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Abstract
The tough competition among automotive companies creates ahigh cost

pressure on the OEMs. Combined with shorter innovation cycles, testing new
safety-critical functions becomes an increasingly difficult issue [4]. In the au-
tomotive industry about 55% of breakdowns can be traced backto problems in
electronic systems. About 30% of these incidents are estimated to be caused by
timing problems [7]. It is necessary to develop new approaches for testing the
timing behavior on embedded and real-time systems.

This work describes the integration of runtime measurements using an ex-
ternal measurement device into a framework for measurement-based worst-case
execution time calculations. We show that especially for small platforms using
an external measurement device is a reasonable way to perform execution time
measurements. Such platforms can be identified by the lack ofa time source,
limited memory, and the lack of an external interface. The presented device
uses two pins on the target to perform run-time measurements. It works cy-
cle accurate for frequencies up to 200MHz, which should be sufficient for most
embedded devices.

1. Introduction

Over the last years more and more automotive subsystems havebeen re-
placed by electronic control units (ECUs) which are interconnected by high
dependable bus systems like FlexRay, TTP/C or CAN. Much effort has been
put into increasing the reliability of communication and scheduling and great
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advances in these areas have been made. However, timing analysis, especially
worst-case Execution Time (WCET) analysis of automotive applications, is
still a challenge. This is mainly due to two factors which cumulatively in-
crease complexity of timing analysis: More and more functionality is inte-
grated within single ECUs [4] and the architecture of the processors is getting
more complex, especially by features such as caches, pipelining, branch pre-
diction, out of order execution and others [3]. Additionally, processor vendors
do not offer accurate data sheets describing the features oftheir processors, so
that those are unknown or have to be figured out by reverse engineering [8].
Without detailed knowledge about processor internals static timing analysis,
that is calculating the time required for the execution of code without actually
executing it, is often not possible.

Therefore, novel approaches use a combination of static analysis and ex-
ecution time measurements to calculate a WCET bound [10]. The proposed
method consists of static analysis, control flow graph decomposition, test data
generation, execution-time measurement and the final calculation step. All
steps are performed automatically without user interaction. The method is de-
scribed in Section 3.

Computing resources of embedded applications are often limited and there-
fore not suitable for runtime measurements. Typical limitations are the lack of
a time source, limited memory (no location to store measurement data), and the
lack of an external interface (no way to transfer measurement data to host). As
a solution we developed an external measurement device, which is based on an
FPGA and therefore very flexible and inexpensive. We demonstrate the usage
of the execution time measurement device by performing WCETcalculations
using a HSC12 microcontroller evaluation board. The proposed solution uses
only a single instruction per measurement point and two pinsfor the interface
to the measurement device.

Structure of this Article

This paper is structured as follows: In Section 2 we present related work in
the domain of dynamic WCET estimation and execution time measurement.
The measurement-based WCET analysis approach is describedin Section 3.
Section 4 outlines basic requirements when performing execution time mea-
surements for timing analysis. In Section 5 we describe the hardware and
firmware design of the measurement device. Section 6 explains how execution
time measurements are performed by the timing analysis framework. The con-
ducted experiments are described in Section 7. At last, Section 8 gives a short
conclusion and an overview of open topics.
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Contributions

The first contribution is the introduction of a dedicated runtime measure-
ment device (RMD). The device works for CPU frequencies of upto 200 MHz.
It is linked to the target using a simple 2-wire connection. Since the device is
built using a field programmable gate array (FPGA) it can easily be extended
or reconfigured and is very flexible. The device is especiallyuseful to perform
execution time measurements on targets with limited resources.

Second, the device is seamlessly integrated into an novel developed measurement-
based WCET calculation framework as described in [10]. All operations of
the measurement-based WCET analysis are performed fully automatic with-
out user interaction.

2. Related Work

Petters [5] describes a method to split an application down to “measure-
ment blocks” and to enforce execution paths by replacing conditional jumps
either by NOPs or unconditional jumps, eliminating the needfor test data. The
drawback is that the application is partitioned manually and that the measured,
semantically changed application may differ from the real application.

