
EMBEDDED VERTEX SHADER IN FPGA

Lars Middendorf, Felix Mühlbauer1, Georg Umlauf2, Christophe Bobda1

1Self-Organizing Embedded Systems Group, Department of Computer Science
University of Kaiserslautern

2Geometric Algorithms Group, Department of Computer Science
University of Kaiserslautern

lmid@gmx.de, (muehlbauer,umlauf,bobda)@informatik.uni-kl.de

Abstract Real-time 3D visualization of objects or information becomes increasingly im-
portant in everyday life e.g. in cellular phones or mobile systems. Care should
be taken in the design and implementation of 3D rendering in such embedded
devices like handhelds devices in order to meet the performance requirement,
while maintaining power consumption low. In this work, the design and im-
plementation of a vertex shader on a reconfigurable hardware is presented. The
main focus is placed on the efficient hardware/software partitioning of thevertex
shader computation, in order to maximize the performance while maintaininga
high flexibility. The resulting solution must be compatible to existing vertex
shaders in oder to allow the large amount of existing program to be easylly
ported to our platform. A prototype consting of a PowerPC, peripherals and
some custom hardware modules is realized a on an FPGA-board. The imple-
mentation of a point rendering shows considerable speed up comparedto a pure
software solution.

Keywords: 3D graphics, vertex shader, Direct3D, embedded systems, FPGA

1. Introduction

Rendering of three-dimensional objects in real-time requires much arith-
metic performance. This is a problem for embedded systems that are running
at low clock speed and often lacks dedicated hardware processing modules like
a floating point unit (FPU). In desktop computers, the expensive arithmetic
computations related to the rendering of 3D objects are done by specialized
stream processing hardware in video cards. Those cards are programmable
using small programs calledshaders. The execution of shaders is the main
difference to the CPU. A new instance of the program is invoked for every
primitive, vertex or pixel. There are three slightly different types of shaders

2

for these elements. Each instance can be executed independently of the oth-
ers because there is no communication possible between instances of the same
type. This is advantageous when designing the hardware, because it allows
the execution of an arbitrary number of instances in parallel, in order to gain
the maximum computation speed. Also, pipeline technique can be used to al-
low some threads to feed parameters to other threads waiting for them in the
pipeline. As a result the available hardware can be used more efficiently.

We developed a hardware accelerator for executing vertex shaders that is
in particular useful for embedded systems, because it uses very few hardware
resources, in this case FPGA slices. It is a kind of coprocessor that is directly
connected to the CPU by a fast bus. The main program running on the CPU
loads the shader code and all inputs into this coprocessor. While the coproces-
sor is running the shader, the main program accomplishes further computations
in parallel until the results can be read back.

It is important to minimize the resource usage of the hardware, because the
number of available slices in a FGPA is very limited. The clock speed is also
very low and we have to maximize the utilization of sub-components in all
cycles. The scheduling of the threads is therefore pre-calculated and stored as
part of the shader code. Hence, the control-logic consists only of the program
counter and a few multiplexers, that route the data flow, thus enough spaceis
left on the device to implement floating point calculations. The multiplexer
configuration is stored in a table with one row for each cycle. In this work a
shader converter that generates the control table from a Direct3D9[4]vertex
shader was developed. The shader converter performs the scheduling of all
operation on the generated hardware unit, analyzes and optimizes the data flow
and maps the calculations to operations of our ALU. Currently we can execute
four threads on the ALU in parallel. This allows a speed-up of factor four
compare to the software implementation of the shader.

The rest of the work is organized as follows: Section 2 provides the basics
of vertex shader while section 3 introduces some work related to custom im-
plementation of vertex shaders. Section 4 explain our implementation. A naive
co-design approach is first explained, followed by a more efficient one. Also
the design decisions for the hardware software partitioning are explained. The
results obtained on a prototype implemented on a Xilinx Virtex 4 evaluation
platform are given in 5. Finally section 6 concludes the work and provides
some indication on the future directions.

