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Abstract. Embedded systems are increasing in complexity, while sev-
eral metrics such as time-to-market, reliability, safety and performance
should be considered during the design of such systems. A component-
based design which enables the migration of its components between
hardware and software can cope to achieve such metrics. To enable that,
we define hybrid hardware and software components as a development
artifact that can be deployed by different combinations of hardware and
software elements. In this paper, we present an architecture for develop-
ing such components in order to construct a repository of components
that can migrate between the hardware and software domains to meet
the design system requirements.

1 Introduction

Several challenges arise on the design and implementation of current embed-
ded systems. The applications themselves are becoming increasingly complex as
the advances of the semiconductor industry enabled more sophisticated use of
computational resources on a spread of market appliances. If by one way the
applications are becoming more complex, on the other way the pressure of the
market for rapid development of those systems makes the task of designing them
a challenge.

The constraints imposed to such systems, in terms of functionality, per-
formance, energy consumption, cost, reliability and time-to-market are getting
tighter. Therefore, the task of designing such systems is becoming increasingly
important and difficult at the same time [1]. Moreover, those systems could re-
quire an integrated hardware and software design that can be realized by a myr-
iad of distinct computational architectures, ranging from simple 8-bit microcon-
trollers, digital signal processors (DSP), programmable logic devices (FPGA)
to dedicated chips (ASIC) that provides the system functionality. In order to
cope with these challenges, several methodologies were proposed by the hard-
ware and software co-design community over the last decade. One approach to
deal with these challenges is based on the concept of build a system based on
the assembly of pre-validated components, like the Platform-based design [2].



However, designing such reusable artifacts to meet the requirements of several
distinct applications should be as challenging as well [3]. The partition of the sys-
tem between hardware and software also plays a key role in the design process.
Usually, this mapping of system functionality into hardware implementation and
software implementation is done in the initial phases of the specification of the
system, enabling the development and implementation of the hardware and soft-
ware occur concurrently. This approach however, is not ideal, as a mistake on
this beginning phase of the project could lead to a re-engineering of the system,
which can sometimes be too costly.

Our proposal to deal with these challenges is to use refined engineering tech-
niques to build a repository of components that are flexible enough to provide
an interface that is free of implementation domain. In this scenario, embedded
systems could be built on such components that can be migrated to hardware
or software domains without major redesigns to the system, according to the
requirements of the application. To enable the construction of those flexible com-
ponents, a set of engineering techniques was used. Domain Engineering was used
to identify a set of representative entities within a domain. Such entities are mod-
eled using Object-oriented design, Family-based design, and Aspect-orientation.
A framework models the composition rules of such components, using advance
techniques such as generative programming to ensure a low overhead to the
composed system.

The next section will present the related work on hardware and software co-
design. In section 3 the proposed architecture of hybrid hardware and software
components is introduced. Three components built with this architecture are
described and evaluated in section 4, followed by the conclusion of this paper.

2 Related Work

Several methodologies propose the integration of tools and design phases of em-
bedded systems, to promote a rapid-prototyping and design of such systems.
Metropolis [4] proposes the use of a unified framework, based on a metamodel
with formal semantics that developers can use to capture designs, and an en-
vironment to support the simulation, formal analysis and synthesis of complex
electronic systems, providing an adequate support to the design chain.

The Ptolemy project [5] focuses on the modeling design of heterogeneous
systems, as mostly modern embedded computing systems are heterogeneous in
the sense of being composed of subsystems with very different characteristics
among their interactions as synchronous or asynchronous calls, buffered or un-
buffered, etc. To deal with such heterogeneity, Ptolemy proposes a model struc-
ture and semantic framework that support several models of computations, such
as Communicating Sequential Processes, Continuous Time, Discrete Events, Pro-
cess Network, and Synchronous Dataflow.

