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Abstract

The tough competition among automotive companies creatgigla cost
pressure on the OEMs. Combined with shorter innovationesydesting new
safety-critical functions becomes an increasingly difficssue [4]. In the au-
tomotive industry about 55% of breakdowns can be traced tmpkoblems in
electronic systems. About 30% of these incidents are estiita be caused by
timing problems [7]. It is necessary to develop new appreadbr testing the
timing behavior on embedded and real-time systems.

This work describes the integration of runtime measuremasing an ex-
ternal measurement device into a framework for measurebesgd worst-case
execution time calculations. We show that especially foalsplatforms using
an external measurement device is a reasonable way to eefa@cution time
measurements. Such platforms can be identified by the laektiofie source,
limited memory, and the lack of an external interface. Thespnted device
uses two pins on the target to perform run-time measuremedntsorks cy-
cle accurate for frequencies up to 200MHz, which should Hfiécgnt for most
embedded devices.

1. I ntroduction

Over the last years more and more automotive subsystemshblegvere-
placed by electronic control units (ECUs) which are intarscted by high
dependable bus systems like FlexRay, TTP/C or CAN. Muchrtelffas been
put into increasing the reliability of communication andhaduling and great
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advances in these areas have been made. However, timingianakpecially
worst-case Execution Time (WCET) analysis of automotivpliaptions, is
still a challenge. This is mainly due to two factors which auatively in-
crease complexity of timing analysis: More and more fundliy is inte-
grated within single ECUs [4] and the architecture of thecpssors is getting
more complex, especially by features such as caches, mipglibranch pre-
diction, out of order execution and others [3]. Additiogafirocessor vendors
do not offer accurate data sheets describing the featurbeioforocessors, so
that those are unknown or have to be figured out by reverseesing [8].
Without detailed knowledge about processor internalscsteming analysis,
that is calculating the time required for the execution afewithout actually
executing it, is often not possible.

Therefore, novel approaches use a combination of statiyaasand ex-
ecution time measurements to calculate a WCET bound [10¢ prbposed
method consists of static analysis, control flow graph dexsition, test data
generation, execution-time measurement and the final leéilou step. All
steps are performed automatically without user interactithe method is de-
scribed in Section 3.

Computing resources of embedded applications are oftetetirand there-
fore not suitable for runtime measurements. Typical litiotes are the lack of
a time source, limited memory (no location to store measargmata), and the
lack of an external interface (no way to transfer measuré¢icheia to host). As
a solution we developed an external measurement devicehugibased on an
FPGA and therefore very flexible and inexpensive. We dematesthe usage
of the execution time measurement device by performing WC€&dulations
using a HSC12 microcontroller evaluation board. The prega®lution uses
only a single instruction per measurement point and two fainthe interface
to the measurement device.

Structure of thisArticle

This paper is structured as follows: In Section 2 we presaated work in
the domain of dynamic WCET estimation and execution timesueanent.
The measurement-based WCET analysis approach is desamilssttion 3.
Section 4 outlines basic requirements when performing i@t time mea-
surements for timing analysis. In Section 5 we describe treMrare and
firmware design of the measurement device. Section 6 expleiw execution
time measurements are performed by the timing analysissinark. The con-
ducted experiments are described in Section 7. At lastj@e8tgives a short
conclusion and an overview of open topics.



Contributions

The first contribution is the introduction of a dedicatedtimme measure-
ment device (RMD). The device works for CPU frequencies aioup00 MHz.
Itis linked to the target using a simple 2-wire connectioinc8 the device is
built using a field programmable gate array (FPGA) it canlgés extended
or reconfigured and is very flexible. The device is especiaigful to perform
execution time measurements on targets with limited ressur

Second, the device is seamlessly integrated into an novelafged measurement-
based WCET calculation framework as described in [10]. Akmtions of
the measurement-based WCET analysis are performed fuifyreatic with-
out user interaction.

