::= NONE path/Scheduler

}

class PowerPC405 : Processor{

hasMMU() {return true;7};
getMMU() {return radio;};
setMMU(PowerPC405MMU arg) {mmu = arg;};

hasScheduler (){return false;};
getScheduler () {return NULL;};
setScheduler () {};

};

3.2 Hybridkernel

Using SCL allows a fine granular configurability within the source code
of our hybridkernel. This configurability is used in the so calgcall Dis-
patcher which is a demultiplexer for system calls. It delegates the system calls
to a configured service object. The handlers are realized as configurable mem-
ber objects of th&yscall Dispatcheand can easily be exchanged within the
SCL configuration. This allows to create an offline configurable kernel.

Our hybridkernel is able to place the services of our OS inside the ker-
nelspace or in the userspace depending on the developers needs for security
and performance. Therefore we are using proxies of the services which encap-
sulate only the communication, provided by the mikrokernel architecture (e.qg.
message passing). These proxies delegate the system calls to the appropriate
service skeleton within the userspace and need to ensure that the semantics of
the system calls are realized correctly (e.g. blocking system calls). An example
configuration for a service moved from kernelspace to userspace is depicted in
Figure 1. It is important to state that the proxy and the skeleton can be gen-
erated using state of the art technigues as they are used i.e. in Java RMI. If a
service depends on another service we need to add a proxy for this service in
the userspace variation. Also a skeleton to the kernelspace has to be added as
an endpoint for the proxy.

284 Timo Kerstan, Simon Oberthir

User Process Server Process for Service C
7.Returns
result by
same way
back. 6.Receives
Message
from Proxy
and calls
1.Function Call Function
[Runtime Library] [Runtime Library]
2.System Call

,—[Operating System Interface
Kernelspace

3.Blocking of calling process

Dlspatcher

A ‘
4, Dlspatchlng
5.Message to

Skeleton

Figure 1. Migration of Service C from Kernelspace to Userspace

Using the regular scheduling mechanisms of a microkernel, the process con-
taining the service has to wait until the scheduler activates it. This can lead to
not predictable delay times which are depending on the used scheduling algo-
rithm. In Real-Time Systems this delay needs to be predictable. To achieve
this it is possible to use priority inheritance. The server process containig the
services executing the system call, inherits the priority of the calling process.
This leads to an immediate activation of the server process if no other process
with higher priority is available. When the service is not needed a minimum
priority can be assigned to the server process leading to an on demand activa-
tion of the service.

3.3 Context Switch and Virtual Memory access time

The microkernel architecture offers the possibility to separate the core of the
OS (kernel) and services to provide a higher security by fault isolation. This
separation comes at the cost of performance through complex context switches.
Especially in embedded system the performance decreases rapidly when the
context switch is not efficient and the applications make heavily use of system
calls as the embedded systems are very restricted in ressources as computing
power or memory. In our hybrid microkernel we want to minimize that tradeoff
between security and performance. Therefore we use a similar approach as in

Configurable Hybridkernel for embedded real-time systems 285

EMERALDSo realize an efficient context switch in a microkernel architecture
and focus on the memory access time when using virtual memory in real-time
systems.

EMERALDSenhances the context switch between a process and the kernel
when a system call needs to be executed. Therefore the Kernel is mapped into
the virtual address space of every process. That simplifies the context switch
for a system call to the exchange of processor registers. Another advantage of
that mechanism is that the kernel has direct access to the data of the calling
process. This is very useful when a process wants to send data through a com-
munication device. NevertheleESMERALDSdoes not enhance the context
switch between two processes. This leads to a big overhead in systems with
multiple tasks where the time slices are pretty short. This is the reason why we
also enhanced the context switch between processes.

To retain controll of the content of the TLB, we assume the use of a soft-
ware managed TLBfor address translation inside the MMUW\hen a context
switch between two processes occurs the registers and the TLB needs to be
filled with the entries of the next process. This can be very time consuming de-
pending on the hardware architecture. In our case we tested our hybridkernel
on a PowerPC 405 which has a software managed TLB with 64 entries. The
time to restore the registers was determined to be abbdut (see 3.4) and the
time to write the 64 TLB entries was determined to be alodyts. This shows
that the main overhead is caused by the writing of the TLB for the address
space switch.

Another important issue in real-time systems is that every memory access
could lead to a TLB Miss. TLB misses occur when there is no adress trans-
lation available in the TLB for the requested virtual adress. In that case the
MMU has to replace an existing entry in the TLB with the needed entry from
the virtual mapping of the process. In our case a TLB Miss causes a minimum
overhead of about.s for writing the needed entry to the TLB. This overhead
has to be considered in the WCEand decreases the overall performance.

To guarantee an efficient context switch also between two process and a
O(1) memory access time we make the restriction to the total number of TLB
Entries needed by all process&9(Bys:cm) Not to exceed the maximum num-
ber of TLB entries supported by the MMU'{B;57). This guarantees that
no TLB Entries need to be exchanged during a context switch and during run-
time no TLB Miss can occur.

TLBsystem < TLBMMU

2Translation Look-Aside Buffer. TLBs are used to speed up the address translation process
3Memory Management Unit. The MMU translates virtual addresses into physical addresses using the TLB.
“Worst Case Execution Time. Needed for schedulability analysis in real-time systems

286 Timo Kerstan, Simon Oberthir

This also means that all processes of the complete system need to share the
TLB. In systems with static page sizes this is pretty hard depending on the size
of the pages (The smaller the harder). Some architectures offer the possibility
to use memory segments with different sizes. The used PowerPC 405 MMU
supports dynamic segments between 4K and 16MB. This allows to allocate
a large block of contigous memory with only 1 TLB entry. To reduce the
number of used TLB entries in the system the Intermediate-level Skip Multi-
Size Paging algorithm [6] can be applied which is based on the well known
buddy memory allocation algorithm [4].