Bernat et al. introduce the term of a “probabilistic hard real-time system”.
They combine a segmented measurement approach and static analysis, how-
ever they use test data supplied by the user. Therefore they cannot guarantee a
WCET bound but only give a probabilistic estimation, based on the used test
data [1].

Petters describes various ways to collect execution tracesof applications in
[6]. He outlines various ways how to place “observation points” and discusses
benefits and drawbacks of the presented methods.

3. Measurement-Based WCET Analysis

The proposed measurement-based timing analysis (MBTA) is performed in
five steps [9] as shown in Figure 1

The individual steps are explicitly described below. The measurement de-
vice hardware is used in step➃ but the description of the other steps is nec-
essary to understand how the MBTA approach works. It is also important to
mention that the current implementation is limited to acyclic code (code with-
out loops). Since most modeling tools typically produce acyclic code this does
not strongly limit the applicability of the presented method.

Static Program Analysis ➀

This step is used to extract structural and semantic information from the C
source code. The information is needed to perform the next steps.
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Figure 1. MBTA Framework Overview

Control Flow Graph Decomposition ➁

During this phase, the control flow graphCFG of the analyzed program is
split up into smaller program segmentsPS. The subdivision is controlled by
the number of execution paths which remain within each PS, a number which
is denoted aspath bound. The command line argument for the path bound
is adjustable from 1 to 232 and controls the correlation between calculation
time and the number of required measurements: A high path bound causes a
lower number of PS and less measurement points but the sum of execution
paths through all PS increases. Since each execution path ofeach PS has to be
measured, a test data set is required for each path. Since test data calculation
is very time consuming, the calculation time rises significantly [11].

Test Data Generation ➂

In this step test data is calculated to execute all executionpaths of each PS.
The test data is acquired using a multi-stage process: Random search which
is very fast is used to find most data sets. Where random searchfails, model
checking is used. Model checking is exhaustive, that means if there exists a
data set to execute a certain path, then it will be found. If nodata can be found
for a particular execution path then the path is semantically infeasible. An
example for semantically infeasible paths are mutual exclusive conditions in
consecutiveif statements. We used the CBMC model checker [2], which is a
very fast bounded model checker that can directly process C input.

Execution Time Measurements ➃

Using the generated test data all feasible paths within eachPS are executed.
The result of this step is an execution time profile for each PSwhich includes
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the execution time of each path. The WCET of a given PS is the maximum of
all execution time values.

WCET Calculation ➄

The last step is the calculation of a WCET bound. The current implementa-
tion of the WCET calculation tool described in [10] uses a longest path search
algorithm for a directed, acyclic graph which a single startand ending node
to compute a WCET bound over all PS. This can lead to overestimations un-
der certain circumstances, namely when the execution path with the WCET
of PSx inhibits the execution of the path featuring the WCET ofPSy. In
this case WCET(PSx) and WCET(PSy) are accumulated in the WCET of the
whole application leading to overestimation. This effect can be reduced by
increasing the path bound.

4. Performing Execution Time Measurements

Execution time measurements are a precondition for the described timing
analysis method. There are various methods to place instrumentation points
and to perform measurements [6].

As a first method, execution traces can be made, using a cycle accurate
simulator. In most cases this is not possible due to missing CPU models and
documentation.

Second, pure software instrumentation can be used: A few instructions are
inserted into the application that read the value of an internal time source,
commonly a cycle counter located in the CPU, and write it to a output port or to
a memory location. The drawback of this method is that several instructions are
needed and therefore the code size and the execution time canbe considerably
increased.

The third option is to use pure hardware instrumentation. A logic analyzer
is connected to the address bus and records the access to the memory. The ad-
vantage of this method is that no alterations on the applications are necessary.
The drawback of this method is that it is expensive (the logicanalyzer) and
that the connection to the address bus is not always possibleor the CPU has an
internal instruction cache.

