
IMPLEMENTING REAL-TIME ALGORITHMS BY
USING THE AAA PROTOTYPING METHODOLOGY

Pierre Niang, Thierry Grandpierre, Mohamed Akil
ESIEE Paris, Lab. A2SI, Cite Descarte BP 99, Noisy Le Grand 93160, Cedex France

niangp@esiee.fr; t.grandpierre@esiee.fr; akilm@esiee.fr

Abstract This paper presents a system-level methodology (AAA) for signal and image
processing algorithms onto circuit architecture. This AAA (Algorithm Architec-
ture Adequation) methodology is added and implemented in an existing software
dedicated to the fast prototyping and optimization of real-time embedded algo-
rithms onto multicomponent architectures. The resulting tool, called SynDEx-
IC, is a free graphical Computer-Aided Design (CAD) software. It supports
different features: algorithm and architecture specifications, data path and con-
trol path synthesis, performances prediction, optimizations and RTL generation.

Introduction

Digital signal processing applications, including image processing algo-
rithms, require growing computational power especially when they are exe-
cuted under real-time constraints. This power may be achieved by the high
performance of multicomponent architectures based on programmable compo-
nents (processors) which offer flexibility and non programmable components
(reconfigurable circuits) which offer higher performances with less flexibili-
ties. Consequently, there is a need for dedicated high level design methodol-
ogy, associated to efficient software environments to help the real-time appli-
cation designer to solve the specification, validation optimization and synthesis
problems. Several research efforts have addressed the issue of design space ex-
ploration and performance analysis of the embedded systems. Therefore, some
methodologies and tools have been developed to help designers for the im-
plementation process. Among these different researches for multicomponent
designs, one may cite the SPADE methodology [LWVD01] and the CODEF
tool [ACCG01]. Although these tools are very efficient, none of them is able
to bring together under real-time and resources constraints: unified models,
graphical specification, performances prediction, generation of distributed and
optimized executives for programmable part and generation of optimized RTL

2

code for configurable part. Actually, the tool associated to AAA methodology
[GS03] is named SynDEx. It supports mainly multiprocessor architectures but
does not allow to address the optimization and VHDL generation process of
configurable part. Hence, there is a need to extend the AAA for circuit and
to develop an associated tool. The presented work is an intermediate step for
tending towards a codesign tool associated to the AAA methodology. There
are several tools allowing to automate the optimized hardware implementation
for reconfigurable circuits from a high-level design specification. One may
cite Esterel Studio tool, where the user captures a design specification and then
automatically generates the hardware description in HDL-RTL. Another high-
level synthesis framework, SPARK [GDGN03], provides a number of code
transformations techniques. SPARK takes behavioral C code as input and gen-
erates Register Transfer Logic (RTL) code. This RTL code may be synthesized
and mapped onto an FPGA. One may also cite Simulink which is an extension
of MATLAB that allows to create algorithm in a graphical fashion. This al-
lows the engineer to visually follow algorithms without getting lost in low level
code. Simulink uses a System Generator which takes this graphical algorith-
mic approach and extends it to FPGA development by using special Simulink
blocks. However, none of them is integrated or interfaced with a codesign
tool for the multicomponent implementations. The remainder of this paper is
centered on the AAA/SynDEx-IC and the implementation of image process-
ing applications by using SynDEx-IC tool. In Section 1, the transformation
flow used by AAA methodology is introduced. In Section 2 the software tool
SynDEx-IC which implements the AAA methodology for circuits is presented.
Section 3 introduces the implementation of image processing onto an FPGA.
Finally, Section 4 concludes and discusses the future work.

1. AAA Methodology for integrated circuits

AAA is supported by SynDEx tool which is based on dedicated heuristics
for the distribution and scheduling of a given algorithm onto programmable
components. SynDEx uses graph theory in order to model multiprocessor ar-
chitectures, applicative algorithms, the optimization and code generation. We
will extend the AAA methodology for integrated circuits. In the case where
the implementation does not satisfy the constraints specified by the user, we
apply an optimization process in order to reduce the latency by increasing the
number of circuit resources used.

