
AUTOMATIC DATA PATH GENERATION FROM
C CODE FOR CUSTOM PROCESSORS

Jelena Trajkovic and Daniel Gajski
Center for Embedded Computer Systems
University of California, Irvine
jelenat@cecs.uci.edu, gajski@cecs.uci.edu

Abstract The stringent performance constraints and short time to market of modern digital
systems require automatic methods for design of high performance application-
specific architectures. This paper presents a novel algorithm for automatic gener-
ation of custom pipelined data path for a given application from its C code. The
data path optimization targets both resource utilization and performance. The
input to this architecture generator includes application C code, operation execu-
tion frequencies obtained by the profile run and a component library consisting
of functional units, busses, multiplexers etc. The output is data path specified
as a net-list of resource instances and their connections. The algorithm starts
with an architecture that supports maximum parallelism for implementation of
the input C code and iteratively refines it until an efficient resource utilization is
obtained while maintaining the performance constraint. This paper also presents
an algorithm to choose the priority of application basic blocks for optimization.
Our experimental results show that automatically generated data paths satisfy
given performance criteria and can be obtained in a matter of minutes leading to
significant productivity gains.

Keywords: Architecture, Data Path, Design, Synthesis, C-to-RTL, Pipeline, Performance,
Utilization

1. Introduction

Performance requirements for modern applications have fueled a need for
specialized processors for different application domains. The reference C code
typically serves as a starting point for most designs. To meet design dead-
lines, automatic generation of design from reference C code is needed. For
most modern applications such C references are typically in the order of thou-
sands of lines of code which is beyond the capacity of existing C-to-RTL tools.
Manual hardware design is expensive and error prone process. Even though the
designs are tuned to satisfy stringent performance, area and power constraints,

2

reuse and feature extension are very difficult. On the other hand, the general
purpose embedded processors are often too slow and power hungry, but offer
programmability. Therefore, in this paper, we propose the automatic genera-
tion of the data path architecture based on the profile of the application and the
system performance and utilization constraints. We follow a design technique
for custom processors that separates the allocation of architectural resources
and their connections from the scheduling of control words that drive that data
path. Fig. 1 shows proposed design approach. The application code is first
scheduled in an As Late As Possible (ALAP) fashion. After an application’s
requirements have been derived from ALAP-like schedule, they are used for
allocation of the data path components. The resulting architecture is evaluated
and refined using the Architecture Wizard. The Architecture Wizard iterates
through the possible configurations until the given performance constraint and
component utilization are satisfied.

Architecture Wizard

(Phase II)

Component

Library

Max Architecture (XML)

Source Code (C)

NISC Compiler

OR

Initial Allocation

(Phase I)

Profiler

Optimized Architecture (XML)
Report (HTML)

Pre Scheduling

Mem
MUL

CMem

P
C

 B1

B2

B3

AG

ALU

C

W

b
i
t
s

C

W

b
i
t
s

S
t
a
t
u
s

RF

Figure 1. Custom Processor Design Technique.

2. Related Work

In order to accomplish performance and power goals, ASIP and IS exten-
sion use configurable and extensible processors. One such processor is Xtensa
[Tensilica: Xtensa LX, 2005], that allows the designer to configure features

Automatic Data Path Generation from C code for Custom Processors 3

like memories, external buses, protocols and commonly used peripherals [Au-
tomated Configurable Processor Design Flow, 2005; Diamond Standard Pro-
cessor Core Family Architecture, 2006]. Xtensa also allows the designer to
specify a set of instruction set extensions, hardware for which is incorporated
within the processor [Goodwin and Petkov, 2003]. The extensions are formed
from the existing instructions in style of VLIW, vector, fused operations or
combination of those. Therefore, the customizations are possible only within
bound of those combinations of existing instructions. This solution also re-
quires the decoder modifications in order to incorporate new instructions. For
example, having VLIW-style (parallel) instructions require multiple parallel
decoders [Goodwin and Petkov, 2003], which not only increase hardware cost
(that may affect the cycle time), but also limits the possible number of instruc-
tions that may be executed in parallel. However, in our approach, the decoding
stage has been removed. Therefore, there is no increase in hardware com-
plexity and no limitations on number and type of operations to be executed in
parallel. In case where the code size exceeds the size of on-chip memory, in-
struction caches and compression techniques may be employed, both of them
have been in scope of our current research.