3.4 Performance

As already stated the bottleneck of the microkernel architectures is the effi-
ciency of the context switch which directly influences the performance of sys-
tem calls. Therefore we determined the time for a NoOp system call by simply
executing a large number of NoOp system calls from Userspace measuring the
time until the last system call returns. The result of this is then divided by the
number of systemcalls. As a result we get a mean execution timé1gfs for
a NoOP system call on an Avnet Board with Virtex-1l Pro (PowerPC405 with a
clock of 200 MHz). A NoOp systemcall consists of two context switches. The
mean execution time for a system call showed to be a good approximation of
a single system call. We compared this mean execution time for a system call
to the time of a simple NoOp function call within the userspace to show the
overhead of the microkernel architecture compared to a library based OS. The
needed time for a NoOp function call wad 1u.s beeing about 15 times faster
than a system call. When converting this to cycles this is an overhead of about
280 cycles for a system call in comparison to a function call. If the service is
located in the userspace two more context switches are necessary adding about
another 280 cycles of overhead as we can assume that about 140 cycles are
necessary for a single context switch.

Operation Time | Clockcycles
NoOP Function Call (PowerPC405@200MHEZ)0.11us 22
NoOP System Call (PowerPC405@200MHz)1.51us 302

Table 1. Performance

Another thing to mention is the overhead through the configurability using
SCL. We showed in section 3.1 that some code is inserted when configurable
members are implemented. This code could lead to a small overhead every
time the configurable member is accessed. In many cases this is not the case as
the compilers today are pretty good in optimizing the code and removing code
sections which are not necessary. Such an unnecessary code segment occur i.e.

Configurable Hybridkernel for embedded real-time systems 287

in combination with thdhasMemberNamehethod to check the availability of
a configurable member. In the following example the presence of a scheduler
is checked and the code would look like this:

if (hasScheduler()){
getScheduler->schedule() ;
}

The compiler would remove the whole codehiisScheduler(jeturns false.
Otherwise the resulting code would look like this

getScheduler->schedule() ;

4. CONCLUSION

We presented our concept of a Hybridkernel in which operating system com-
ponents can be flexible configured in userspace or kernelspace. The advantage
of this approach is that the same code base for the services can be used. Our
well structured fine granular configurable operating sydisraMSs allows an
easy separation of system components with our configuration language SCL.
This enables the application designer to choose the best tradeoff for his appli-
cation between security and performance. Additionally we presented our fast
concepts for high-performance context switches on the PowerPC405 architec-
ture. Which enables the application designer to choice the more secure micro
kernel approach for his applications.

The strength in security of the mikrokernel concept comes at the cost of
performance. As we stated in this paper there is a limit in the capacity of the
memory management units which lead to non deterministic memory access
times if their capacity is exceeded. Our current approach will come to its limit
if there is a lack of memory or the number of processes is growing. Therefore
we will try to enhance the hardware support by using partially reconfigurable
FPGAs. These FPGAs will then be used as an external MMU which will be
highly adaptable to the needs of the system.

REFERENCES

[1] B. Behlendorf, S. Bradner, J. Hamerly, K. Mckusick, T. O’'Reilly, T. Paquin, B. Perens,
E. Raymond, R. Stallman, M. Tiemann, L. Torvalds, P. Vixie, L. Wall, and B. Young.
Open Sources: Voices from the Open Source RevoluBdReilly, February 1999.

[2] C. Ditze. Towards Operating System SynthesRhd thesis, Department of Computer
Science, Paderborn University, Paderborn, Germany, 1999.

[3] D.Hildebrand. A microkernel posix os for realtime embedded systenRrdeeedings of
the Embedded Computer Conference and Exposition, @8 1601, Santa Clara, april
1993.

[4] D. E. Knuth. The art of computer programming, volume 1 (3rd ed.): fundamental algo-
rithms Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1997.

288 Timo Kerstan, Simon Oberthir

[5] J. A. Stankovic and R. Rajkumar. Real-time operating systeReal-Time Syst28(2-
3):237-253, 2004.

[6] S. Suzukiand K. G. Shin. On memory protection in real-time os for small embedded sys-
tems. INRTCSA '97: Proceedings of the 4th International Workshop on Real-Time Com-
puting Systems and Applications (RTCSA /9%ge 51, Washington, DC, USA, 1997.
IEEE Computer Society.

[7] A.S. Tanenbaum, J. N. Herder, and H. Bos. Can we make operating systems reliable and
secure?Tomputer 39(5):44-51, 2006.

[8] L. Torvalds. The linux edgeCommun. ACM42(4):38-39, 1999.

[9] A. Veitch and N. Hutchinson. Kea-a dynamically extensible and configurable operating
system kernel. If€onfigurable Distributed Systems, 1996. Proceedings., Third Interna-
tional Conference arpages 236—242, 6-8 May 1996.

[10] A. Veitch and N. Hutchinson. Dynamic service reconfiguration and migration in the kea
kernel. InConfigurable Distributed Systems, 1998. Proceedings., Fourth International
Conference ojpages 156-163, 4-6 May 1998.

[11] K. Zuberiand K. Shin. Emeralds: a microkernel for embedded real-time systefealn
Time Technology and Applications Symposium, 1996. Proceedings., 1996 pa&es
241-249, 10-12 June 1996.

[12] K. Zuberi and K. Shin. Emeralds: a small-memory real-time microkei®eftware Engi-
neering, IEEE Transactions 927(10):909-928, Oct. 2001.