2. Vertex Shader

In a rendering process, each 3D-point, also calledvertex must traversed a
set of computing stations, therender pipeline until the final step wher it can
be drawn on the display. The stations consist of a coordinate transformation

3

(object→ world, world→ camera) stage, an illumination, a clipping, a projec-
tion, a scaling to screen resolution step, and finally the step to approximate the
float values to integer values is performed.

To simplify spatial calculations in computer graphicshomogeneous coordi-
nates (x, y, z, w) are used. Transformations liketranslations, rotations, scal-
ings, shearings, projections, etc. can be mapped to4 × 4 matrices and can be
combined to only one matrix by multiplying the corresponding matrices. Thus,
a transformation of a vertex by a certain list of transformations can be realized
by one matrix-vector-multiplication.

For illumination calculations the dot product (scalar product) is very impor-
tant, because the light intensity depends on the angle between surface normals
and light sources. Normals can be transformed similar to vertices which is ad-
vantageous when filling the surface normals together with the vertices of the
scence into the render pipeline to speed up processing.

In conclusion, each stage of the render pipeline executes mainly matrix and
vector operations using all values which are involved like coordinates, surface
normales, surface attributes, lightning parameters, etc.

There are several vertex shader versions for different hardware. We focus
on implementing a subset of the smallest version 1.1 [4]. All versions use
a RISC instruction set. Each instruction can read from up to three registers
and write to one result register. Almost every register is 128 bits wide and
stores four 32 bit floating point numbers. Hence most of the commands oper-
ate on vectors with four components. The individual components of a vector
can be reordered and duplicated while reading from a register and thereis a
write mask for every component of the result register. This improves flexibil-
ity and allows optimizing calculations. It is for example possible to get a cross
product with two instructions. Because our hardware is scalar-based,all write
and swizzle-masks are free and should be used to improve performance.The
shader converter analyzes the data flow for each individual component and if a
result is not used, the calculation is removed on a per-component basis.

There are global and local registers. Each instance of the shader hasits own
set of local registers consisting of temporary and output registers. It isnot
allowed to write global registers which makes parallelizing possible, because
there is no synchronization required and no operation in one thread depends on
results calculated in another thread.

Vertex Shader 1.1 does not support jumps or subroutines. A detailed de-
scription of the instruction set can be found in the DirectX SDK [4]. Table
1 shows some vertex shader commands and a minimal shader that reads the
vertex position and performs a vector-matrix multiplication to calculate the
projective position of the vertex.

4

Instruction Description

add addition
sub subtraction
dp3 3D dot product
dp4 4D dot product
mad multiplication & addition
mul multiplication
rcp reciprocal
rsq inverse square root

Vertex Shader 1.1

vs_1_1

assign vertex

dcl_position v0

vector-matrix multipl.

dp4 oPos.x, v0, c0

dp4 oPos.y, v0, c1

dp4 oPos.z, v0, c2

dp4 oPos.w, v0, c3

Table 1. Some vertex shader commands and an example

3. Related Work

Lots of work has been done already in the domain of accelerating graphics
applications utilizing FPGAs in general. Some of them are listed in [8, 6]. Of-
ten a combination of a desktop computer and a FPGA builds the computing
unit. The need of 3D graphics visualization in embedded systems is still grow-
ing with the increasing spreading of mobile multimedia systems in everyday
life like cellular phones and PDAs. Even the MPEG H.264 standard which is
the video coding for next-generation multimedia involves rendering of 2D and
3D deformable mesh geometry [5].

The still continuing miniaturization has led to highly integrated chips and
finally to so-called SoCs (system on chip). Here all components and periph-
erals are placed on a single chip like processors, hardware accelerators, bus
and peripheral controllers and allow a PLB (printed circuit board) independent
redesign or update of applications which is an important advantage.

Sohn et al. introduced a multimedia co-processor for mobile applications
using an ARM-10 processor and fixed-point arithmetic [1]. The companyBit-
boys developed an vector graphics processor targeting for high-endmultimedia
cellular phones which is available as IP core for SoCs integration and can pro-
cess SVG and OpenVG object data [7].