2. Related Wor k

Petters [5] describes a method to split an application dawtnteasure-
ment blocks” and to enforce execution paths by replacinglitiomal jumps
either by NOPs or unconditional jumps, eliminating the needest data. The
drawback is that the application is partitioned manuallg tat the measured,
semantically changed application may differ from the rexgli@ation.

Bernat et al. introduce the term of a “probabilistic hard-teae system”.
They combine a segmented measurement approach and stisignhow-
ever they use test data supplied by the user. Therefore #motguarantee a
WCET bound but only give a probabilistic estimation, basadre used test
data [1].

Petters describes various ways to collect execution trafcagplications in
[6]. He outlines various ways how to place “observation fsJiand discusses
benefits and drawbacks of the presented methods.

3. M easurement-Based WCET Analysis

The proposed measurement-based timing analysis (MBTA9rf®pned in
five steps [9] as shown in Figure 1

The individual steps are explicitly described below. Theasugement de-
vice hardware is used in stép but the description of the other steps is nec-
essary to understand how the MBTA approach works. It is atgmitant to
mention that the current implementation is limited to airycbde (code with-
out loops). Since most modeling tools typically producecticycode this does
not strongly limit the applicability of the presented meatho

Static Program Analysis [

This step is used to extract structural and semantic infoomdrom the C
source code. The information is needed to perform the negsst
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Figure 1. MBTA Framework Overview

Control Flow Graph Decomposition [

During this phase, the control flow gra@tG of the analyzed program is
split up into smaller program segmerRS The subdivision is controlled by
the number of execution paths which remain within each PSnaber which
is denoted apath bound The command line argument for the path bound
is adjustable from 1 to% and controls the correlation between calculation
time and the number of required measurements: A high pathdoauses a
lower number of PS and less measurement points but the sumeobitgon
paths through all PS increases. Since each execution padtbfPS has to be
measured, a test data set is required for each path. Siricatascalculation
is very time consuming, the calculation time rises signifitya[11].

Test Data Generation O

In this step test data is calculated to execute all execyi#ihs of each PS.
The test data is acquired using a multi-stage process: Raséarch which
is very fast is used to find most data sets. Where random sé&ilshmodel
checking is used. Model checking is exhaustive, that mdafheie exists a
data set to execute a certain path, then it will be found. daia can be found
for a particular execution path then the path is semanjidafeasible. An
example for semantically infeasible paths are mutual esketuconditions in
consecutivei f statements. We used the CBMC model checker [2], which is a
very fast bounded model checker that can directly procesp@.i

Execution Time M easurements [J

Using the generated test data all feasible paths within B&care executed.
The result of this step is an execution time profile for eactwRigh includes
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the execution time of each path. The WCET of a given PS is thérman of
all execution time values.

WCET Calculation O

The last step is the calculation of a WCET bound. The curraptémenta-
tion of the WCET calculation tool described in [10] uses ajest path search
algorithm for a directed, acyclic graph which a single startl ending node
to compute a WCET bound over all PS. This can lead to overastms un-
der certain circumstances, namely when the execution pdkththe WCET
of PS, inhibits the execution of the path featuring the WCETRS,. In
this case WCETRS,) and WCET{S,) are accumulated in the WCET of the
whole application leading to overestimation. This effeah ®e reduced by
increasing the path bound.

4, Per for ming Execution Time M easur ements

Execution time measurements are a precondition for theridesictiming
analysis method. There are various methods to place instrtation points
and to perform measurements [6].

As a first method, execution traces can be made, using a cgcleae
simulator. In most cases this is not possible due to missiAg @&odels and
documentation.

Second, pure software instrumentation can be used: A femigi®ons are
inserted into the application that read the value of an tatietime source,
commonly a cycle counter located in the CPU, and write it tatpat port or to
a memory location. The drawback of this method is that s¢iestauctions are
needed and therefore the code size and the execution tinieazmsiderably
increased.

The third option is to use pure hardware instrumentationogid analyzer
is connected to the address bus and records the access tertiaryn The ad-
vantage of this method is that no alterations on the apjgicatare necessary.
The drawback of this method is that it is expensive (the l@gialyzer) and
that the connection to the address bus is not always possitie CPU has an
internal instruction cache.