An interesting alternative is to use software supported hardware instrumen-
tation. We selected this option because the modifications onthe software are
very lightweight (a single assembler instruction is sufficient) and the resource
and execution time consumption on the target hardware is small. Since logic
analyzers are often difficult to control from within an application, expensive
and oversized for this task we decided to design a custom device to perform
execution time measurements.
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5. Runtime Measurement Device (RMD)

The Runtime Measurement Device (RMD) acts as interface between the
target and the host. It collects timestamps issued from the target and transfers
them to the host. The timestamps are internally generated.

The RMD consists of a custom designed FPGA board with an Altera R©

CycloneTM EP1C12C6 device which is additionally equipped with 64k of ex-
ternal memory (for the CPU core) and interface circuits for USB, Ethernet,
RS232, RS485, ISO-K, and CAN. A modern FPGA evaluation boardcan also
be used instead, however with a total price of approximatelye 300.00 (with
USB interface only) the custom made board is cheaper than most evaluation
boards. The firmware is split up in two parts. The first part runs on a NIOSR©

CPU core which is clocked with 50MHz and controls the communication with
the host computer. The second part is written in VHDL (Very High Speed In-
tegrated Circuit Hardware Description Language) and operates at a clock fre-
quency of 200MHz. This part contains the time base, which is a32 bit counter,
a FIFO to store up to 128 measurement values until they are transfered to the
host and additional glue logic which recognizes measurement points and stores
the actual counter value in the FIFO and synchronizes communication with the
CPU core.

Since most of the design is implemented within the FPGA firmware the
whole method is very flexible and can easily be adopted for custom application
needs. Changes in the configuration can simply be made by uploading a new
firmware design on the FPGA.

Operation

The measurement device is designed to work in two different modes. The
first mode, the 2-wire mode, uses two dedicated IO pins for themeasurements
as depicted in Figure 2. Measurement starts when one signal drops to low.
The internal counter is released and starts counting. On each measurement
point, one signal drops to low, causing the counter value to be stored in the
FIFO, and the other signal rises to high. If both signals are low for a adjustable
amount of time, the measurement stops. According to the FIFOsize up to 128
measurement points can be recorded on a single run.

The second mode is the analyzer mode. This mode is designed for very
small devices. In this mode the measurement device is connected to the CPU
address bus and records the time at certain predefined locations. The addresses
where time tamps have to be recorded are stored in a one bit wide RAM. Mea-
surements are taken when the output of the RAM is logical “1”.The advantage
of this mode is that there need be no alterations on the targetcode. The dis-
advantages are that knowledge about the physical location of the measurement
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Figure 2. 2-Wire Interface Signal Waveform

points is necessary and that physical access to the address bus of the device is
required, so it cannot be used for devices with on-board E(E)PROM storage.

6. Integration in the Analysis Framework

The measurement framework consists of a set of virtual base classes shown
in Figure 3. For each virtual base class a non-virtual subclass is loaded at
runtime, according to the underlying hardware.

+prepareCounter()()

+readResult()() : long

+close()()

counter+prepareCompile(string fname)()

+make()()

+getBinaryName()() : string

+removeFiles()()

+cleanup()()

+getVersion()()

compile

+load(string binary name)()

loader

+wait_for_target_ready()()

+start_program()()

+reset_target()()

target

Loader_HCS12

CounterDevice_HCS12ExternalCounterDevice_HCS12InternalCompile_HCS12

Target_HCS12

Figure 3. Measurement Application Class Framework [9]

The compileclass is used to compile the application on the host and to
generate a stub for the target to handle the communication with the host, load
the test data, and to execute the application. Thecounterclass activates the
source code for starting and stopping the counter on the target and handles the
communication between the host and the counting device for both, internal and
external counting devices. Theloader class is used to upload the application
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binary onto the target, and thetargetclass handles the communication between
target and host from the host side.

The proposed design makes the execution time measurement application
very flexible and allows an easy adoption for new target hardware. Since the
measurement runs are all performed in the same way, using only a different
set of subclasses, the whole framework can be adopted to support new target
platforms by implementing additional subclasses.

