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Abstract
Transaction level modeling (TLM) aims at abstract description and high-

performance simulation of bus-based System-on-Chip (SoC) platforms. While
languages and libraries providing the necessary basic modeling mechanisms are
available, there is ongoing discussion on modeling styles for their usage. This
contribution employs object-oriented modeling of transaction data and bus pro-
tocols, targeting at better extensibility and reuse of models. Our simulation per-
formance measurements show that by abstracting from signal-level data rep-
resentations, a cycle-accurate object-oriented model can achieve performance
close to models on cycle-approximate level.
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1. Introduction

Embedded systems and systems on chip integrate an increasing number of
processor nodes and complex communication structures. It is an essential de-
sign task to model these systems prior to their implementation. This enables
an early validation of system architecture concepts, exploration of architectural
alternatives, and performance evaluation. Modeling on register transfer level
(RTL) is no longer an option due to the complexity, inflexibility, and low sim-
ulation performance of the resulting models. Transaction level modeling has
been devised as an alternative.

One key principle of TLM is to perform communication by function calls
rather than via signal communication. The other is to exchange information
on a coarser level of granularity compared to low-level signals. With these
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constraints, bus based systems can be described at different TLM abstraction
levels. The abstraction levels representing different levels of accuracy required
in most modeling activities have been identified and proposed by some re-
searchers and institutes active in the transaction level modeling field (e.qg. [6,
5, 12]). For example, in The most abstract level, the so-called functional view
(FV) abstracts completely from the communication architecture by modeling
point-to-point connections between each pair of communication partners. In
the programmer’s view (PV), bus communication is modelled under abstrac-
tion from timing and arbitration. The architecture view (AV), also called cycle
approximate (CX) view, adds approximated arbitration and timing. In the cycle
accurate (CA) or verification view (VV), transactions must allow to reproduce
for each cycle the bus owner and transaction that is active in an RT level im-
plementation of the bus.

The SystemC TLM standard defines interfaces for initiating and receiving
transactions as well as basic TLM fifo channels. It does not describe a sys-
tematic modeling style for the transactions themselves. The contribution of
this work is an object-oriented modeling of transactions that leads to easily
extensible cycle-accurate models which approach the simulation speed of less
precise CX models.

The remainder of this paper is organized as follows. In Section 2, we sum-
marize related work. Section 3 provides a summary of our object-oriented
transaction models. In Section 4, we present its application to cycle-accurate
modeling of the AMBA AHB. Section 5 presents experimental results on the
achievable simulation performance, and Section 6 concludes this paper.

2. Related Work

The essence of transaction level modeling (TLM) is language and applica-
tion domain independent. Examples of modeling languages explicitly enabling
transaction level modeling are SystemC [8] and SpecC [7]. In the relatively
young field of TLM, communication schemes, interoperability, definition of
abstraction levels and approximations and the terminology are constant sub-
jects of debate and standardization effort. Examples are works of the Open
SystemC Initiative (OSCI), the Open Core Protocol International Partnership
(OCP-IP) and the SpecC modeling community [3, 6, 5, 12].

In its current version (1.0), the OSCI-TLM standard [12] proposes use of
certain interfaces and channels based on these interfaces. The OSCI-TLM
standard addresses several issues such as separation of user code from the
communication code in layers, module interoperability and reuse. However,
the modeling style presented in the OSCI-TLM white paper has a number of
drawbacks. Modeling passive components deviates significantly from model-
ing active components based on the presented modeling style. The transition
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from passive to active models is often required when moving from higher to
lower levels of abstraction. Another drawback is use sti@ctsto transfer in-
formation. This affects the extensibility and reuse in the models. These issues
have been addressed in [11] and a new modeling style — the Object Oriented
Transaction Level Modeling (OOTLM) approach — was proposed and demon-
strated using a simple model. However, the applicability of this method to
complex real-world communication protocols was not proven and its perfor-
mance implications and accuracy limitations were not studied in detail. In this
paper a protocol widely used in embedded systems, the AMBA AHB [1] is
modelled based on the OOTLM approach to investigate its applicability and
the achievable simulation performance.