While most of existent hardware-software co-design tools focus mainly on the
hw-sw co-simulation to build a virtual prototyping environment for performing
software design and system verification, PeaCE [6] appear as an extension to



Ptolemy to provide a full-fledged co-design environment from functional simula-
tion to system synthesis. It is targeted for multimedia applications with real-time
constraints, specifying the system behavior with a heterogeneous composition of
three models of computations and exploiting features of formal models maxi-
mally during the design process.

The use of a component-based design approach for multiprocessor SoC plat-
forms are presented by [7]. This work proposes a unified methodology for auto-
matic integration of heterogeneous pre-designed components effectively. A design
flow called ROSES [8], uses this methodology to generate hardware, software,
and functional interface sub-systems automatically starting from a system ar-
chitectural model.

Another approach to deal with the component communication on multipro-
cessors SoC is based on the distributed system paradigm to provide a unified ab-
straction for both hardware and software components [9] that is deeply inspired
by the concepts of communication objects standards such as CORBA. This ap-
proach uses the generation of a proxy-skeleton scheme to provide transparent
communication architecture of the components in both domains (hardware and
software).

HThreads [10], focus on specifying and unifying the programming model
for hybrid CPU/FPGA systems, under the umbrella of multithreading pro-
gramming. In this sense, they provide what they call hardware thread interface
(HWTT) which supports the generalized pthreads API semantics, allowing for the
passing of abstract data types between hardware and software. This approach
enabled the migration of threads to the hardware domain, to be implemented as
hardware accelerators. The HW'TT interface provides access to the same system
calls available to software threads, a globally distributed memory to support
pointers, a generalized function call model including recursion, local variable
declaration, dynamic memory allocation, and a remote procedural call model
that enables hardware threads access to any library function [10].

3 Hybrid Hw/Sw Components

Hybrid hw/sw components can be realized as a mixture of hardware and soft-
ware implementation that can vary from a component that realizes all your
functionality in hardware to an implementation fully realized in software. The
Fig. 1 depicts this concept, illustrating a full hardware implementation (A), a
full software implementation (C) and a mixture of both (B).

In this way, a system composed by such kind of components can adapt to
its requirements according to the actual implementation selected to realize a
specific interface, used by the application. For instance, a mobile application that
requires an efficient use of energy could select an implementation that optimize
such a metric to the detriment of others (i.e. cost), while applications that have
an unlimited source of power could select implementations that benefit other
metrics (i.e. performance, costs).
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Fig. 1. Hybrid components.

To illustrate such components, consider a very common component of most
embedded system: a task scheduler. Such a component is mainly represented by
a queue of elements that are ready to receive a resource from the system, usually
the CPU, an ordering algorithm to establish the order in which the elements on
the queue will receive the resource, and a timer responsible for managing the
amount of time in which each element will receive of the resource (quantum).
A hybrid hw/sw component could arise by pushing those elements to hardware
or software domains in several combinations. As an example, the queue and the
ordering algorithm could be realized in hardware to improve performance, in
detriment of cost. The realization of the time management by the scheduler in
hardware could also reduce the occurrence of interruptions of the CPU (to deal
with time ticks that will not cause a rescheduling) that could lead to decreased
energy consumption for instance.

Design Reusable Hybrid Hw/Sw Components

Most of the methodologies in the design of embedded systems focus the design
of each system independently. Although most of them consider the use and
selection of pre-existent components already in the initial phases of the design
process, most of them do not address how to guide the system development
process to yield components that can be effectively reused on further projects.
In fact, the construction of components that can be extremely reusable is one
of the most challenging issues in Platform-based design [3]. Our proposal rests
on the foundation of refined software engineering techniques to overcome such
challenges and bring not only a flexible interface of components that can freely
migrate between hardware and software domains, but also foster the reuse of the
captured knowledge from previous projects in the form of reusable components.

To achieve such a degree of flexibility, it is essential to use a domain engi-
neering methodology that elaborates on the well-known domain decomposition
strategies, allied with Family-Based Design (FBD) and Object-Orientation (OO).



