Formal Verification for Embedded Systems
Design based on MDE

Francisco Assis Moreira do Nascimento!, Marcio Ferreira da Silva Oliveira?,

and Flavio Rech Wagner!

! Institute of Informatics - Federal University of Rio Grande do Sul - UFRGS
Av. Bento Gongalves, 9500, Porto Alegre/RS, Brazil
fanascimento@inf.ufrgs.br,flavio@inf.ufrgs.br

2 (C-Lab, University of Paderborn
Fiirstenallee, 11, Paderborn/NRW, Germany
marcio@c-lab.de

Abstract. This work presents a Model Driven Engineering (MDE) ap-
proach for the automatic generation of a network of timed automata from
the functional specification of an embedded application described using
UML class and sequence diagrams. By means of transformations on the
UML model of the embedded system, a MOF-based representation for
the network of timed automata is automatically obtained, which can be
used as input to formal verification tools, as the Uppaal model checker,
in order to validate desired functional and temporal properties of the
embedded system specification. Since the network of timed automata is
automatically generated, the methodology can be very useful for the de-
signer, making easier the debugging and formal validation of the system
specification. The paper describes the defined transformations between
models, which generate the network of timed automata as well as the
textual input to the Uppaal model checker, and illustrates the use of the
methodology with a case study to show the effectiveness of the approach.

1 Introduction

Due mainly to severe design constraints and time-to-market urgency, embedded
software applications are usually much more difficult to design than other types
of applications. Furthermore, the complexity of embedded systems is increas-
ing very fast. For example, in the automotive industry, nowdays 90 percent of
the new features in recent models were related to electronics, making software
be the main aspect in a car. In many recent car models, there are more than
200 functions the user interacts with, deployed over more than 60 independent
embedded ECU (Electronic Control Unit).

One of the important aspects in the embedded system design is to ensure
that a given system really does what it is intended to do. Nowadays, with the
growing complexity of embedded systems, an exhaustive test of all possible sys-
tem executions, or of at least a set of representative ones, is an impractical or
even impossible approach. An alternative to testing is mathematically proving



correctness, by specifying precise models of the embedded system and formally
verifying logical properties over these models.

1.1 Model Driven Engineering

To cope with the growing complexity of embedded systems design, several ap-
proaches based on MDE (Model Driven Engineering) have been proposed [1]. In
MDE the main artifacts to be constructed and maintained are models, which
are represented using a common modeling language. In the MDE context, soft-
ware development consists of transforming a model into another one until a final
model is obtained that is ready to be executed.

One variant of MDE is the Model Driven Architecture (MDA) ([2]), which is
a framework proposed by OMG (Object Management Group) for the software
development, driven by models at different abstraction levels and specified using
UML ([3]). UML adopts the object oriented paradigm and includes different
diagrams for the modeling of structure and behavior. In order to be used as
input representation for formal verification and co-synthesis tools ([4]), a UML
model must be translated into some formalism that can expose the control and
data flow of the specified application in a concise and efficient way, since this
information is essential to the algorithms used in the existing design automation
tools.

In a UML model one can use Activity diagrams to specify such kind of infor-
mation, but the internal representation defined in conformance to OMG’s MOF
(Meta Object Facility) ([5]) is not adequate to implement formal verification and
co-synthesis algorithms, since the information is dispersed in different parts of
the MOF based internal representation for UML. This makes very difficult to
perform some basic operations on this representation, which are necessary for
the design automation algorithms ([4]).

1.2 Formal Verification Approach Based on MDE

Differently from all other approaches oriented to MDE for embedded system
design, which translate UML models to some specific internal representation
format, we use only MOF concepts to define our internal design representation
metamodel, and so, as a MOF-based metamodel, our internal design representa-
tion can take advantage of the concept of transformation between models to im-
plement formal verification and co-synthesis tasks. This paper presents a formal
verification methodology which adopts concepts from MDE for the automatic
generation of a network of timed automata ([6]) from the functional specification
of an embedded application described using UML class and sequence diagrams.

By means of transformations on the UML model of the embedded system, a
MOPF-based representation for the network of timed automata is automatically
obtained, which can be used as input to model checking tools, as, for example,
UPPAAL ([7]), in order to validate desired functional and temporal properties
of the embedded system specification. Since the network of timed automata is
automatically generated, the methodology can be very useful for the designers,



making easier the debugging and formal validation of the system specification.
Moreover, the formal verification methodology is part of a complete MDE-based
co-synthesis approach, and thus, after the formal validation of the desired prop-
erties, this same validated system specification can be directly used as input to
a set of MDE-based co-synthesis tools.