7. Experimental Results

We performed a series of tests using the measurement-based WCET analy-
sis framework in combination with the internal counter device of the HCS12
microcontroller (HCS12INTERNAL) and the runtime measurement device
(HCS12EXTERNAL). As expected, we got slightly bigger values using
HCS12INTERNAL during first test runs. This is caused by the different in-
strumentation methods (using the internal counter requires more instructions
and therefore takes longer) and can be eliminated through calibration. To cal-
ibrate, a series of zero-length code sequences are measuredand the result is
subtracted from the actual measurements. For all tests the resulting WCET
values were the same using both measurement methods.

The test cases we used were developed from a simple example from our re-
gression tests (nicepartitioning semantischrichtig) and from automotive ap-
plications (ADCKonv, AktuatorSysCtrl, and AktuatorMotorregler). Figure 4
[9] shows the test results for all case studies for different“Path Bounds (b)”.
As mentioned before,b controls the maximum number of syntactically possi-
ble paths within a Program Segment (PS) after the CFG decomposition step.
“Program Segments (PS)” shows in how many segments the Application was
broken down. The next column “Paths After Dec.➁” represents the sum of all
syntactically possible paths through each PSs of the application. Interesting
values are at the first and on the last line of each test case. When b equals 1
the total number of paths after the decomposition step equals the number of
basic blocks, since one basic block comprises exactly one path. In the last line
there is only a single PS and therefore the number of paths after decomposition
equals the number of syntactically possible paths of the whole application.

“Paths Heuristic” and “Paths MC” describe how many paths were covered
by random test data generation and how many by model checking. “Infeasi-
ble Paths” denotes the number of infeasible paths that were discovered during
model checking. Note that these paths are also included in the number of paths
covered by model checking. Infeasible paths are paths that are syntactically
possible but can never be executed because the semantics of the code does not
allow so. Since the number of paths covered by model checkingis similar to



9

Application Name P
at

h
B

ou
nd

(b
)

P
ro

gr
am

S
eg

m
en

ts
(P

S
)

P
at

hs
A

ft
er

D
ec

.➁

P
at

hs
H

eu
ri

st
ic

P
at

hs
M

C

In
fe

as
ib

le
P

at
hs

W
C

E
T

B
ou

nd
[c

yc
]

T
im

e
M

C
[s

]

T
im

e
E

T
M

[s
]

O
ve

ra
ll

T
im

e
[s

]

T
im

e
M

C
/P

at
h

[s
]

T
im

e
E

T
M

/P
at

h
[s

]

P
at

hs
/P

S

nice partitioning
semantischrichtig
(46 LOC)

1 30 30 6 24 0 151 34 175 209 1.425.8 1.0
5 6 14 4 10 0 151 15 39 54 1.502.8 2.3

10 3 14 3 11 0 151 16 21 37 1.451.5 4.7
20 2 18 2 16 3 150 22 16 38 1.381.1 9.0

100 1 72 1 71 46 129 106 12 118 1.490.5 72.0

ADCKonv
(321 LOC)

1 31 31 31 0 0 872 24 192 216 n.a.6.2 1.0
10 3 17 8 9 8 870 31 22 53 3.442.4 5.7

100 2 74 8 66 60 872 220 17 237 3.331.2 37.0
1000 1 144 12 132 132 872 483 11 494 3.660.9 144.0

AktuatorSysCtrl
(274 LOC)

1 54 54 54 0 0 173 26 318 344 n.a.5.9 1.0
10 14 36 36 0 0 173 10 85 95 n.a.2.4 2.6

100 1 97 18 79 72 131 191 10 201 2.420.4 97.0
AktuatorMotorre-
gler (1150
LOC)

1 171 171 165 6 6 n.a. 468 1289 175778.07.8 1.0
10 14 92 63 29 23 3445 841 116 957 29.01.7 6.6

100 7 336 57 279 247 3323 7732 62 779427.70.7 48.0
1000 5 1455 82 13731325329841353 49 4140230.10.4 291.0

Figure 4. Test Results Of Case Studies

the number of infeasible paths (except for the first example)we see that most
of the feasible paths could be found by random test data generation.

