

ENHANCING A REAL-TIME DISTRIBUTED
COMPUTING COMPONENT MODEL THROUGH
CROSS-FERTILIZATION
Position Statement

K. H. (Kane) Kim
DREAM Lab., EECS Dept.
University of California, Irvine, CA, 92697-2625 USA
khkim@uci.edu

The need for overall optimization of software-hardware complexes has

been there throughout the history of computer applications. However, the
need for significant improvement in the techniques for achieving it has
become very acute as the growth of the embedded computing application
field has been in an accelerating mode since mid-1990’s. As a natural
consequence of it, the desire to have unified modeling approaches that are
effectively applicable to both hardware systems and software systems is as
strong as ever.

Often software design activities and hardware design activities proceed
largely independently without joint analysis and optimization, i.e., without
disturbing each other, until the integration phase is reached. In such
situations, software designers can benefit considerably from the availability
of reliable models of hardware under development at the early stage.
Similarly, hardware designers can benefit from the availability of early
abstract but reliable models of software under development. Both designers
are bound to wonder about the essential differences between hardware
system modeling techniques and software system modeling techniques and
about the aspects common to both types of modeling techniques.

This author, who is a researcher dealing with techniques for software
system modeling, feels that the following complimentary relationship exists
between the recent work on software system modeling and that on hardware
system modeling.
• Software designs used to involve producing multiple layers of

abstraction. In general, the number of layers defined during software

428 K. H. (Kane) Kim

design has been significantly larger than that defined during hardware
design. Therefore, in developing software modeling techniques, the
ability for handling multiple layers of abstraction has been emphasized.

• On the other hand, the software modeling research has involved timing
specifications at coarse levels in comparison to the hardware modeling
research. Therefore, it seems worthwhile for software modeling
researchers to attempt to learn from the techniques developed for timing
specifications as parts of hardware models and use that knowledge to
enhance software modeling techniques.

• In addition, the software modeling research has involved concurrency
exploitation and specifications at coarse levels in comparison to the
hardware modeling research. Again, it seems worthwhile for software
modeling researchers to attempt to learn from the techniques developed
for concurrency specifications as parts of hardware models and use that
knowledge to enhance software-modeling techniques without damaging
the strong ability to deal with multiple layers of abstraction.

One of the major challenges that researchers in software system modeling

have faced is to establish techniques effective in modeling of real-time
networked computing software. In particular, the modeling techniques that
help the developers in safety check, i.e., analyzing software designs to check
about the possibility of violating action timing requirements inherent in the
given applications, have been wanted. Research in this important area has
been advancing rather slowly.

The ease of such safety analysis depends heavily on the structure of the
real-time networked computing software. Yet, the art of structuring real-
time networked computing software that eases such safety check while
enabling efficient and flexible design of high-performance software has
remained immature. Here several potentially conflicting desiderata exist.
First of all, the structuring approach must enable maximal exploitation of
concurrency since otherwise, it will lead to designs of low-performance
software of which inability to meet certain stringent timing requirements in
certain applications is quite obvious. Yet, careless exploitation of
concurrency leads to designs that are hard to analyze. Secondly, timing
specification must be done in terms that can be supported by the execution
engine consisting of hardware, operating system kernel, and middleware.
Without defining and realizing new-generation execution engines, the timing
specifications are bound to be in low-level terms and it is hard to check
whether such specifications lead to efficient safe overall designs or not.

This author and his collaborators have been enhancing the structuring
scheme called the Time-triggered Message-triggered Object (TMO) scheme
as well as associated execution engine models and software engineering

Enhancing a Real-time Distributed Computing Component Model
through Cross-Fertilization

429

tools in the past 15 years (Kim 1997, Kim 2000, Kim et al. 2005). TMO is a
programming model of real-time distributed computing software
components. The TMO scheme is intended to enable maximal exploitation
of concurrency while maintaining a high degree of analyzability of the real-
time distributed computing software. At present the TMO research
community is seriously interested in learning from the hardware modeling
research community about additional potential mechanisms for concurrency
and timing specification.

Attempts have been made from the beginning to incorporate into TMO a
practically sufficient set of mechanisms for expressing timing constraints
without violating the fundamental modular structuring principle underlying
the object / component structuring schemes. So far, all reported experiments
and experiences seem to indicate that the set of mechanisms is practically
sufficient but it is too early to conclude as such.

The essence of the modeling power of the TMO scheme is as follows
(details in Kim 1997, Kim 2000, Kim et al. 2005):
• Active components, i.e., components which have hearts or internal energy

sources and thus may be of hardware type or software + physical_ or
virtual_hardware type, can be modeled as TMOs because of the
availability of the time-triggered method, also called the spontaneous
method (SpM) mechanism in TMO.

• Interconnections among components can be modeled by logical multicast
channels called Real-time Multicast and Memory-replication Channels
(RMMCs) or service requests which are sent from TMOs to TMOs and
may be of one-way communication type, two-way non-blocking
communication type, or two-way blocking communication type.

• All real time references in TMO are references to global time that is
commonly accessible from all distributed computing sites and may be
maintained in a decentralized fashion. Action timings of components can
thus be specified in terms of global time. Clock-driven actions and
periodic actions can be specified as parts of the time-triggered method
specifications in TMO.

• Signal delays incurred over interconnection links can be represented by
use of official release times (ORTs) of messages (RMMC messages or
service requests) or combinations of production time-stamps and ORTs.

Again, what can be learned from hardware modeling techniques to

further enhance the TMO scheme toward supporting more efficient types of
networked real-time embedded computing systems is a question that we plan
to address more intensively in coming years.

430 K. H. (Kane) Kim

REFERENCES

Kim, K.H., 1997, Object structures for real-time systems and simulators, IEEE Computer,
30(8): 62 – 70.

Kim, K.H., 2000, APIs for real-time distributed object programming, IEEE Computer, 33(6):
72 – 80.

Kim, K.H., Li, Y., Liu, S., Kim, M.H., Kim, D.H., 2005, RMMC programming model and
support execution engine in the TMO programming scheme, in Proc. of the 8th IEEE Int'l
Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 2005), pp. 34–
43, Seattle, USA.