The IS extensions, in case of Stretch processor [Stretch. Inc.: S5000 Software-
Configurable Processors, 2005], are implemented using configurable Xtensa
processor and Instruction Set Extension Fabric (ISEF). The designer is respon-
sible for, using available tools, identifying the critical portion of the code (‘hot
spot’) and re-writing the code so the ‘hot spot’ is isolated into the custom
instruction. The custom instruction is then implemented in ISEF. Thus, the
application code needs to be modified which requires expertise and potentially
more functional testing. The designer is expected to explicitly allocate the
extension registers. The ISEF and the main processor have the same clock cy-
cle, and only one custom instruction/function may be generated. In contrary,
our approach allows, but does not require C code modifications and does not
require the designer to manipulate the underlying hardware directly.

Many C-to-RTL algorithms, such as [B. Landwehr et al., 1994; Paulin and
Knight, 1989] create data path while performing scheduling and binding. [B.
Landwehr et al., 1994] uses ILP formulation with emphasis on efficient use
of library components, which makes it applicable to fairly small input code.
[Paulin and Knight, 1989] tries to balance distribution of operations over the
allowed time in order to minimize resource requirement hence the algorithm
make decisions considering only local application requirements. [Devadas and
Newton, 1989] takes into account global application requirements to perform
allocation and scheduling simultaneously using simulated annealing. In con-
trast with the previous approaches, we separate data path creation from the
scheduling and/or binding i.e. controller creation. This separation allows us
to potentially reuse created data path by reprogramming, have controllability

4

over the design process and use pre-layout information for data path architec-
ture creation.

[Gutberlet et al., 1992; Tseng and Seiwiorek, 1986; Tsai and Hsu, 1992;
Brewer and Gajski, 1990; Marwedel, 1993] separate allocation from bind-
ing and scheduling. [Gutberlet et al., 1992] uses ‘hill climbing’ algorithm
to optimize number and type of functional unit allocated, while [Tseng and
Seiwiorek, 1986] applies clique partitioning in order to minimize storage el-
ements, units and interconnect. [Tsai and Hsu, 1992] use the schedule to de-
termine the minimum required number of functional units, buses, register files
and ROMs. Than, the interconnect of the resulting data path is optimized by
exploring different binding options for data types, variables and operations. In
[Brewer and Gajski, 1990] the expert system breaks down the global goals into
local constraints (resource, control units, clock period) while iteratively moves
toward satisfying the designer’s specification. It creates and evaluates several
intermediate designs using the schedule and estimated timing. However, all
of before-mentioned C-to-RTL techniques use FSM-style controller. Creation
and synthesis of such state machine that corresponds to thousands of lines of
C code, to the best of our knowledge, is not practically possible. In contrast to
this, having programmable controller, allows us to apply our technique to (for
practical purposes) any size of C code, as it will be shown in Section 6.

Similarly to our approach, [Marwedel, 1993] does not have limitations on
the input size, since it uses horizontally microcoded control unit. On the other
hand, it requires specification in language other than C and it produces only
non-pipelined designs, none of which is the restriction of the proposed tech-
nique.

3. Proposed Approach

We propose a custom processor design technique for the No-Instruction-
Set Computer (NISC) [Gajski, 2003]. NISC completely removes the decoding
stage and stores the control words in the program memory. The NISC compiler
([Reshadi and Gajski, 2005], [Reshadi et al., 2005]) compiles the application
directly onto a given data path, creating a set of control signals (called control
word) that drives the components at runtime. By not having the instruction set,
the data path can be easily changed, parameterized and reconfigured. Hence,
the NISC concept allows separation of scheduling and allocation.