An interesting alternative is to use software supportedware instrumen-
tation. We selected this option because the modificationhesoftware are
very lightweight (a single assembler instruction is sudfit) and the resource
and execution time consumption on the target hardware ifl.sBiace logic
analyzers are often difficult to control from within an ajppliion, expensive
and oversized for this task we decided to design a custontel¢wiperform
execution time measurements.
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5. Runtime M easurement Device (RM D)

The Runtime Measurement Device (RMD) acts as interface deiwhe
target and the host. It collects timestamps issued fromattgeet and transfers
them to the host. The timestamps are internally generated.

The RMD consists of a custom designed FPGA board with an #&Rer
Cycloné" EP1C12C6 device which is additionally equipped with 64k>of e
ternal memory (for the CPU core) and interface circuits f@B,) Ethernet,
RS232, RS485, ISO-K, and CAN. A modern FPGA evaluation beardalso
be used instead, however with a total price of approxima&800.00 (with
USB interface only) the custom made board is cheaper thamh evakiation
boards. The firmware is split up in two parts. The first parsran a NIO®
CPU core which is clocked with 50MHz and controls the comroatidn with
the host computer. The second part is written in VHDL (VerghiBSpeed In-
tegrated Circuit Hardware Description Language) and dapsrat a clock fre-
guency of 200MHz. This part contains the time base, whiclB2 bit counter,
a FIFO to store up to 128 measurement values until they amefenaed to the
host and additional glue logic which recognizes measurépunts and stores
the actual counter value in the FIFO and synchronizes coroation with the
CPU core.

Since most of the design is implemented within the FPGA firnenthe
whole method is very flexible and can easily be adopted fdioocugpplication
needs. Changes in the configuration can simply be made bpdipp a new
firmware design on the FPGA.

Operation

The measurement device is designed to work in two differemdesn. The
first mode, the 2-wire mode, uses two dedicated IO pins fonthasurements
as depicted in Figure 2. Measurement starts when one sigops do low.
The internal counter is released and starts counting. Oh eeasurement
point, one signal drops to low, causing the counter valueetstbred in the
FIFO, and the other signal rises to high. If both signals anefbr a adjustable
amount of time, the measurement stops. According to the BIE©up to 128
measurement points can be recorded on a single run.

The second mode is the analyzer mode. This mode is desigmeabrfp
small devices. In this mode the measurement device is ctethéx the CPU
address bus and records the time at certain predefineddosafihe addresses
where time tamps have to be recorded are stored in a one EtRAdA. Mea-
surements are taken when the output of the RAM is logical THe advantage
of this mode is that there need be no alterations on the taggit. The dis-
advantages are that knowledge about the physical locatithe aneasurement
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Figure 2. 2-Wire Interface Signal Waveform

points is hecessary and that physical access to the addresd the device is
required, so it cannot be used for devices with on-board ERE)M storage.

6. Integration in the Analysis Framewor k

The measurement framework consists of a set of virtual Hasses shown
in Figure 3. For each virtual base class a non-virtual sisiscla loaded at
runtime, according to the underlying hardware.

compile

+prepareCompile(string fname)()| counter
+make()()
+getBinaryName()() : string
+removeFiles()() +prepareCounter()()
+cleanup()() +readResult()() : long
+getVersion()() +close()()

Compile_HCS12| CounterDevice_HCS12Internal| |CounterDevice_HCS12Externall

,,,,,,,,,,,,,,,,,,,,

loader target

+load(string binary name)()| +wait_for_target_ready()()|
+start_program()()
+reset_target()()

Loader_HCS12|

Target_HCS12

Figure 3. Measurement Application Class Framework [9]

The compileclass is used to compile the application on the host and to
generate a stub for the target to handle the communicatitmtié host, load
the test data, and to execute the application. ddwnterclass activates the
source code for starting and stopping the counter on thettargd handles the
communication between the host and the counting deviceotty, mternal and
external counting devices. Theader class is used to upload the application
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binary onto the target, and tt&rgetclass handles the communication between
target and host from the host side.