A recent work in the OSCI-TLM domain is GreenBus [9] which provides
a generic, protocol neutral interconnection scheme and library for SystemC
models on top of the OSCI-TLM standard which can be customized to model
concrete bus protocols. In GreenBus, a bus transaction is composed of uninter-
ruptible transfers calledtomswhich transfer basic data elements referred to
asquarks Granularity of the information being monitored or updated by com-
ponents connected to a GreenBus based bus depends on the abstraction level
of the model.

The AMBA AHB has been used by many researchers in evaluation of their
modeling approaches. In [10] Pasricha et al have developed models of the
AHB based on their proposed CCATB abstraction level. In [13] Schirner et
al compare accuracy and simulation performance of their SpecC based AHB
models in different levels of abstraction. Caldari et al [4] have developed trans-
action level models of the AHB in SystemC 2.0. Their work is not based on
the OSCI-TLM standard. Recently the ARM specific Cycle Accurate Simula-
tion Interface (CASI) and CASI based AMBA models have been released by
ARM [2]. CASI models are essentially cycle-based models, and to achieve
high simulation speeds avoid using SystemC events (except for clock events).

3. The OOTLM Approach

In OOTLM, the interactions between model elements are represented by
transaction objects. A transaction object represents read or write transfers,
reset or initialize operations or abstractions of more complex interactions and
encodes the information required for the particular interaction. For example,
for a reset operation, this would be the address of the target to be reset. For
a read transfer, attributes of the transaction object represent the address of the
data item to be transfered and the data to be returned by the target.

Transaction objects are created and initialized by the initiating masters and
are sent to the bus model via OSCI-TLM compliant channels. Subject to the
arbitration policy and algorithm, the transaction objects are eventually routed
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Figure 1. A generic transaction class hierarchy

to the addressed slaves to pp@cessed For example, for read transfers, the
slave updates the transaction object with the correct response and data val-
ues. During the life time of a transaction object, the initiating master has ac-
cess to it through a pointer and can query or change its attributes. This way,
without loss of precision, the additional data traffic and the overhead of using
separate request, response and control transactions is avoided. A generic ex-
ample of transaction classes that could be used to model the operations in a
typical bus is shown in the UML class diagram of figure 1. Using an appro-
priately designed transaction class hierarchy, a single OSCI-TLM based chan-
nel can be used to transport different types of transaction objects (e.g. with
put (T &t) andget(T &t) methods). In this example this would be a channel of
type tlm_fifo<bus_transaction*> and would result in the simple interconnec-
tion scheme shown in figure 2.

MASTER 1

Figure 2. Model interconnection

As a modeling technique enabling reuse of passive slave models (see [11]),
interaction of the slaves with the transaction objects is performed using the
existing methods of the slaves (e.gead () andwrite()). The next sections
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also show how the OOTLM approach enables reuse, incremental development
and extensibility of the models.

4. A Cycle Accurate OOTLM Model of the AMBA AHB

The Advanced High Performance Bus (AHB) is part of the AMBA family of
busses from ARM [1] and is intended to be used as a backbone bus in systems-
on-a-chip (SoCs). The AHB is a multi-master, pipelined bus featuring single
cycle bus handover, fixed size bursts, incremental bursts of unspecified length
and split and retry transfers.

In this work, we have focused on a subset of the AHB specification large
enough to validate the OOTLM approach in modeling complex bus protocols.
We have modelled single data item transfers and fixed-length bursts. From the
possible slave responses, we have chogen ERROR andspLIT responses. As
a simplifying assumption, preemption of unlocked bursts has not been mod-
elled and a burst can only be terminated prior to its completion as a result of
a spLIT response. However as mentioned in section 4.1, this does not affect
the generality of our approach and the developed models can be modified to
support unlocked bursts in a similar fashion to split transfers.