In such an approach, the use of commonality and variability analysis captures
the usage variations of the elements of the domain, than can be further fac-
tored out as aspects. In this sense, the use of such techniques guides the domain
engineering towards families of components, of which execution scenario depen-
dencies are factored out as “aspects” and external relationships are captured
in a component framework, addressing consistently some of the most relevant
issues in component-based design, such as reusability, complexity management
and composability.
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Fig. 2. Overview of domain decomposition.

Figure 2 illustrate the main elements of domain decomposition, with do-
main entities being captured as abstractions that are organized in families and
exported to users through comprehensive interfaces. Abstractions designate sce-
nario independent components, since scenario dependencies are captured as as-
pects during design. Subsequent factorization captures configurable features as
constructs that can be reused throughout the family. Relationships between
families of abstractions delineate a component framework. Each of these ele-
ments is subsequently modeled according to the guidelines of Object-Oriented
Design (OOD).

The portability of such components, and thus of applications that use them,
across distinct hardware platforms is achieved by means of a construct called
“hardware mediator”, which defines a hardware/software interface contract be-
tween higher-level components and the hardware [11]. Hardware mediators are
meant to be implemented using Generative Programming techniques and, in-
stead of building an ordinary Hardware Abstraction Layer (HAL), implicitly
adapt existing hardware components to match the required interface by adding
software to client components. For example, the hardware mediator for a hard-
ware component that already presents the desired interface would be eliminated



totally during the system generation process; while the hardware mediator for
a hardware component that does not provide all the desired functionality could
exceed the role of interface and include software elements to complement the
hardware functionality.

Indirectly, the concept of hardware mediator defines a kind of hybrid hard-
ware/software component, since different mediator implementations can exist for
the same hardware component, each designed around a particular set of goals
such as performance and energy efficiency. If the hardware platform itself can be
synthesized—as is the case with IP-based platforms—then the notion of a hybrid
component becomes even more appealing, since some hardware mediators could
exist in different pre-validated combinations of hardware and software.

In fact, the flexibility that underlies the hardware mediator concepts is yielded
from the domain decomposition processes that established a model that repre-
sents elements of the domain (concepts) and was not driven by a specific im-
plementation of these concepts (no matter if they are hardware or software). In
other words, this means that the interface provided by these components is free
of implementation domain, and thus can be realized either as hardware or as
software.

Hybrid Hw/Sw Component Architecture

In order to provide the seamless migration of the components between both
implementation domains, not only should the interface be able to be realized in
both domains, but also behave equally in both domains, avoiding the refactoring
of the clients that use them. Analyzing how client components interact with their
providers, we observed three distinct behaviors patterns:

Synchronous: observed in components with sequential objects that only per-
form tasks when their methods are explicitly invoked; client components are
blocked on the method call until service is completed. Such behavior is in-
trinsic to software components, and can be preserved in hardware by means
of its hardware mediator that can block client requests until the service is
completed. The Fig. 3 illustrates an UML activity diagram of such behavior
when the component is implemented on the hardware domain. The client
requests the service to the component, which is executed while the client
stands polling a register to be notified upon the finish of the service (busy
waiting), or suspend itself until the hardware interrupts the CPU to resume
the suspended client (idle waiting).

Asynchronous: observed in components around active objects that perform
tasks when their methods are explicitly invoked, but do not block the exe-
cution of the client component; some sort of callback mechanism is used to
notify the client about service completion. Typical examples for this class
of hybrid components are I/O related subsystems, such as file systems and
communication systems. The Fig. 4 illustrates an UML activity diagram of
such behavior. The client register a callback function if this is not already set
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Fig. 3. UML activity diagram of Synchronous Components.

(i.e. at initialization of the component) and then requests the service. Once
the service is accepted by the component (i.e. the component is not servic-
ing another request) the client continues it execution, while the component
executes the service. When the requested service is finished, the component
will call the registered call back function, which can be achieved by a simple
call if the component is implemented in software or through an interrupt if
the component is in hardware.
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Fig. 4. UML activity diagram of Asynchronous Components.