The tool flow that implements the proposed methodology is described in
Fig. 1. It consists of 2 phases: the first one is performed by Initial Allocation
and the second is implemented by the Architecture Wizard (AW) tool. In the Ini-
tial Allocation phase (Section 4), we use the schedule information to analyze
component and connection requirements, and the available parallelism of a
given application. The component and connection requirements are then taken

Automatic Data Path Generation from C code for Custom Processors 5

into account while choosing the instances of the available components from
Component Library (CL) that will implement the data path. Resulting archi-
tecture is called Max Architecture. The Max Architecture and the application
source code are used by the NISC compiler to produce the new schedule. The
new schedule, results of the profile run and the component library are fed to
the Architecture Wizard that performs estimation and refinement (Section 5).
The Architecture Wizard evaluates component utilization, and uses it together
with given performance and utilization constraints, to refine the existing data
path architecture. The Architecture Wizard also estimates the potential perfor-
mance overhead and utilization for the ‘refined’ architecture and automatically
updates the new architecture if constraints are not satisfied. It outputs the net-
list of the optimized architecture and the report in the human readable format.

4. Initial Allocation

We start by defining maximal requirements of a given application from the
application’s ALAP schedule (produced by Pre-Scheduler). We choose ALAP
because it gives good notion of the operations that may be executed in parallel.
In addition to application’s schedule, component library is another input of
the Initial Allocation. The Allocator traverses the given schedule, collecting
the statistics for each operation. For each operation (addition, comparison,
multiplication etc.) maximum and average number of its occurrences in each
cycle is computed. The tool also records the number of potential data transfers
for both source and destination operands.

The Component Library consists of resources, where each one is indexed by
their unique name and identifier. The record for each component also contains
its type, number of input or output ports and name of each port. In case of a
functional unit, a hash table is used to link the functional unit type with the list
of all operations it may perform.

We derived heuristics that measure how well the available storage compo-
nents match the given requirements. The heuristics use required number of
source and destination operands and number of output and input ports for the
storage elements available in the CL [Trajkovic et al., 2006].

While allocating functional units, we choose the type of unit that alongside
the given operation, performs the largest number of operations. Thus we pre-
vent allocation of too many units and allow the Architecture Wizard to collect
statistics of operations used and potentially replace the unit with the simpler
one. Once the type is decided, we allocate maximum number that is computed
by the Initial Allocation tool. For example, if application requires 3 additions
and 4 subtractions, and the ALU is chosen, the tool will allocate 4 instances of
ALU. For practical purposes we do not allow the number of allocated units of
each type to exceed the number of source buses.

6

FU
FU

RF

Source

Buses

Destination

Buses

MUX
 MUX

Memory

Interface

RF
RF

MUX

MUX
 MUX

 To

Memory

FU

Figure 2. Components and connections.

To ensure that the interconnect is
not a bottleneck in the Max Config-
uration, we perform a greedy alloca-
tion of connection resources (Fig. 2).
This means that output ports of all reg-
ister files are connected to all source
buses. Similarly, input ports of all reg-
ister files are connected to all desti-
nation busses. The same connection
scheme applies to the functional units
and the memory interface.

5. Estimation and Refinement

The Architecture Wizard (AW) attempts to reduce the number of used re-
sources to create the final design that meets given performance and utilization
goals. The source code is first compiled using the Max Architecture. The
resulting schedule which also has the binding information together with the
execution frequencies of each basic block from the profile run is used by the
AW. The following algorithm shows main steps that the AW implements.

Extract Critical Path
Create Histogram

for all Basic Block and Component Type
Label

Flatten Histogram
Estimate Overhead and Utilization

if (Overhead ��� Desired Overhead and Utilization � � Desired
Utilization)

Update Number of Instances of Component
Goto Label

Allocate Components and Create Net-list

We start by selecting the basic blocks that we want to optimize. Next, we
create the histogram for each functional unit type or for each group of input or
output ports of the storage unit. It is necessary to consider the utilization of all
components (functional units, storage components and buses) of the same type
in order to apply ‘Spill’ (flattening) algorithm described in the Section 5.3.
For the selected blocks, we estimate the number of instances of the chosen
component that will keep the execution within a given boundaries and utiliza-
tion. This is repeated until both the performance and utilization constraints are
met. Once the optimal number of components is decided, the output net-list
is created. The following sections describe the main steps of the AW in more
details.