1.3 Outline

The paper is organized as follows. A comparison of our methodology with other
related MDE-based approaches to design validaton is given in Section 2. Sec-
tion 3 introduces our MDE-based approach for formal verification, Section 4
presents the Internal Application Meta-Model, Section 5 describes the Labeled
Timed Automata Meta-Model, and Section 6 presents the transformations be-
tween models that generate a Labeled Timed Automata model from our Internal
Application model. Section 7 describes a case study, which illustrates our ap-
proach. Section 8 presents main conclusions and future research directions.

2 Related Work

There are many recent research efforts on embedded systems design based on
MDE. The adoption of platform-independent design and executable UML has
been vastly investigated. For example, xtUML ([8]) defines an executable and
translatable UML subset for embedded real-time systems, allowing the simula-
tion of UML models and the code generation for C oriented to different micro-
controller platforms. However, there is no support to formal verification tools in
xtUML.

The model checking based approach to formal verification of an executable
UML subset, described in ([9]), can generate a S/R model for the COSPAN
model checking tool. But differently from our approach, the supported UML
subset does not include sequence diagrams.

The Internal Format (IF) from the OMEGA project ([10]) associates a pro-
cess to each class and captures the behavior as state machines that represent the
interactions between these processes. There is no concept of module to group
processes and so to take into account the different forms of communications ac-
cording to the partitioning of the processes. This missing information would be
essential for the functional validation and co-synthesis tasks.

In the approach presented in ([11]), UML Sequence Diagrams are translated
into a communication dependency graph in order to implement a specific per-
formance analysis technique. This approach does not consider the structure and
hierarchy of a UML model, as our approach does.

The co-synthesis tool POLIS [12] has an internal design representation, called
CFSM (Co-Design Finite State Machine), which allows the implementation of
efficient co-synthesis and formal verification strategies. However, it is not possible
to use UML as input modeling language for POLIS, neither to implement the
co-synthesis and formal verification tasks using MDE concepts.



3 ModSyn and Its Formal Verification Approach

Our MDE-based approach to embedded systems design automation [13][14] ad-
opts meta-models to represent applications, capturing functionality by means
of processes communicating by ports and channels; platforms, indicating avail-
able hardware/software resources; mappings from application into platform; and
implementations, oriented to code generation and hardware synthesis. Figure 1
shows our MDE-based design flow, called ModSyn (Model-driven co-Synthesis
for embedded systems design). In our approach, the application is specified in-
dependently from the platform, using UML as modeling language, but any other
DSL (Domain Specific Language) ([1]) could also be used. A mapping defines how
application functionality is partitioned among architectural components in order
to produce an implementation for the specified system. Accordingly, four internal
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Fig. 1. ModSyn Design Flow

meta-models allow the independent application and platform modeling: Inter-
nal Application Meta-model (IAMM), Internal Platform Meta-Model (IPMM),
Mapping Meta-model (MMM), and Implementation Meta-Model (IMM). Each
meta-model provides the abstract syntax for the adopted design concepts in
ModSyn. These meta-models are described in ([14]) and will not be detailed
here. This paper will present the generation of a MOF-based internal design
representation model conforming to IAMM from UML class and sequence di-
agrams and, from this internal representation, the generation of a network of
timed automata. This task is performed by the Application Manager and Sys-
tem Designer, respectively, which are shown in Figure 1.



The ModSyn framework provides transformations between models that can
generate a timed Labeled Transition System (LTS) ([6]) from IAM, which can
be used in the Uppaal model checker ([7]), and also provides the generation of
Co-Design Finite State Machines (CFSM) to be used by the Polis framework
([12]) in the Hardware/Software partitioning task, and an actor-based model for
functional simulation using Ptolemy ([15]).