The developed model is cycle accurate. The arbitration, bus handover, inter
and intra-transaction timing and status of the transfers in each cycle are accu-
rate and fully compliant with the AHB specification.

The basis of our model is the pipelined nature of the AHB, shown in an ab-
stract form in figure 3. AHB transfers have two phasesaithdress phasand

the data phase In each bus cycle, two different transfers may be underway
concurrently on the bus. One in the address phase and one in the data phase.
A transfer in the address phase progresses to the data phase, when the transfer
currently in the data phase completes.

AHB Bus Model

candidate transaction
object to enter the address phase . data phase

pipeline (m_address_phase_tx) (m_data_phase_tx)

(from m_granted_master)

completed or split
tr ion object
leaving the pipeline

\

Figure 3. An abstract view of the AHB bus as a pipeline

Within the bus model (section 4.2), this abstract pipelined view of the AHB
is maintained and updated in each cycle using two pointers, one to the transac-
tion in the address phase éddress_phase_tx) and one to the transaction in the
data phasen(data_phase_tx). Depending on status @fdata_phase_tx, the bus
model coordinates routing of the transaction objects and other timing aspects
of the AHB bus.
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4.1 AHB Data Transfer Transactions

The transaction objects are the means of information transfer between mas-
ters and slaves and can be considered virtual communication paths created
dynamically by the bus model. Figure 4 shows the transaction class hierarchy
modeling the AHB single transfers and bursts. Some attributes represent the
address, data and control information and have direct counterparts in the AHB
signal set (e.g.n_transfer). Other attributes are used to model the dynam-
ics of the transaction objects, delayed data bus handover and split transfers.
The slave response and ready status are visible to the initiating master and can
be polled. Alternatively, a master can wait for the completion of transaction
without polling by waiting orn_completion_event.

ahb_burst_transaction

ahb_transaction ahb_burst m_burst
ahb_burst_state m_state
ahb_transfer m_transfer ahb_address m_start_addr <]
ahb_width m_width < ahb_data* m_data
ahb_response m_response bool* m_error
ahb_ready m_ready
ahb_handover_action m_bus_handover_action ahb_burst_write
bool* m_bus_handover_flag
sc_event m_completion_event
unsigned m_master_id ahb_single_transaction
ahb_split_reattempt m_split_reattempt —single_ ahb_single_read
ahb_tx_state m_state
ahb_address m_address
virtual void execute( ahb_slave_interface& slave_if) =0 ahb_data m_data
o - << }—‘ ahb_single_write

Figure 4. AHB transaction class hierarchy

The slave processing a transaction object callstheite () method, pass-
ing a pointer to itsahb_slave_interface (figure 6), to update the attributes of
the transaction object. To get the data, response and ready statiscthe()
method will in turn call theread () andwrite () interface methods of the target
slave whenever necessary.

Based on the properties of the bursts and split transfers, the amount of object
traffic between model elements is reduced to improve performance. For split
transfers, the bus and slave models keep pointers to the split transaction objects
in a list of pendingtransactions. The slave signals to the arbitration algorithm
its readiness to process the transaction usingntBglit_reattempt attribute
of the transaction object. Similarly, the re-attempting master does not need
to send a new transaction object to the slave, the bus model re-enables the
transaction object to be re-processed by the slave. AHB bursts are not allowed
to cross slave address boundaries. Thus, for every burst a single transaction
object is sent to the addressed slave.

Although not modeled and implemented in this work, preemption of un-
locked bursts (as the result of the master loosing the bus) can also be modeled
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similarly with the aforementionegendingtransactions, with simple modifica-
tions to the model. The initiating master of a burst can not perform any other
transactions until all beats of the burst are completed either successfully or with
an error. Again, a single burst transaction object needs to be sent to the slave
by the master. If the master loses the bus prematurely, the burst transaction
will become a pending transaction, waiting to be re-enabled by the bus model
when the master takes ownership of the bus.