Algorithm specification

The algorithm is modelled by an oriented hyper-graph Gal of operations
(graph vertices O), its execution is partially ordered by their data-dependences
(oriented graph edges D with D,Gal = (O,D)). In the algorithm graph, each

Implementing real-time algorithms by using the AAA prototyping methodology 3

Inmat
(sensor)

Invect
(sensor) (condition_in)

C_in

IterateAdd

(sensor)
Selection

(condition_in)
C_in

Fork

Diffuse

Fork

Fork

Mult Join

Zero
(constant)

(condition_out)

C_out

(actuator)
outvect

3

3x3 3x3

3 3

3 1

1

1

FF2 (factorization frontier 2)

FF1 (factorization frontier 1)

3

3

3

outvect = Inmat * invect
If selection = 0 then

If selection = 1 then
outvect = invect

Figure 1. Algorithm graph of CMVP

vertex represents a computation operation, an input/output operation, a con-
ditioned operation (if then else) or a finite factorization frontier for repetitive
subgraphs (for i=x to y): a finite factorization frontier is an abstraction delim-
ited by factorization frontier vertices (Fork, Diffuse, Join, Iterate), an infinite
factorization frontier is the interface with the external environment delimited
by input/output operation. This data-dependence graph, also called directed
acyclic graph (DAG), exhibits a potential parallelism. It is important to note
that the factorization serves for simplifying the algorithm specification and it
is used to explore different optimized implementations. It does not involve a
sequential execution inevitably (i.e a "loop") in the circuit. To illustrate the
algorithm model, the figure 1 presents a Conditioning Matrix-Vector Product
(CMVP). If "selection" input is equal to 1 then "outvect" output copy the "in-
vect" input else if "selection" input is equal to 0 then we have the Matrix-Vector
("inmat" and "invect") product on the "outvect" output. The choice of this ex-
ample was motivated by regular computations on different array data which
highlight the use of the factorization process.

High level synthesis based upon graph transformations

The hardware implementation of the factorized data dependence graph con-
sists of providing a corresponding implementation for the data path and the
control path of the algorithm. In this part of the paper, the high level synthesis
of the control path is introduced [LAGS04]. The control path corresponds to
the logic functions to add to the data path, in order to control the multiplex-
ers and the transitions of the registers composing the modules performing the
graph operations. The control path is then obtained for synchronization of data

4

transfer between registers. In order to synthesis the control path, SynDEx-
IC starts by building the neighborhood graph corresponding to the algorithm
graph. The neighborhood graph is an interconnection graph of the factoriza-
tion frontiers, the sequential operations (operation driven by a clock), the oper-
ations specific to conditioning (Condition In, Condition Out) and the combi-
native operations (operation whose response at the moment t depends only on
its input at the moment t). According to the data dependences relating theses
vertices, every vertex may be a consumer or/and producer relatively to another
vertex. The control path graph is composed of CU vertices (Control Unit)
connected between them according to the connections relations of the neigh-
borhood graph. Moreover, if the consumer data comes from various producers
with different propagation time, it is necessary to use a synchronized data trans-
fer process. The synchronization is possible through a request/acknowledge
communication protocol. Thus, the synchronization of the circuit implement-
ing the algorithm is reduced to the synchronization of the request/acknowledge
signals of the set of CU vertices. In the control path graph, we have four kinds
of CU vertices: CU of factorization frontier, CU of a sequential operation, CU
of a combinative operation block delay and CU of a conditioning operation.