Automatic Data Path Generation from C code for Custom Processors 7

5.1 Selection of Basic Blocks for Optimization

The goal of this phase of the Architecture Wizard is to select the basic blocks
in the source code that contribute the most to the execution time and have the
largest potential for optimization. The question is how to decide which basic
blocks are the most promising. Our selection criteria is based on the relative
size and the relative execution frequencies of the basic blocks in the applica-
tion. It is likely that very large basic blocks have high potential for optimiza-
tion, since they have several operations that may potentially be performed in
parallel. On the other hand, even minor optimization of basic blocks that have
high frequency will yield high overall performance gains. Finally, we have a
class of basic blocks that have average length and average frequency, so an av-
erage reduction in their length will yield overall performance improvement that
is comparable to the improvement from previous two types of optimization.

B2 l:10 f:54
B1 l:8 f:11

B4 l:4 f:1
 B7 l:3 f:50

B5 l:200 f:4
 B6 l:2 f:50

B8 l: 10 f:1

B0 l:20 f:65

B3 l:40 f:10

Figure 3. Selection of basic blocks for op-
timization.

For the Max Architecture, we use
a profiler to record the execution fre-
quency of each basic block and we use
the schedule (histogram) to find the
basic block’s length. Following our
optimization policy, we keep 3 lists of
pointers to the basic blocks. The first
list is sorted by frequency, the second
by length and the third by frequency-
length product. We use the parameter-

izable metrics to decide if the block is to be included in the list of blocks for
optimizations. For frequency-length product we use:

���������
	�� � ����
���� (1)

����� �
	�� ��� ���
��������� ������� (2)

���������
	�� � �!���
(3)

where ��� and ��� are frequency and length (number of cycles) of the basic
block " , ������� is frequency-length product, � ���

is parameter specified by the
designer and # is the total number of block in the application. The block is
considered for optimizing if inequality 3 is satisfied.

In case of the list sorted by length, we observe the length of the block �$� and

��� �
	%� �&� �
('*)�+ ������ �,���$� (4)

���-�
	%� � ���
(5)

8

where � �
is length parameter specified by the designer. The current block is

considered for optimizing if inequality 5 is satisfied.
Given � � as the frequency of the basic block " ,

��� �
	�� �&� �
�'*)�+ ������ � ��� � (6)

�����
	�� � ���
(7)

where � �
is frequency parameter. Here also, we include the block in the

optimization candidate list if inequality 7 is satisfied. We supply the selected
basic blocks to the Histogram Creation step of the AW.

5.2 Histogram Creation

1

2

3

4
 FU
i
 type
Number of

instances

Time

Candidate # of

units

FU
i
 type
Number of

instances

Time

1

2

3

4

FU in use in the current cycle

Estimated use of FU

Available FU not in use

0
 1
 2
 3
 4
 5

0
 1
 2
 3
 4
 5
 6

Figure 4. Example of ‘Spill’ Algorithm.

In this step we create a utilization histogram for each selected basic block for
each component type, in case of functional units, and for data ports of the same
kind (input or output), in case of the storage units. It is important to group the
items of the same kind together in order to easily estimate potential execution
and utilization impact when changing the number of instances. The utilization
graph is extracted from the schedule generated for the Max Architecture. The
example of utilization graph for the functional unit of type " is shown on the
top of Fig. 4. The basic block for which the diagram is shown has 6 cycles
(0 to 5). It can be seen that no instance of functional unit is used in cycle 2,
one instance is used during cycles 0, 1 and 4, and 3 instances are used in the
cycles 3 and 5. If we assume that the type and number of instances of all other

Automatic Data Path Generation from C code for Custom Processors 9

resources (memories, register files and its ports, buses and multiplexers) do not
change, we can conclude that we need 3 instances of functional unit of type "
to execute this basic block in no more than 6 cycles.

5.3 Flattening ‘Spill’ Algorithm

Let us assume that it is acceptable to trade off certain percentage of the ex-
ecution time in order to reduce number of components (and therefore reduce
area and power and increase component utilization). The designer decides
the performance boundary and the desired component utilization and supplies
them to the AW. The AW sets the initial value of a candidate number of compo-
nents to be the largest average number of used instances of a given type for all
basic blocks. The goal is to compute how many extra cycles would be required
compared to the schedule with Max Architecture and what would their utiliza-
tion be, if we allocate the candidate number of units. The following algorithm
estimates cycle overhead and component utilization.