The dynamic behavior of the transaction objects is modelled by state ma-
chines. The state machine fab_single_transaction iS Sshown in figure 5.
Burst transactions are modelled with a concurrent state machine, observing the
fact that a burst can have concurrent beats, one in the address phase and one in
the data phase. The burst state machine is omitted here to save space.

O

DATA

\[ermr signal] execute()

[wait cycle inserted]

I

Inactive

[transaction object sent to bus]

execute()

i

[split signal]

;

Arbitration

[master granted access
to data bus]

[master granted access to
address bus]

execute()

execute()

\;a

Figure 5.  Single transaction state machine

4.2 The AHB Bus Model

The bus model is responsible for routing of the transaction objects to their
addressed slaves and is partially shown in figure 6. The arbitration algorithm is
implemented in theelect_master ) method and considers transactions in the
master-bus channels and the pending transaction list in selecting the highest
priority master. An entry in the pending transaction list corresponds to the
request of a master which has received a split transfer and is waiting to be
granted the bus for a re-attempt. A data structure mapping address ranges
to slaves is used for decoding, and the transaction objects are routed to the
addressed slaves either via the slave-bus channel (for new transactions) or by
putting the transaction objects in the address phase again (for split transactions,
figure 5).



ahb_slave_interface

virtual ahb_response read(ahb_address address, ahb_data &data, ahb_transfer transfer, ahb_width width, ahb_ready& ready, unsigned master_id)=0
virtual ahb_response write(ahb_address address, ahb_data data, ahb_transfer transfer, ahb_width width, ahb_ready& ready, unsigned master_id)=0

e o 1

ahb_bus ahb_slave
unsigned m_granted_master ahb_transaction* m_data_phase_tx
ahb_transaction* m_address_phase_tx ahb_transaction* m_pending_transactions[MAX_MASTERS]
ahb_transaction* m_data_phase_tx
address_map<unsigned> m_address_map
ahb_transaction* m_pending_transactions[MAX_MASTERS] 3 )
void cycle(void)
unsigned select_master()
void cycle(void)

Figure 6. Bus and slave models

The functionality of the bus is implemented in the clock triggered process
cycle() and is modelled by a state machine (figure 7). Based on the pipeline
model of the bus (figure 3), arbitration and all aspects of the AHB bus are
modelled accurately using this state machine.

!

Idle
[else] [ no master wishes to do a transfer] cycle()
[elseJsend_transaction(...) [ a master wishes to do a transfer]
master wishes to do a transfer] / send_transaction(...)
= send_transaction(...)
!

[ a master wishes to do a transfer]
send_transaction(...)

[a burst started]

cycle() [ transfer is splitting] /

elsel—— add to the pending_tx list;

If the burst is splitting
grant a new master

[ o transaction in data phase]

[ transaction in the data phase is read:

cycle( Non-burst [ no transaction in data phase
[else] or

[a transaction is in address phase]

transaction in the data phase is ready]

in the Last address phase] C
add the transaction to the pending_t list;

grant a new master [burst in the last address phase] /
grant a new master

[burst split
or
[ transaction in the data phase is splitting] //

Figure 7. Bus state machine

Together with the bus model, we also developed generic master and slave
models for performance measurement and validation purposes. Because of
the inheritance relationship between the transaction classes and since the mod-
els were designed based on a set of polymorphic methods of the transaction
classes, we were able to develop the models incrementally and in three steps,
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extending the models by subclassing. In the first step, the basic elements of
the AHB functionality — arbitration, decoding/routing, pipelined behavior and
single transactions — were modelled and implemented. In the second step split
transactions, and in the last step bursts and burst related issues were imple-
mented. For example, to extend the bus model from the first step to support
split transactions, one new transition was required in the bus state machine,
and the model was extended by adding attributes, one new event and overrid-
ing some methods. As another example, no changes were necessary in the
slave from the second step to enable processing of burst transactions.