Optimization of the implementation

The target architecture is made of one reconfigurable circuit (FPGA). Once
the algorithm and architecture are specified, it is necessary to characterize each
operation in order to be able to perform the implementation optimization pro-
cess. In this context, the designers have to specify the latency time and the
logical units number occupied on the FPGA by each operation of the algo-
rithm graph. The information can be obtained by traditional synthesis tools.
A heuristic was developed and implemented to check an adequate implemen-

de
m

ux

reg.

reg.

reg.

m
ux FF2

a − sequential implementation of FF1 frontier

Control
unit of FF1

ouput[3]

3
Join

1
input[3x3]

3x3

Fork

1

FF2

FF2

FF2

input[3x3]

3x3

3

ouput[3]

3

3

3
1

1

1

b − parallel implementation of FF1 frontier

Control
unit

m
ux FF2

FF2

reg.

reg.

de
m

ux

3

1

1

3x3

input[3x3]

3

Fork

Join

c − semi−parallel implementation of FF1 frontier

FF1 frontier

3

ouput[3]

FF1 frontierFF1 frontier

Figure 2. Three examples of implementation of FF1 frontier of the CMVP

Implementing real-time algorithms by using the AAA prototyping methodology 5

tation for the available circuit while satisfying the constraint latency which be
specified by designers. For each repeated hierarchical operation, there are sev-
eral possible implementations. On an FPGA, the CMVP can be implemented
either in a purely sequential way (figure 2-a), either in a purely parallel way
(figure 2-b) or in a semi-parallel way i.e. mixing the sequential and parallel
implementation (figure 2-c). The sequential implementations require the syn-
thesis of a dedicated control path (constituted of multiplexers, demultiplexers,
registers and control units). The purely sequential implementation (a) uses less
surface (number of logical units occupied by the set of algorithm graph opera-
tions) but is slower. The purely parallel implementation (b) is faster but occu-
pies the maximum of surface on the FPGA. The implementation semi-parallel
(c) is an example of trade-off between the occupied surface and the latency
time, it generates an execution time twice faster than that of (a) and requires
also about twice more surface. The combination of all the possible implemen-
tations of the repeated operations constitutes the implementations space which
have to be explored in order to find a optimized solution. Consequently, for
a given algorithm graph, there is a great number of possible implementations.
Among all these implementations, we have to choose one satisfying the real-
time latency constraint and fitting into the FPGA. This is why we developed
heuristic ones guided by a cost function. The cost function allows to compare
only a part of the solutions which seems most interesting of this implemen-
tations space. Thus, the heuristic is based on an greedy algorithm rapid and
effective whose cost function f is based over the critical path length of the im-
plementation graph: it takes into account the latency of the application T and
the implementation surface A which are estimated (performance prediction)
by SynDEx-IC starting from the characterization.

2. SynDEx-IC: a software framework

SynDEx-IC tool is developed starting from the version 6.6.1 of SynDEx.
The coding was performed in CAML language as for SynDEx. The design
flow of SynDEx-IC presented in figure 3 is made up of three parts which will
be introduced below.

Applications specification

This part is the starting point of SynDEx-IC design flow (Cf part A of the
figure 3). The figure 4 details the graphical interface for the algorithm spec-
ification: each box represents either a computation operation ("Add", "Mul")
or an input/output operation ("input", "output") which is used to transmit data
from one iteration to another. Then, it is necessary to specify: the algorithm
latency constraint (execution time of all the application) and the features of
the target FPGA (for each element of the algorithm graph, it is necessary to

6

System library: VHDLlib.m4

User library : name_application.m4v

Constraints
satisfied ?

macro

No

Yes

A− application specification

processor

specification
Algorithm

FCDDG

graph
Algorithm

(data path)

of each frontier
factor

Repetition

Determination
Frontier
Factorization

(area, latency)

Estimator

Optimisation
(Heuristics)

Implementation
graph

Neighborhod
graph

Control path

graph

generation

RTL code
Leonardo
spectrum
synthesis

Designer

Graphical user
interface

Architecture

(characterization)
specification

C − VHDL code generation

B − synthesis based upon graph transformation

Figure 3. The AAA/SynDEx-IC design flow

define its latency and the quantity of resources necessary to its material im-
plementation on the target component). Besides, the user needs to specify the
performing frequency of all the sequential operations used in the algorithm.