Spill (Histogram, CandidateNumber):
for all

��������� �	�
CycleBudget = CandidateNumber-X.InUse;
if CycleBudget � 0
if RunningDemand � 0
CanFit = MIN(CycleBudget, ABS(RunningDemand));
RunningDemand += CanFit;

else
RunninBudget += CycleBudget;

RunningDemand += CycleBudget;

In order to compute execution overhead and utilization we keep two coun-
ters: running demand and running budget. Running demand is a counter of
operations that are scheduled for the execution in the current cycle on a unit
of type " but could not possibly be executed (in the current cycle) with the
candidate number of units. For example, in both cycles 3 and 5 in bottom of
the Fig. 4 there is one operation that needs to be accounted for by the running
demand counter (shown in dashed lines). Running budget counter counts the
units that are unused in a particular cycle. In each cycle, we compare the cur-
rent number of instances with the candidate number. If the current number is
greater, the number of ‘extra’ instances is added to running demand, counting
the number of operations that would need to be executed later. On the other
hand, if the current number is less then the candidate, we try to accommodate
as many operations as possible that were previously accounted for with the
running demand counter, modeling the delayed execution. We try to fit in as
many operations as possible (represented with ‘CanFit’ variable in the algo-

10

rithm) in the current cycle, as shown in the cycles 4 and 6. If there are some
unused units left (when the available number of instances is greater than the
running demand, like in cycles 0, 2 and 6), the running budget is updated by
the number of free units.

We must note that this method does not account for interference while chang-
ing the number of instances or ports of other components. The accuracy of a
given method will be discussed in Section 6. The presented estimation algo-
rithm uses only statically available information and provides the overhead and
utilization for a single execution of a given basic block. In order to be able to
compare the resulting performance with the designer’s requirements, we incor-
porate execution frequencies in the estimation.

5.4 Overhead and Utilization Estimation

for all � ����� ��� ��� � ���
while C.overhead 	 Tspec and C.budget � Uspec

for all � ����� ��� ��� � ���
Spill(Histogram, CandidateNumber)
C.overhead += B.f * RunningDemand
C.budget += B.f * EndBudget

Update(CandidateNumber)

The estimation algorithm is shown above. For each of the components, we
apply the ‘Spill’ algorithm to all basic blocks using the largest average number
of used units of a particular type across all blocks as a initial candidate number.
That way we get ‘per block’ estimates for the overhead and utilization. Each
of these statistics are multiplied by the block frequency (B.f) and accumulated
in the global overhead counter (counterpart to the running demand) and global
budget counter for a given unit. We also compute the dynamic length of the
selected blocks for the Max Architecture by multiplying length by frequency.
Having estimates for both new and the baseline architecture, we are able to de-
cide if the candidate number of units will deliver required performance while
satisfying utilization constraint. If the candidate number of units does not de-
liver desired performance, we increment the candidate number and repeat the
estimation. If the candidate number of units is sufficient, we check the utiliza-
tion, and if it is above the given threshold, we decrement the candidate number
and repeat the estimation. In case the algorithm does not converge with re-
spect to the both constraints, we give the priority to performance, and make
the decision solely on the overhead.

In the simple case, shown in the the Fig. 4 if the allowed overhead is 20%
(i.e. 1.2 cycles for this example) and the desired utilization per unit is 75%,
having 3 units would deliver required performance, but would have the units

Automatic Data Path Generation from C code for Custom Processors 11

underutilized. Therefore, having 2 units would be satisfactory solution, with
66% utilization per unit and 17% overhead.

5.5 Allocation and Net-list creation

The allocation slightly differs from the Max Architecture allocation. The
storage component allocation is done using the same heuristics with the differ-
ence that the required numbers are provided by the previous step of the AW.
Previously, during the initial allocation, the operands that were appearing in
the code were matched with the components from the library to determine the
type of functional unit. Here the functional unit type is inherited from the
Max Configuration architecture, and the number of instances is specified by
the outcome of the ‘Spill’ algorithm.