4 Internal Application Meta-model

In ModSyn, for the system structure, UML class diagrams indicate the compo-
nents of the system under design, and the system behavior can be specified using
UML Sequence diagrams that indicate the allowed execution scenarios. In order
to represent an application in a standard way, a model that is captured using
UML is translated into a common application model defined by the Internal
Application Meta-model (TAMM) (illustrated by Figure 2 and Figure 3). This
translation is implemented in ModSyn by means of transformations between
models. As shown in Figure 2, in an application model conforming to TAMM,
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Fig. 2. Internal Application Meta-model (part 1)

a system specification captures the functionality of the application in terms of
a set of modules (Module class). Each module has module declarations (Module
Declaration class) and a module body (ModuleBody class).

The control and data flow of an application model is represented by an
InteractionGraph, presented in Figure 3. In the definition of our Interaction
Graph, we adopt an approach similar to the proposed in ([16]), which takes
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MOF concepts from the UML Activity diagram meta-model. As illustrated
in Figure 3, an InteractionGraph consists of a set of nodes (IGNode class)
and edges (IGEdge class). Each node can represent different kinds of control
flow (IGInitialNode7 IGFinalNode, IGForkNode, IGJoinNode, IGMergeNode,
IGDecisionNode classes) and two kinds of executable nodes (IG CallNode and
IGReplyNode, sub-classes of the IGMessageNode class), which represent the pos-
sible actions of sending and replying messages in the UML Sequence diagram.

5 Labeled Timed Automata Meta-model

In order to represent the functional behavior of a UML model, the corresponding
Internal Application Model is translated into a network of timed automata model
conforming to the Labeled Timed Automata Meta-model (LTAMM) (illustrated
by Figure 4), which is part of our IAM and captures all concepts introduced by
the UPPAAL model checking tool ([7]). This translation is also implemented in
ModSyn by means of transformations between models. As Figure 4 shows, con-
forming to the LTA Meta-Model, a system consists of 1taDeclarations, which
can be used to declare variables, functions, and channels, and 1taProcesses,
which are instances of 1ta Templates. Each ltaTemplate corresponds to a
timed automaton, which can also have 1taDecla rations of local variables and
functions. Each timed automaton is represented by a set of ltaLocations and
lta Transitions, which have source and target locations. Each transition may
have attributes: 1taSelections (non-deterministically bind a given identifier to
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a value in a given range when transition is taken), 1taGuards (transition is en-
abled in a state if and only if the guard evaluates to true), ltaSyncronizations
(transitions labelled with complementary synchronization actions - send and re-
ceive - over a common channel synchronise), and 1taUpdates (when transition
is taken, its update expression is evaluated and the side effect of this expression
changes the state of the system).

6 Generating the LTA Model from UML

The transformation from a UML model into our Internal Application Model
consists of a set of transformations between models, which are implemented using
the Xtend language from the OpenArchitectureWare framework ([17]). The main
transformation consists of traversing the UML model, where the sub-modules are
identified, according to the aggregation and composition between the classes; the
processes are built from the Sequence diagrams, one process for each sequence
diagram; and, finally, the InteractionGraphs are also built from the Sequence
diagrams. Each Package in the UML model is traversed recursively and each
existing UML Class in a package is transformed into a Module class. Each UML
Attribute of each UML class is transformed into a Module Declaration class.
The associations between the UML classes will determine the sub-modules of
each module: Each UML Class, which is part of an aggregation or composition
of another UML Class, will be transformed into a Submodule. Derived classes are
transformed into modules, and all the inherited attributes are replicated inside
each such module.

In the UML/MOF, each Lifeline in a UML Sequence diagram is trans-
formed into a process, which has its actions determined by the Message classes
covered by the corresponding Lifeline class. For each sequence diagram, a



model transformation rule in Xtend initializes and creates an IGInitialNode
and an IGFinalNode for a corresponding InteractionGraph. After that, for each
synchronous message call or signal call in the Sequence diagram a IGCallNode
is created, and for each reply message a IGReplyNode is created.

IGCallNodes and IGReplyNodes are labeled with “cn-” and “rn-”, respec-
tively, followed by the name of the corresponding Message class. In the current
implementation of the model transformations in Xtend, we do not yet handle
asynchronous message calls, which will be one of our concerns as future work.

The Labeled Timed Automata model is also obtained from the Internal Ap-
plication model by means of transformations between models implemented us-
ing the Xtend language of the openArchitectureWare framework ([17]). For each
InteractionGraph we have a 1taProcess, where the 1taLocations will corre-
spond to the IGNodes and the ltaTransitions will represent the IGEdges. The
ltaSelection, 1taGuard, ltaSynchronization, and ltaUpdate attributes will
capture the control flow represented in the InteractionGraph.