Autonomous: components implemented as active objects that perform tasks
independently of clients; the services provided by the component are either
ubiquitous or generate events for clients. Its behavior is depicted in Fig. 5,
by a loop of service execution and event generation activities that could be
interrupted by external events. In this scenario, moving a hybrid component
from software to hardware is feasible as long as the triggering events can be
forward to the hardware component. The other way around this is usually
accomplished by having the hardware to generate interrupts to notify other
components about general system status changes that might result from
autonomous activities.
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Fig. 5. UML activity diagram of Autonomous Components.

The following section present three case studies that were designed according
to the proposed architecture of components, and represent these three behavior
patterns.

4 Case Studies

To evaluate the proposed hybrid hw/sw component architecture, three compo-
nents were developed in both implementation domains, each one representing a
specific behavior. A Semaphore component, that behaves as a synchronous com-
ponent, a Scheduler that behaves as an autonomous component and an Alarm
component that behaves as an asynchronous component. The following sections
describe the implementation of those components.

4.1 Semaphore

A semaphore is a synchronization tool represented by an integer variable that
can be accessed only by two atomic operations: p (from the Dutch proberen, to
test) and v (from Dutch verhogen, to increment). The software implementation
of the component is realized by an object that aggregates the semaphore variable
and a list of blocked threads that are waiting for the resource guarded by the
semaphore abstraction. To guarantee the atomicity of its methods, the software
implementation of the semaphore components uses the bus locking mechanisms
of the underlying architecture, and when such a feature is not available, the
atomicity is provided by masking the occurrence of interrupts.

The hardware implementation of the semaphore component, pushes each
semaphore variable to a hardware implementation, and also manipulates the
blocked threads queue on hardware. In this sense, four commands are imple-
mented by the controller: Create and Destroy, responsible for allocation and
deallocation of the internal resources (memory for the variable and the queue)
and the other two traditional methods of semaphores P and V. For every P opera-
tion, the address of the caller of the method is passed through the input registers
to the hardware, and if the caller has to be blocked its address is automatically



inserted on the respective queue, and signalized by the status register. Once the
resource becomes available (through a V operation) the address of the blocked
thread waiting for the resource is removed from the queue, and put in the out-
put registers. The necessity of resume the thread that is addressed on the output
register is signalized by the status register.

4.2 Scheduler

The scheduler is responsible for organizing and defining the order that elements
access a resource, when such a resource is shared among several elements. The
most common use of a scheduler is to establish the order that tasks or process
(elements) gain access to use the CPU to run (resource). Figure 6 depict the
design of the process management family of components, where the Scheduler
hybrid hw/sw components arise.
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Fig. 6. Process Management family of components

The Scheduler provides the basic implementation of methods to manipu-
late the queue of elements that are ready to use the resource managed by the
scheduler, such as insert(), remove(), resume() and suspend(). A deeper
explanation around the whole Process management family of components is be-
yond the scope of this paper. Let’s focus here only on the component Scheduler
that was implemented as a hybrid component. Such a component implements
the fundamental structure of a scheduler, which consists of a queue of ready
elements and time management mechanisms.

The implementation of the software scheduler follows the traditional design
of lists. Such a list implementation could be configured to be realized as a conven-
tional ordering list of its elements, as well as a relative list, where each element
stores its ordering parameter relative to its predecessor. In this sense each ele-
ment will hold the difference of its ordering parameter from the previous element,
and so and on. In such kinds of implementations, it is particularly interesting
when the scheduling policy has dynamic priority increases over time, such as the
EDF policy. In such a policy, as the absolute deadline is always a crescent value,
the use of a conventional ordering, using the absolute deadline should lead to
an overflow of the variable as the execution time is always growing (which can



occur in a few hours on 8 bits microcontrollers). Instead of this, the use of a
relative queue insures that the deadline is always stored relatively close to the
current time, and in this way, the variable will not overflow.