Based on the connectivity statistics, the tool decides to provide full or lim-
ited connectivity. The full connectivity scheme is used in Max Architecture
as described in Section 4. In limited connectivity scheme, we reduce number
of connections from register file’s output ports to the source buses, and we
connect only one bus to one output port. The tool then connects the provided
components according to the scheme provided in Fig. 2. It automatically allo-
cates tri-state buffers and multiplexers as needed for the net-list that is input to
NISC compiler.

6. Results

We implemented the Initial Allocation and the Architecture Wizard in C++.
For functional simulation of the designs, we use ModelSim SE 5.8c. The ex-
periments were performed on a 1GHz Intel Pentium III running Windows XP.
The benchmarks used are bdist2 (from MPEG2 encoder), Sort (implementing
bubble sort), dct32 (from MP3 decoder) and Mp3 (decoder). The profiling data
have been obtained manually. The Architecture Wizard in presented case uses
following parameters: � = 20%, utilization = 50%, � ���

= 0.5, � �
= 0.85, � �

=
0.7.
Table 1. Reduction of number of components in refined design relative to Max Architecture.

Bench. FUs Buses Tri-State Pipe. Regs

bdist2 50.0 50.0 70.0 42.9

Sort 25.0 50.0 67.7 20.0

dct32 33.3 16.7 52.5 28.6

Mp3 37.5 0.0 40.9 34.6

Avg 36.5 29.2 57.5 35.5

Table 1 gives a comparison of the number of functional units, buses, tri-state
buffers, and pipeline registers of refined architecture relative to the Max Archi-

12

tecture for selected benchmarks. As we can see, the maximum reduction in
number of functional units is 50% and the average is 36.5%. The smallest sav-
ing is for Sort, from 4 to 3 functional units. This is due to the limited number
of components in the library: the required operations can be performed with
not less than 3 units. The biggest saving is in the case of bdist2 where half of
the underutilized components are removed. The number of buses is reduced
by 29.2% on an average. The is no reduction of number of buses in the case of
Mp3. Due to the application’s high parallelism, utilization of all buses if high,
and therefore the algorithm does not optimize away any of them. The number
of tri-state buffers is reduced by 70% in the best case and 57.5% on an aver-
age. The number of pipeline registers is reduced on an average by 35.5%. In
the experiments presented here, we do not apply ‘Spill’ algorithm on pipeline
registers, but we automatically inset them as shown in the Section 4. More so-
phisticated methods of deciding on how to pipeline the given architecture are
topic of our research.

Table 2. Measured � of refined design and average number of iterations during estimation.

Bench. � [%] Avg.Iter. T[min] LoC

bdist2 18.8 1.8 0.9 61

Sort 0.3 3.9 0.6 33

dct32 19.6 1.2 12.6 1006

Mp3 1.1 1.4 79.5 1389

Avg 9.9 2.1 23.4 0.6

Table 2 shows the performance of resulting designs and illustrates the tool
execution characteristics. The first column of the table shows the benchmark,
and the next column shows measured � overhead in execution cycles of the
refined design relative to Max Architecture. It can be seen that all benchmarks
satisfy the given constraint of maximum 20% overhead. Benchmark Sort ex-
periences negligible run time overhead. This application is sequential and even
with the Max Architecture not more than single operation is performed in par-
allel. The next column shows the average number of iterations per selected
basic block per component that the Architecture Wizard performs before con-
verging. For example, on average for a given component in bdist2 the ‘Spill’
algorithm will be called 1.8 times to estimate one selected basic block. The
average number of iterations for all benchmarks is 2.1. The right most column
shows the total run time required to generate both Max Architecture and re-
fined architecture and schedule for both. The largest run time is in the order of
80 minutes, making it much faster than any hand written design.