5. Experimental Results

We implemented the models using the OSCI SystemC library version 2.1
v1 with Microsoft Visual C++ .NET 2003 in Microsoft Windows XP profes-
sional. The bus model was validated against the protocol specification using
deterministic and randomized tests. To measure the simulation performance of
the bus model, we used a single master, single slave test setup similar to [13]
and measured performance indices also reported in other related work [9, 4].

Simulated Bandwidth (MBytes/Sec)

1 10 100 1000
Transfer Size (Bytes)

Figure 8. Simulated bandwidth

First, we measured the simulated transaction processing time and equiva-
lently the simulated bandwidth. These indices represent the minimum amount
of (real or wall clock) time required to perform a data transfer transaction of a
certain size using the most efficient combination of bursts and single transfers.
Figure 8 shows the measured simulated bandwidth for transactions ranging in
size from 1 byte to 1024 bytes. Each transaction was performed 1000 times (all
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with okAY responses and no wait cycles), and the average time was recorded.
The measurements were performed on a workstation with a 2.21 GHz AMD
Athlon(tm) 64 3500+ processor with 512 kb of Cache and 1 GB of RAM.

The saw-tooth shape of the graph is the result of breaking the transfers into
a combination of bursts and single transfers by the master. For small transfers,
the overhead of transfer of transaction objects is relatively high and the worst
case bandwidth reaches a value of 0.270 MBytes/Sec. As the transfer size
increases, this overhead becomes negligible and the bandwidth approaches a
value of 1.2 MBytes/Sec.

In a similar test setup but in a different simulation environment, the bus func-
tional model (BFM) of the SpecC-based model of Schirner and Démer [13]
reaches a simulated bandwidth of 0.03 MBytes/Sec and their next most accu-
rate model (ATLM, which is essentially a cycle-approximate model), reaches
2.29 MBytes/Sec. In [9] performance figures of bus accurate GreenBus based
models of the IBM PLB are presented, which expressed in terms of simulated
bandwidth, reach a maximum of 2.8 MBytes/Sec.

It should be noted that our reported simulated bandwidth values are very
conservative. We have used a single data width for all transfers (e.g. byte). For
example, in our test setup, to transfer three bytes, three bus transactions are
used, each transferring a single byte. In the ATLM model in [13] on the other
hand, three bytes are transferred in two transactions, one transferring a byte
and one transferring an AHB half-word (two bytes). In our model, transfer-
ring three individual words (each word being four bytes) would take the same
amount of time required to transfer three individual bytes. Considering this,
the simulated bandwidth of our model approaches 4.8 MBytes/Sec. However,
we have decided to report the more conservative values, as the aforementioned
details regarding transfer setup were not explained in some published related
work (e.g. [9]).

Next, we measured the model simulation speed which is expressed in terms
of simulated number of clock cycles of a simulation model per unit of time.
The average model simulation speed for our test setup reached 1150 KCy-
cles/Sec. Caldari et al [4] have reported a simulation speed of 300 KCycles/Sec
for their SystemC 2.0 based models. They have used a more complex master
model and have performed their measurements on a Sun Ultra 60 Workstation.

6. Conclusions

We have shown that, based on an abstract object-oriented modeling style,
easily extensible and cycle accurate modeling of a complex, real world bus
system and protocol can be performed. Instead of using discrete transactions
for arbitration, control, address and data, we have modelled bus transactions
using complex transaction objects which encode accurately all the necessary
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information, and whose dynamic behavior represents different phases of the
bus transfers accurately down to the individual buy cycles. This results in re-
duced traffic between model elements which in turn leads to higher simulation
performance, without loss of precision. Our measurements, in comparison
to the related work, show a simulation performance that is significantly above
other cycle-accurate models and comes close to the performance of models that
are cycle-approximate. By further reducing the amount of SystemC events and
by moving to the cycle-approximate level, we plan to achieve a further speed-
up. Future work includes the application to additional bus protocols and the
development of a simulation library of master and slave components as well as
a connection of our model to instruction set simulators.
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