The proposed design makes the execution time measuremglitatipn
very flexible and allows an easy adoption for new target hardwSince the
measurement runs are all performed in the same way, usiygaodifferent
set of subclasses, the whole framework can be adopted todumgw target
platforms by implementing additional subclasses.

7. Experimental Results

We performed a series of tests using the measurement-baS&d \&haly-
sis framework in combination with the internal counter devof the HCS12
microcontroller (HCS1ANTERNAL) and the runtime measurement device
(HCS12EXTERNAL). As expected, we got slightly bigger values using
HCS12INTERNAL during first test runs. This is caused by the diffaren-
strumentation methods (using the internal counter reguirere instructions
and therefore takes longer) and can be eliminated througiraigon. To cal-
ibrate, a series of zero-length code sequences are meamuleitie result is
subtracted from the actual measurements. For all testsethdting WCET
values were the same using both measurement methods.

The test cases we used were developed from a simple exaropiefr re-
gression tests (nicpartitioning.semantisclrichtig) and from automotive ap-
plications (ADCKonv, AktuatorSysCtrl, and AktuatorMotegler). Figure 4
[9] shows the test results for all case studies for diffefégth Bounds (1)

As mentioned befordy controls the maximum number of syntactically possi-
ble paths within a Program Segment (PS) after the CFG decsitigrostep.
“Program Segments (PS$hows in how many segments the Application was
broken down. The next columrPaths After Decl” represents the sum of all
syntactically possible paths through each PSs of the atjglit Interesting
values are at the first and on the last line of each test cas@nWhquals 1
the total number of paths after the decomposition step edghal number of
basic blocks, since one basic block comprises exactly otie pathe last line
there is only a single PS and therefore the number of patbisd@dtomposition
equals the number of syntactically possible paths of thdevéioplication.

“Paths Heuristit and “Paths MC describe how many paths were covered
by random test data generation and how many by model checkingeasi-
ble Paths denotes the number of infeasible paths that were discdvaueing
model checking. Note that these paths are also includeginumber of paths
covered by model checking. Infeasible paths are paths thagyatactically
possible but can never be executed because the semantiesaafde does not
allow so. Since the number of paths covered by model chedkisgnilar to
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Application Name| o| | o| o | & =2| F| F| O] F|IF|l o
1 30 30 6| 24 0| 151 34| 175 2091.425.8 1.0
nice_partitioning. 5| 6| 14 4 10 0 151 15 39| 54/1.502.8 2.3
semantisclrichtig | 10, 3| 14{ 3| 11| 0| 151 16/ 21| 37/1.451.5 4.7
(46 LOC) 200 2| 18 2| 16 3| 150 22| 16 38/1.391.1 9.0
100 1| 72 1] 71 46/ 129 106 12 1181.490.5 72.0
1/ 31 31 31 0 0| 872 24 192 216 n.al6.2 1.0
ADCKonv 100 3| 17| 8 9 8| 870 31 22 5313.442.4 5.7
(321 LOC) 100 2| 74 8 66 60 8724 220 17| 2373.331.2 37.0
100 1| 144 12| 132 132 872 483 11| 4943.660.9144.0
1| 54| 54{ 54 0 0] 173 26/ 318§ 344 n.al5.9 1.0
(Azngfgg’scm 10 14 36036 0 0 173 10 85 95 naj2.4 2.§
100 1| 97/ 18 79 72 131 191 10 2012.420.4 97.9
AktuatorMotorre- 1/171 171165 6 6| n.a] 4681289 1757178.07.8 1.0
gler (1150 10| 14 92 63 29 233445 841 116 95729.01.7| 6.6
LOC) 100 7| 336 57| 279 2473323 7732 62| 779427.710.7| 48.0
100 5|1455 82/13731325329841353 494140230.1{0.4/291.Q