Graph transformation and optimization

This section is the core of SynDEx-IC design flow (Cf part B of the fig-
ure 3). From the algorithm graph (data path) of the application, the graph
transformation of all the graph is proceeded. The function of graph transfor-
mation allows the insertion of the specific operations which make it possible
to mark the repetition and of the conditioning operations: Fork, Join, Iterate,
Diffuse, Condition In, Condition Out. Thus, the determination of the frontiers
and of the factorization ratio of each frontier is processed before to begin the
optimization heuristic. It seeks an optimized implementation graph of the ap-
plication which satisfies the latency constraint. This implementation graph is
used to build the neighborhood graph in order to synthetize the control path.

Automatic VHDL code generation

In order to implement the application algorithm onto the corresponding cir-
cuit we need to generate the data path as well as the control path. This code
generation is done by way of an intermediate macro code which is used to have
a code generator independent of the hardware description language Each op-

Implementing real-time algorithms by using the AAA prototyping methodology 7

If selection = 0 then
outvect = inmat * invect

If selection = 1 then
outvect = invect

Matrix−Vector Product FF1 frontier FF2 frontier Repetitive Subgraph of FF2 frontier

Figure 4. SynDEx-IC snapshot of a CMVP

eration of the optimized implementation graph corresponds to a RTL module
which will be implemented on a reconfigurable component.

3. FPGA implementation of the processing algorithms

In order to illustrate the use of SynDEx-IC tool, real time algorithms in im-
age processing were implemented onto Xilinx FPGA (spartan XC2S100). The
aim of the work is to carry out an application of video processing using an elec-
tronic card based on FPGA. Video processing algorithms were implemented as
well as an electronic card for interfacing the FPGA with a video camera and
a monitor. The FPGA treating only digital signals, it is necessary to digitize
the composite video signal. Thus, one will use an analogical/digital converter
(ADC) so that the FPGA can process the pixels, as well as a digital/analogical
converter (DAC) to restore an analogical signal at exit. Moreover to process se-
quence a video, it is necessary to use the synchronization signals of the video.
For that, one will use an extractor of synchronization.

Implementation onto FPGA using SynDEx-IC software

Several filters (robert, prewitt, sobel, canny-deriche, low pass) were devel-
oped. However, in this paper only sobel and prewitt filters (contours extrac-
tion) will be introduced. In order to implement these filters, one started by
specifying the data-flow graph of the application, the latency constraint and

8

then the characterization of the target component. Thus, to obtain optimized
VHDL code of the application, SynDEx-IC performs the heuristic of optimiza-
tion. The algorithmic specification of filters may be obtained from the trans-
form in Z of the transfer function. This specification can also be made starting
from the application of a convolution matrix. The transfer function of the so-

Main Algorithm

Vertical component: Hv(z)

Horizontal component: Hh(z)

Figure 5. snapshot of sobel filter

bel filter is divided in two parts: the horizontal component and the vertical
component. The transfer function of the horizontal component is presented as
follows: Hh(z) = (1 + z−1)2(1 − z−2N)
while the vertical component: Hv(z) = (1 − z−2)(1 + z−N)2

The figure 5 is a SynDEx-IC specification of the sobel filter using the transfer
function. In this specification, the initial image is treated by each component
(horizontal and vertical) of the filters, then the absolute values ("abs") of the
pixels of the two resulting images are summoned two to two (the calculation
approximation of the gradient result amplitude: modulate of the two images
resulting). Finally, we have a function of threshold ("seuil") which makes it
possible to lower the level of gray of the image result. The sensor "input" rep-
resents the input pixels while the actuator "output" represents the output pixels.
This algorithmic specification needs also two storage operations: a component

Implementing real-time algorithms by using the AAA prototyping methodology 9

Filters Number of CLB Number of Flip Flop Number of Ram block critical time (ns)
Sobel (transfer function) 376 of 1200 397 of 2400 8 of 10 36.066

Sobel (hand filter) 334 of 1200 356 of 2400 8 of 10 31.174
Prewitt (transfer function) 579 of 1200 424 of 2400 10 of 10 35.946

Prewitt (hand filter) 525 of 1200 386 of 2400 10 of 10 29.572

Table 1. comparison table of the filters synthesis

"retard" allowing to store a pixel during a signal of clock and a component
"retardN" allowing to store a pixel throughout all a line.