We are particular interested in a system in which custom hardware can co-
habit with software. Also, the system should provide enough flexibility to ease
the redesign and also allow a run-time adaptation, while maintaining the per-
formance high and the power consumption low. The next sections explain our
solution to this problem.

5

4. Implementation

Our target platform in this project was a Xilinx Virtex 4 evaluation board
featuring a Virtex4-FX12 FPGA. This FPGA contains an embedded PowerPC
405 processor, on-chip memory (BlockRAM) and miscellaneous DSP func-
tions[9]. We use the external DDR-RAM as video frame buffer to store 3D
object data. A simple system on chip with DDR-RAM controller, VGA out
module and system bus needs already half of the available slices of the FPGA.
Because, floating point hardware modules are expensive, we tried to avoid or
reuse them as much as possible. Thus, an efficient design considering speed
and chip area has to be found.

Basic Design

In a first design a field of 32 registers combined with an adder and a mul-
tiplier unit and an instruction memory was drawn up. Thisco-processor is
directly connected to the main processor via the FCM bus, which allows to
extend the native PowerPC instruction set with custom instructions that are
executed by a user-defined configurable hardware accelerator.

Figure 1. First design: Field of registers

The data words read from the BlockRAM (see Figure 1) specify which reg-
isters supply the input values for the arithmetic units and to which register each
result should be written back.

The implementation of this design is very straight forward and also expand-
able for further operations like division or square root. So the two(or more) op-
erations are executed simultaneously. Unfortunately, the design needed huge

6

multiplexers and address decoders leading to very high resources consumption.
The complete chip area was filled by this first version of the design.

Final Design

In order to improve the first design, the idea was to exchange the expensive
registers, previously realize using the on-chip available logic (LUTs) to on
chip memory, namely dual ported BlockRAM. These can hold up to 512 val-
ues each (compared to 32 for the register field) but only two read respectively
write accesses are possible simultaneously. Because the dot product needs 8
input values and since only one value can be provided by a BlockRAM, we
duplicated data to 8 BlockRAMs in order to be able to read eight values si-
multaneously. In order to keep the consistency in all 8 BlockRAMs all write
request are dispatched to all 8 BlockRAMs (Figure 2). In the following this
BlockRAM unit is calledregister array. This new design consumes very few
slices and also provides much space for provisional results. Compared toreg-
isters a memory read access takes one clock cycle and could cause additional
delays in the computation. However, due to the saving of slices, an efficient
design of the ALU will compensate the lost in the BlockRAM usage (Figure
3).

Figure 2. Final design

We next explain the components of the final design (FCM Controller and
ALU) in more detail.

FCM Controller. The control module implements the interface to the FCM
bus. The CPU is able to write to the register array, which can hold up to 128 4D
vectors, and to the instruction memory with a maximum of 512 opcodes. The
FCM controller is also able to read back the results from the output memory.

7

Because the FCM instructions to handle double words provide only 5 address
bits an additional 2 bit register is used to access all 512 possible memory loca-
tions.

The final result of the shader is stored in a special output RAM that is written
by the ALU and read by the CPU and the FCM control module. The output
RAM is addressed independently from the register array which allows copying
the shader results to an arbitrary position. The additional RAM also saves one
multiplexer that, otherwise, would be needed at the address lines of the register
array to switch between the ALU and the control module.

ALU. The ALU has eight floating-point input variables, one input port that
is used to select the equation, and one output port which can be used to get the
result as shown in Figure 3.

In every cycle there are nine different outputs available. One of them is
selected by the output multiplexer and controlled by the current instruction
code. Some results are intermediate result of longer calculations and have
therefore a shorter latency. Table 2 lists the instruction set of the ALU. The
arithmetic units use pipelining to save hardware resources and cause delays
which are also shown in the table. When generating instructions for the ALU
this behaviour has to be taken into account. Still, the ALU can accept one set
of values per clock cycle.