7 Case Study

The case study consists of a real-time embedded system dedicated to the au-
tomation and control of an intelligent wheelchair, which has several functions,
such as movement control, collision avoidance, navigation, target pursuit, bat-
tery control, system supervision, task scheduling, and automatic movement. In
order to illustrate the generation of an internal application model from a UML
model, we focus only on the wheelchair movement control, whose simplified UML
class diagram is shown in Figure 5. The UML class diagram in Figure 5 shows

Driver MoveCtrl Navigator Joystick
+write() +move() +calcAngle() +read()
+read() +reset() +calcSpeed() +write()

MoveS T T MoveC Display
+move() +move() +show()
+reset() +reset() +clear()

Fig. 5. Application Model: UML class diagram

the MoveCtrl class, which represents the wheelchair movement controller with
sensor and actuator drivers (represented by the Driver class), and a navigation
mechanism (represented by the Navigator class with a Joystick component).
There are two types of movement controllers (represented by MoveS and MoveC
classes) that have different functions to determine each move for the wheelchair.
In Figure 6(a), the UML sequence diagram defines how the possible execution
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scenarios for the application are composed. As shown in Figure 6(a), we have
a parallel composition of the UML sequence diagrams, which are shown in Fig-
ure 6(b), and Figures 7(a), and (b). In Figure 8(a), we have a graphical rep-
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Fig. 7. UML Sequence Diagrams: a) SD2 b) SD3

resentation of the CDFG corresponding to the generated InteractionGraph
for the Sequence diagram SD1 from Figure 6(a). The IGCallNodes cn-ml and
cn-m2 represent the message calls for calc Angle() and move() in the SD1,
respectively. The IGReplyNodes rn-ml and rn-m2 represent the corresponding
reply messages for calcAngle () and move () in the same S D1, respectively. The
InteractionGraph for the entire application is shown in Figure 8(b), where
we have three IGExecutableNodes cn-igl, cn-ig2, and cn-ig3, which are associ-
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ated by the relation L to the corresponding InteractionGraphs of the sequence
diagrams SD1, SD2, and SD3, respectivelly.

From the InteractionGraph in Figure 8, we obtain the network of timed au-
tomata shown in Figure 9. For the sequence diagram SD1, we have a 1taProcess
PSD1 with six Locations (corresponding to the IGnodes labeled Start-IG-SD1,
cn-ml, cn-m2, rn-ml, rn-m2, and cn-Final-IG-SD1) and five 1taTransitions
(corresponding to the IG Edges labeled el, e2, €3, e4, and e5). We also have
a lpgProcess PWheelchair for the entire application. By using the Xpand lan-
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Fig. 9. Network of LTA in Uppaal for InteractionGraph



guage of the openArchitectureWare framework ([17]), we implemented model-
to-code transformations that generate, from the LTA model, the textual input
for the Uppaal model checker. At this point, the designer can specify logical
properties using CTL formulae and use Uppaal to verify them, as illustrated by
Figure 10.
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Fig. 10. Proving properties in Uppaal

As shown in Figure 10, we have specified a property to check if the appli-
cation model is deadlock-free (using the Uppaal macro A[] not deadlock) and
if eventually the processes corresponding to the sequence diagrams will be exe-
cuted all in parallel (using the CTL formula E<> startsdl and startsd2 and
startsd3).

8 Conclusions and Future Work

In this paper, the MDE fundamental notion of transformation between models
is used to generate an internal representation model to be used by formal verifi-
cation and co-synthesis tools, from a UML model of an application consisting of
Class and Sequence diagrams. The obtained model captures structural aspects
of an application model by using a hierarchy of modules and processes, as well
as behavioral aspects by means of a control/data flow graph model.

We are currently implementing co-synthesis algorithms based on this inter-
nal representation model conforming to the Internal Application Meta-Model
(IAMM) and using the concept of transformations between models from MDE
to perform the co-synthesis tasks, as, for example, the task of hardware/software
partitioning applied on the processes represented by the InteractionGraphs of



an application. Some types of message calls and combined fragments in the se-
quence diagrams of UML 2.0 are not yet handled by our current implementation
and will be one of our topics for future work.
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