Automatic Data Path Generation from C code for Custom Processors 13

7. Conclusion

We present a C-to-data path technique for designing of custom processors
that alleviates the problem of manual architecture design. Our experimental re-
sults show that the generated architectures perform within overhead of 19.6%
that satisfies the given performance constraint. Also, the reduction in number
of used resources ranges from 29% to 58% on average across all observed com-
ponents. Our algorithm performs the data path generation within 80 minutes
even for large industry size application such as Mp3 decoder. The technique
provides fast but effective design alternative making it possible for designers to
create and evaluate many different design alternatives in less time than required
for single custom design iteration. In future, we plan to add more capabilities
to the automatic selection algorithm and to improve the quality of generated ar-
chitectures by implementing automatic pipelining, forwarding and automatic
customizing of memory hierarchy. Our current efforts are directed to overall
area reduction by using multiplexer-based instead of bus-based interconnect
and by minimizing the area of functional units.

Acknowledgments

The authors wish to thank Mehrdad Reshadi and Bita Gorjiara for compiler
support, Verilog generator and stimulating discussions that have improved this
work. We would also like to thank Pramod Chandraiah for providing the Mp3
source code.

References
Automated Configurable Processor Design Flow (2005). Automated Configurable Processor

Design Flow, White Paper, Tensilica, Inc. http://www. tensilica.com/pdf/Tools white paper
final-1.pdf January 2005.

B. Landwehr, P. Marwedel, and R. D-omer (1994). OSCAR: Optimum Simultaneous Schedul-
ing, Allocation and Resource Binding Based on Integer Programming. In Proc. European
Design Automation Conference, pages 90–95, Grenoble, France. IEEE Computer Society
Press.

Brewer, F. and Gajski, D. (1990). Chippe: A system for constraint driven behavioral synthesis.
IEEE Trans. on Computer-Aided Design.

Devadas, S. and Newton, R. (1989). Algorithms for hardware allocation in data path synthesis.
IEEE Trans. on Computer-Aided Design.

Diamond Standard Processor Core Family Architecture (2006). Diamond Standard Processor
Core Family Architecture, White Paper, Tensilica, Inc. http://www. tensilica.com/pdf/Diamond
WP.pdf, October 2006.

Gajski, Daniel (October 2003). Nisc: The ultimate reconfigurable component. Technical report,
Technical Report TR 03-28, University of California-Irvine.

Goodwin, David and Petkov, Darin (2003). Automatic generation of application specific proces-
sors. In Proceedings of the International Conference on Compilers, Architecture and Syn-
thesis for Embedded Systems.

14

Gutberlet, P., M-uller, J., Kr-amer, H., and Rosenstiel, W. (1992). Automatic module allocation
in high level synthesis. In Proceedings of the Conference on European Design Automation
(EURO-DAC ’92), pages 328–333.

Marwedel, P. (1993). The MIMOLA system: Detailed description of the system software. In
Proceedings of Design Automation Conference. ACM/IEEE.

Paulin, P.G. and Knight, J.P. (1989). Force-directed scheduling for the behavioral synthesis of
ASICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

Reshadi, M. and Gajski, D. (2005). A cycle-accurate compilation algorithm for custom pipelined
datapaths. In International Symposium on Hardware/Software Codesign and System Synthe-
sis (CODES+ISSS).

Reshadi, M., Gorjiara, B., and Gajski, D. (2005). Utilizing horizontal and vertical parallelism
with no-instruction-set compiler for custom datapaths. In In Proceedings of International
Conference on Computer Design.

Stretch. Inc.: S5000 Software-Configurable Processors (2005). Stretch. Inc.: S5000 Software-
Configurable Processors http://www.stretchinc.com/products/ devices.php.

Tensilica: Xtensa LX (2005). Tensilica: Xtensa LX http://www.tensilica.com/products/xtensa
LX.htm.

Trajkovic, Jelena, Reshadi, Mehrdad, Gorjiara, Bita, and Gajski, Daniel (2006). A graph based
algorithm for data path optimization in custom processors. In Proceedings of 9th EUROMI-
CRO Conference on Digital System Design, pages 496–503. IEEE Computer Society.

Tsai, Fur-Shing and Hsu, Yu-Chin (1992). STAR: An automatic data path allocator. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 2(9):1053–1064.

Tseng, C. and Seiwiorek, D.P. (1986). Automated synthesis of data paths in digital systems.
IEEE Trans. on Computer-Aided Design.