“WCET Bound [cyc]” gives the estimated WCET in processor cycles. To
identify performance bottlenecks we did not only measure the time required
for the complete WCET estimation (“Overall Time”) but also how much of
this time budget was consumed by the analysis (“Time MC”), which consists
mainly of model checking but also includes static analysis,CFG decomposi-
tion and random test data generation, and how much time was consumed by
execution time measurements (“Time ETM”), which consists of code genera-
tion, compilation and uploading the binary to the target.

We also observed the performance of our solution relative tothe number
of paths, where “Time MC / Path” equals T imeMC

PathsMC
and ‘Time ETM / Path”

equals T imeETM
feasiblePaths

. While the time required for model checking a single path
within a PS is approximately constant for each test case, thetime required for
the execution time measurement of an individual path drops with the number
of program segments. This is due to the fact that the current implementation is
very simple and measures only a single PS at a time. To measureanother PS the
application needs to be recompiled and uploaded to the target again. On bigger



10

applications higher values forb should be used so the time fraction required
for recompilation and uploading is much less than for a givenexamples. The
last column (“Paths / PS”) shows the average number of syntactically possible
paths through a PS.

Regarding the path boundb it can also be noted that the quality of the esti-
mated WCET bound improves with a rising path bound. This is caused by the
fact that semantically infeasible paths are only detected by the model checker
when they are located within the same PS. Therefore, the bigger the PSs the
more infeasible paths can be eliminated.

The fact that the longest measurement runs took little more than 11 hours
(for current industrial code) is very promising. Generating test data sets and
performing the necessary measurements manually for an application of this
size would take a few days at least. We think that this approach can signifi-
cantly improve the testing process. It should also be noted that test data are
stored and reused for later runs. For applications featuring many infeasible
paths we are currently working on a solution to identify groups of infeasible
paths in a single run of the model checker.

With the case study “AktuatorMotorregler” we reached the computational
limit of the model checker when we setb to 1 therefore we could not get an
WCET estimation value in this case.

8. Conclusion and Further Work

We found that the measurement-based WCET analysis approachin com-
bination with the presented device gives the application developer a powerful
tool to perform WCET analysis. The most powerful feature is that everything
is performed automatically. This saves valuable working time and eliminates
cumbersome tasks like test data generation and performing manual measure-
ments. The newly introduced measurement device makes it possible to perform
run time measurements on small devices which normally wouldlack the appro-
priate hardware support (time source, memory or interface). The measurement
device is cheap - and since it is based on a programmable logicdevice - very
flexible, which allows the adaption for other hardware devices if necessary.

An important drawback is that, depending on the used RMD-target inter-
face, at least two signal pins are required to perform measurements. Therefore
the measurement device cannot be used when less than two pinsare free.

The next step is to overcome limitations of the current measurement frame-
work: loops and functions are not supported in the prototype. We are confident
that these are only limitations of the current design of the prototype and of the
measurement method itself. Currently a new version of the prototype which
supports loops and function calls is in development.
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The test data generation by model checking can be boosted by cutting off
infeasible subtrees in the dominator tree. If a node cannot be reached then
all other nodes dominated by it are unreachable as well. However the current
implementation makes no use of this information and checks each leaf in the
dominator tree which represents an unique path within a program segment.

An interesting area for improvement is the reconfiguration the RMD firmware
from within the framework for different types of target hardware.

Additionally we are working on a solution to make the measurement-based
approach work on more complex architectures, as those are increasingly used
in new embedded solutions. The presence of caches, pipelines and out-of-order
execution units impose an internal state on the processor. Different hardware
states at the same instruction can result in different execution times. Therefore
we are searching ways to impose a well defined hardware state while loosing a
minimum on performance.
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