The scheduler implemented in hardware realize an ordered list on its internal
memory. It is worth highlight two aspects of this component implementation
on hardware, especially for programmable logic devices. Both of these aspects
are related to constraints in terms of the resources of such devices. Ideally, the
hardware scheduler should exploit maximally the inherent parallelism of the
hardware resources. However, such resources are very expensive, especially when
the internal resources are used to implement several parallel bit comparators in
order to search for elements in the queue, as well as, to find the insertion position
of an element in queue.

Moreover, the use of 32 bits pointers, to reference the elements stored on
the list (in this case Threads) becomes extremely costly, for implementing the
comparators to search for those elements. On the other hand, the maximum
number of tasks that a system will execute in an embedded system is usually
known at design time, and for that reason, the resources usage of this component
could be optimized implementing a mapping between the system pointer (32
bits) and an internal representation that uses only the number of bits necessary,
taking into account, the maximum number of tasks running on the system.

4.3 Alarm

The Alarm component is responsible for providing the abstraction of an event
generator to the system. This component behaves asynchronously, as its service
(the event generation) occurs asynchronous from its request (Alarm instantia-
tion). The Fig. 7 illustrate the design of the Alarm component. This component
provides three types of event generation: call a function implemented by the user,
resumes a blocked thread, or releases a semaphore (by calling it’s v() operation).
These events are supported by the Handler interface.

ThreadHandler
<<interface>>
Alarm Handler

- times: int TS <|—

- period: int + handle() FunctionHandler

+ Alarm()
T i SemaphoreHandler
L L

<<hardware>> <<software>>
Alarm Alarm <<hardware>>
Timer
+ interrupt()

Fig. 7. Alarm component design.



The software implementation of the Alarm component is implemented sharing
a Timer used to manage the passage of time, and a relative queue of event
requests. This queue is organized relative to the number of ticks missing for the
occurrence of the event. At each interrupt of the Timer, the number of ticks is
updated in the queue, and when this number is less than zero, the handler of
the event is invoked. Its implementation on hardware is realized by dedicated
counters for each supported Alarm instance, while the maximum number of
concurrent instances are defined on design time. The internal memory of the
component is used to store a reference for each Alarm handler that is passed to
the interrupt routine of the component to generate the respective event.

4.4 Results

An experimentation platform was used to develop, debug, and evaluate those
components. It was used the XILINX development board ML-403, which has a
VIRTEX 4 FPGA (XC4VFX12), that enable the instantiation of the hardware
components on the configurable logic, while running the software components
on its embedded POWERPC.
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Fig. 8. Logic usage and performance of hybrid hw/sw components

In order to evaluate the hybrid component implementations, the “The Din-
ing Philosophers” application was implemented using the three components. The
alarm was used to wake-up the philosophers when their thinking period expired.
The Fig. 8 shows the area consumed by the hardware implementation of the
components, and the execution time of some methods of the components on
both domains. The consumed logic of the hardware implementations is com-
pared with the Plasma processor (MIPS), as a comparative of deploying a co-
processor approach to handle hardware acceleration. The execution time shows
a better performance of the hardware implementation of the Scheduler and the
Alarm component, while the Semaphore component did not gain that much
performance from its hardware implementation, mainly because the evaluated
application did not push the usage of semaphores queues, whereas a hardware
implementation could effectively bring benefits.
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Conclusions

This paper presented an architecture of hybrid hw/sw components. It highlighted
the importance of the use of an adequate engineering technique in order to de-
sign components that are flexible enough to migrate from hardware to software,
and vice-versa. Three hybrid hw/sw components was developed and representing
the possibles communication behaviors. Several experiments were done building
a benchmark application using different combinations of hardware and software
implementation of those components. Further research is directed to the migra-
tion of hybrid hw/sw components during runtime.
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