Implementation results

Starting from code generated by SynDEx-IC, one simulated the filters of
sobel and prewitt by using the modelsim tool. Thus, one obtained images re-
sults enough interesting for various input images. If one compares the results
obtained for code generated by SynDEx-IC with the results obtained by cod-
ing these filters in language C, one noted that they were identical. Thus, for
somebody who knows neither the VHDL, nor the language C it may be more
practical to use graphical specification SynDEx-IC to design these filters of im-
age processing. Once the simulation of generated code made, one proceeded
to the implementing of these filters on the Spartan by using the xilinx webpack
tool. These logic synthesis results seen in the TABLE 1 show that compared
to the hand filters (make by a manual designer), the SynDEx-IC filters are less
fast but easier and faster to design for the user. A reduction area estimated to
about 10% and a increasing delay time estimated to about 15% are achieved
for hand compared to SynDEx-IC.

4. Conclusion and Outlook

Given a single data-flow graph specification, it is possible to generate a mul-
tiprocessor optimized implementation using SynDEx or an FPGA optimized
implementation using SynDEx-IC. Moreover, the development flow is unified
from the application designer point of view (figure 6). We have presented the
different steps to generate a complete RTL design corresponding to the opti-
mized implementation of an application specified on SynDEx-IC.

This work is an intermediate step in order to finally provide a methodology
allowing to automate the optimized hardware/software implementation. The
next step will be to merge SynDEx-IC and SynDEx in order to support mixed
parallel architectures (architectures with programmable components and re-
configurable circuit). To support mixed parallel architectures, the partition-
ing problem between programmable and configurable components should be

10

multi component
architecture

(programmable
components)

Algorithm
specification

Communications
synthesis

Distribution
and Scheduling

Heuristics

Performances
estimator

Distributed executive
generator

RTL generator

(VHDL)

performances
estimator

path synthesisheuristics

configurable
component

"Loop unrolling"

GRAPHICAL INTERFACE

AAA/SynDEx

Control and data

AAA extended/SynDEx−IC

Figure 6. AAA methodology and its extension

resolved in first. For that purpose, it will be necessary to connect SynDEx
and SynDEx-IC heuristics. We are developing new hardware/software parti-
tioning heuristics for programmable and configurable components. Thus, the
automatic communication synthesis between these two parts is being studied.
This work is supported by the Conseil Régional d’Ile de France (PRIMPROC
Project).

References

[ACCG01] M. Auguin, L. Capella, F. Cuesta, and E. Gresset. Codef: A system level design
space exploration tool. In Proceedings of International Conference on Acous-
tics, Speech, and Signal Processing, page 4, Salt Lake City, USA, may 2001.

[GDGN03] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. Spark, high-level synthesis frame-
work for applying parallelizing compiler transformations. In Intl. Conf. on VLSI
Design, Mumbai, India, January 2003.

[GS03] T. Grandpierre and Y. Sorel. From algorithm and architecture specifications
to automatic generation of distributed real-time executives: a seamless flow of
graphs transformations. In First ACM & IEEE Intl. Conf. on formal methods and
models for codesign. MEMOCODE’03, Mt Saint-Michel, France, june 2003.

[LAGS04] L.Kaouane, M. Akil, T. Grandpierre, and Y. Sorel. A methodology to implement
real-time applications on reconfigurable circuits. In Special issue on Engin. of
Config. Systems of the Journal of Supercomputing. Kluwer Academic, 2004.

[LWVD01] P. Lieverse, P. Van Der Wolf, K. Vissers, and E. Deprettere. A methodology for
architecture exploration of heterogeneous signal processing systems. In Journal
of VLSI Signal Processing Systems, editor, Special issue on signal processing
systems design and implementation, volume 29, page 10, Hingham, MA, USA,
November 2001. Kluwer Academic Publishers.