Every input variable can be pre-multiplied by -1 before it is read into the
ALU. This is implemented as an exclusive-or between the sign bit of the
floating-point number and the corresponding instruction bit. Because of de-
lays theslt instruction that is used for comparisons, minimum, maximum
and absolute value, the parameterse, f, g, h must be provided twice. Thersq
command returns a rough approximation for the inverse of square root which
is much more likely to be used as the square root itself, e.g. for normalization
of vectors. Usually for a more precise result one step of the Newton iteration
(formula:xn+1 = 1

2
xn(3 − x0xn

2)) is sufficient [3].

Instruction Format. All instructions have a fixed length of 128 Bit, be-
cause of the eight input registers. The whole instruction can be divided into
four words with the layout shown in Table 3. The input values are read from
memory at positionsrc* and inverted according toinv*. The ALU result is
stored at indexdst, if we (write enable) is set and in the extra output RAM if
oe (output enable) is set. To avoid an extra function de-multiplexer for each
ALU command a selection bit was arranged (see remaining entries in Table 3).

Vertex Shader Converter

To generate the ALU opcodes a given vertex shader program is compiled
with DirectX SDK[4]. Using the syntax analysis for the resulting code a data

8

command result delay notes

dot4 a · b + c · d + e · f + g · h 19 4D dot product
dot2 a · b + c · d 14 2D dot product
mult4 a · b · c · d 18 multiplication
mult2 a · b 9 multiplication
div a/b 27 division
rsq 0x5F3759DF−(a ≫ 1) 2 start value for newton

iteration of 1
√

a

slt if (a · b + c · d < 0) then 14 input values are needed
(e · f) else(g · h) after 5 clock ticks again

int2float float(a) 6 converts integer to float
float2int int(a) 6 converts float to integer

Table 2. ALU commands

Word 0:8 9:17 18:26 27 28 29 30 31

cmd0 src0 src1 dst we inv0 inv1 inv2 inv3
cmd1 src2 src3 out oe inv4 inv5 inv6 inv7
cmd2 src4 src5 - div rsq slt mult2 dot2
cmd3 src6 src7 - f2i i2f mult4 dot4 -

Table 3. Instruction format

flow graph is build up, which points out the dependencies between input, provi-
sional and output values. Now, vector operations are mapped to scalar (ALU)
operations and long processing chains are move to the program start, while
considering the delays caused by the arithmetic sub-units. Multiplications
by -1 can be handled directly by the ALU input stage. Diversions which are
not available inVertex Shader 1.1 and therefore are realized by multiplication
with the inverse, can be processed directly by the ALU. Sometimes algebraic
conversions can help to map calculations to the optimized dot product (e.g.
(a + b)c → ac + bc). Also the usage of theslt command is more practical.

5. Results

The most important disadvantage of this implementation is the limitation
to one result per cycle. This means that a matrix-vector multiplication takes at
least four cycles. The high latency of certain operations is not really a problem,
but it is different for almost every instruction, so that it can be difficult or
impossible to fully load the ALU. Because of the strict requirements, not all
commands could be directly implemented in hardware. For example a single

9

mult2

dot2

mul

mul

mul

mul

mul

a b c d e f g h

* *

+

+

+

mux

float

int

*

*

1/√

*

/

Code

mux

result

± ± ± ± ± ± ± ±

slt

dot4

mult4

div

rsq

int

float

mult4

mult2

dot2

*

Figure 3. ALU

mul instruction that multiplies two vectors component wise can take up to four
cycles. But usually the instruction is part of a more complex calculation and
the shader converter can merge the previous and following calculations sothat
the whole block may be mapped to four larger instructions that also take four
cycles.