Figure 4. Test Results Of Case Studies

the number of infeasible paths (except for the first examplke}kee that most
of the feasible paths could be found by random test data gtoer

“WCET Bound [cyc] gives the estimated WCET in processor cycles. To
identify performance bottlenecks we did not only measugetitme required
for the complete WCET estimation@verall Time) but also how much of
this time budget was consumed by the analysisnfe MC), which consists
mainly of model checking but also includes static analy§BG decomposi-
tion and random test data generation, and how much time wasuowed by
execution time measurementdifhe ETM), which consists of code genera-
tion, compilation and uploading the binary to the target.

We also observed the performance of our solution relativéihnéonumber

of paths, where Time MC / Path equals Z22<MC and Time ETM / Path

PathsMC
Time ETM : ; : : ;
equalsfeasiblepaths. While the time required for model checking a single path

within a PS is approximately constant for each test casdjrtteerequired for
the execution time measurement of an individual path drafgs thhe number
of program segments. This is due to the fact that the cumaplieimentation is
very simple and measures only a single PS at atime. To measatieer PS the
application needs to be recompiled and uploaded to thettaggen. On bigger
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applications higher values fdr should be used so the time fraction required
for recompilation and uploading is much less than for a gisxeamples. The
last column (Paths / P8 shows the average number of syntactically possible
paths through a PS.

Regarding the path bourlit can also be noted that the quality of the esti-
mated WCET bound improves with a rising path bound. This issed by the
fact that semantically infeasible paths are only detectethé model checker
when they are located within the same PS. Therefore, theebitpg PSs the
more infeasible paths can be eliminated.

The fact that the longest measurement runs took little mwoaa 1 hours
(for current industrial code) is very promising. Genergtiast data sets and
performing the necessary measurements manually for amcapph of this
size would take a few days at least. We think that this appraan signifi-
cantly improve the testing process. It should also be ndtattest data are
stored and reused for later runs. For applications feagumany infeasible
paths we are currently working on a solution to identify grewf infeasible
paths in a single run of the model checker.

With the case study “AktuatorMotorregler” we reached thenpatational
limit of the model checker when we sktto 1 therefore we could not get an
WCET estimation value in this case.

8. Conclusion and Further Work

We found that the measurement-based WCET analysis appmam-
bination with the presented device gives the applicatioreldger a powerful
tool to perform WCET analysis. The most powerful featurénit everything
is performed automatically. This saves valuable workingetiand eliminates
cumbersome tasks like test data generation and performarmuah measure-
ments. The newly introduced measurement device makessitpeso perform
run time measurements on small devices which normally wiagklthe appro-
priate hardware support (time source, memory or interfatie¢ measurement
device is cheap - and since it is based on a programmable degice - very
flexible, which allows the adaption for other hardware desiif necessary.

An important drawback is that, depending on the used RMDBetainter-
face, at least two signal pins are required to perform measents. Therefore
the measurement device cannot be used when less than twargifree.

The next step is to overcome limitations of the current meament frame-
work: loops and functions are not supported in the protatyjde are confident
that these are only limitations of the current design of tteeqiype and of the
measurement method itself. Currently a new version of tieéopype which
supports loops and function calls is in development.
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The test data generation by model checking can be boostedttiggcoff
infeasible subtrees in the dominator tree. If a node canaatehched then
all other nodes dominated by it are unreachable as well. Mewtbe current
implementation makes no use of this information and cheeks ¢eaf in the
dominator tree which represents an unique path within arprogegment.

An interesting area for improvement is the reconfigurati@mRMD firmware
from within the framework for different types of target hasate.

Additionally we are working on a solution to make the measaet-based
approach work on more complex architectures, as those ereaisingly used
in new embedded solutions. The presence of caches, pipainteout-of-order
execution units impose an internal state on the processtier&nt hardware
states at the same instruction can result in different di@cttimes. Therefore
we are searching ways to impose a well defined hardware shalie laosing a
minimum on performance.
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