On the other hand the ALU can calculate a 4D dot product every cycle. It
has been chosen to be specially optimized, because it is a very important and
often used operation. Even the most simple but useful shader does a vector-
matrix multiplication that can be calculated using four 4D dot products. A large
number of other instructions using only multiplications and additions can be
reordered and mapped to dot products. But the most important reason for the
dot product is the fact that it has only one scalar result and fits perfectly to the
limited register array that can only write one result value. It is also slightly

10

cheaper than a parallel componentwise multiplication and addition because it
only needs three addition modules.

There is the possibility to output directly the intermediate 2D dot product
and to skip the last addition for a lower latency. This can be useful when
interpolating between two vectors. The additional multiplier outside of the dot
product gives the ability to multiply four floating-point numbers in one cycle.
This is important for calculating multi-linear functions that could otherwise
only be achieved by a large number of cumbersome repeated high latency dot
products.

This design cannot be enhanced any further. Adding another instruction
type extends the multiplexer at the output of the ALU and leads to increased
complexity. The timing constraints will not be met and the required clock
speed of 100MHz cannot be achieved.

The new hardware component has been tested with a mesh viewer. The
viewer is running on the PowerPC CPU, but the vertex shader can be calcu-
lated either in software or hardware to compare the performance. The triangles
are not filled and the mesh is rendered as a point model (bunny model from
[2]). We want to measure the speed of the vertex calculations and in a real
application the expensive triangle filling would also be done in hardware. For
each configuration 100 frames have been rendered several times with different
point counts. The time spans are very precisely measured directly on the board
with a special 64 bit register that counts the CPU cycles. The vertex shader
consists of six instructions that calculate the coordinates and the lighting from
a directional light source.

Comparing the results both for software and hardware it is obvious that the
hardware accelerated version is much faster, see Table 4. The last column of
Table 4 contains the ratio between software and hardware performance.The
ratio is higher when rendering more vertices, because there is a fixed overhead
per frame for clearing the color and depth buffers.

Vertex Count Hardware Software Software/Hardware

5000 3.607s 13.32s 3.693
10000 4.832s 24.25s 5.019
15000 6.104s 35.22s 5.770
20000 7.409s 46.26s 6.244

Table 4. Performance results for 100 frames [sec].

11

6. Conclusion

We have introduced a hardware accelerator for a vertex shader. Ourde-
sign consumes few resources (slices) on FPGA, while supporting almost all
functions of the common language for such data processingVertex Shader 1.1.
Compared to a software only version a significant speed advantage couldbe
achieved. This application is suitable for the domain of embedded systems.

Figure 4. This bunny consist of approximately 20.000 vertices. [2].

References

[1] Jerald Yoo Ju-Ho Sohn, Jeong-Ho Woo and Hoi-Jun Yoo. Design and test of fixed-point
multimedia co-processor for mobile applications. InDATE 2006, 2006.

[2] Leif Kobbelt. Hauptpraktikum: Special effects SS05, 2005.http://www-i8.
informatik.rwth-aachen.de/old-site/teaching/ss05/praktikum_sfx/ [date:
09/12/2006].

[3] Chris Lomont. Fast inverse square root, 2003.http://www.math.purdue.edu/

~clomont/Math/Papers/2003/InvSqrt.pdf [date: 2003].

[4] Microsoft Corporation. Directx sdk, 2006.http://www.microsoft.com/directx
[date: 09/12/2006].

[5] Iain Richardson.H.264 and MPEG-4 - video compression. Wiley, 2003.

[6] Henry Styles and Wayne Luk. Customising graphics applications: Techniques and pro-
gramming interface. InIEEE Symposium on Field-Programmable Custom Computing
Machines 2000, 2000.

[7] symbian.com. Bitboys introduces vector graphics processor formobile devices at game
developers conference.www.symbian.com, 2005.

[8] David Thomas and Wayne Luk.Implementing Graphics Shaders Using FPGAs, page
1173. Lecture Notes in Computer Science. Springer Berlin / Heidelberg,2004.

[9] Xilinx Inc. Virtex-4 documentation, 2006.http://www.xilinx.com/virtex4 [date:
09/12/2006].

