
Low–Level Space Optimization of an

AES Implementation for a

Bit–Serial Fully Pipelined Architecture

Raphael Weber1 and Achim Rettberg2

1 OFFIS, Escherweg 2, 26121 Oldenburg, Germany
2 Carl von Ossietzky University Oldenburg, OFFIS, Escherweg 2, 26121 Oldenburg,

Germany

Abstract. A previously developed AES (Advanced Encryption Stan-
dard) implementation is optimized and described in this paper. The spe-
cial architecture for which this implementation is targeted comprises syn-
chronous and systematic bit–serial processing without a central control-
ling instance. In order to shrink the design in terms of logic utilization we
deeply analyzed the architecture and the AES implementation to iden-
tify the most costly logic elements. We propose to merge certain parts of
the logic to achieve better area efficiency. The approach was integrated
into an existing synthesis tool which we used to produce synthesizable
VHDL code. For testing purposes, we simulated the generated VHDL
code and ran tests on an FPGA board.

1 Introduction

People’s demand to keep secrets, only accessible to chosen people, is as old as
mankind. In order to keep something secret one has to make sure that only trust-
worthy people can understand the secret’s contents. The most popular cipher
algorithm is the Advanced Encryption Standard (AES) announced by the U.S.
American National Institute of Standards and Technology (NIST) in late 2000.

In this paper we analyze the AES implementation for a special bit–serial,
reconfigurable, fully pipelined, self–controlled architecture, covered in [11]. Our
goal is to optimize the AES implementation targeted for resource restricted
environments in terms of hardware usage.

Bit–serial architectures have the advantage of a low number of input and
output lines leading to a low number of required pins. In synchronous design,
however, the performance of these architectures is affected by the long wires,
which are used to control the operators or the potential gated clocks. Nowadays,
the wire delay in chip design is near to a break with the gate delay. Solutions
to overcome this drawback are required. Basically, long control wires can be
avoided by a local distribution of the control circuitry at the operator level. A
similar approach is used for the architecture described in this work.

While the design of a fully interlocked asynchronous architecture is well un-
derstood, realizing a fully synchronous pipeline architecture still remains a dif-
ficult task. Through a one-hot implementation of the central control engine, its

folding into the data path, and the use of a shift register, we realized a syn-
chronous fully self–timed bit–serial and fully interlocked pipeline architecture
called MACT (MACT = Mauro, Achim, Christophe and Tom).

The paper is organized as follows. In Section 2 we will shortly explain the
AES cipher algorithm and the basics of the MACT architecture. In Section 3 we
analyze the MACT AES implementation and present our low–level space opti-
mization including a description of our modifications. Finally, Section 4 states
the optimization results, sums up with a conclusion and gives an outlook.

2 Basics

2.1 The Advanced Encryption Standard

AES is a block cipher algorithm which has a constant input/output block size
of 128 bits. Data is encrypted in a differing number of loops in which four trans-
formations are applied to the block, called state. The number of loops depends
on the key size which can either be 128, 192, or 256 bits. In this work we will
only consider the AES-128 with a 128-bit key and 10 loops (rounds).

Figure 1 displays how the cipher works, utilizing four transformations, de-
scribed below. The roundKey is generated from the key and changes each round.
This procedure is called key expansion.

AddRoundKey MixColumns

ShiftRows

SubBytes

i++

i = 10

i > 10

i=0

input roundkey

output

Fig. 1. AES-128 cipher.

AddRoundKey XORs the state byte–wise with the current round key. The
RoundKey applied before the loop is equal to the key. The byte–wise SubBytes

transformation is the most costly operation in terms of hardware utilization.
First, each byte is considered as an element in the Gallois Field (GF(28)) and the
multiplicative inverse is calculated. Second, an affine transformation is applied
to the byte. This results in a highly non linear mapping, which can be stored in
a so called S-Box. SubBytes can be implemented using combinational logic only
using simple bit–wise XOR and AND operators [5, 9]. Other implementations
use a look–up–table [2, 10, 1]. ShiftRows cyclically shifts the bytes of a row over
a differing number of offsets. MixColumns considers the bytes in each column
of the state as coefficients in GF(28) and performs GF(28) multiplication and
XOR operations to the bytes of all four columns of the state. A multiplication in
GF(28) can be performed by a series of shift lefts with a conditional XOR with
the irreducible polynomial m(x) = x

8 + x
4 + x

3 + x + 1 = {01}{1b}.

2.2 The MACT Architecture

MACT is an architecture that breaks with classical design paradigms. Its devel-
opment came in combination with a design paradigm shift to adapt to market
requirements. The architecture is based on small and distributed local control
units instead of a global control instance. MACT is a synchronous, de-centralized
and self-controlling architecture. Data and control information is combined into
one packet which is shifted through a network of operators using one single wire
only (refer to Figure 2). To our knowledge, this is the second approach to imple-
ment a fully interlocked synchronous architecture after that of [4] and the first
one which does not rely on gated clocks to realize the local control of operators.

Start
Bit

Routing
Information

opt.
GapData

Control marker

Dataflow

Fig. 2. Example data packet.

The controlling operates locally, only based on arriving data. Thus, there
are no long control wires, which would limit the operating speed due to wire
delays [6]. This enables a high frequency. Yet, the architecture operates syn-
chronously, thus enabling accurate estimation of the latency, etc. a priori. To
overcome the increased latency of the bit–serial operation, MACT uses pipelin-
ing, i. e., there are no buffers, operators are placed following each other imme-
diately. MACT implementations are based on data flow graphs. Nodes of these
graphs are directly connected, similar to a shift register.

We consider the flow of data through the operator network as processing in
waves, i. e., valid data alternates with gaps. Additionally, we have to ensure that
the control marker is not modified by an operator. This can be achieved by the
two additional signals open bypass and close bypass. If open bypass is true the
control marker and the gap of the data packet are routed around the operating
unit inside the operator. If close bypass is true the data of the data packet is
directed to the operating unit.

MACT is characterized by short and local control wires and no necessity to
implement costly parallel/serial decoders or encoders. Thus, it may run with
high speed, compensating the drawbacks of bit–serial processing. Furthermore,
the local control structure avoids complex controllers. Additionally, the fully in-
terlocked pipeline allows the architecture to support multiple applications within
one implementation. The architecture is described in more detail in [8, 7].

In order to realize reconfiguration within our architecture a component called
router was developed. The router offers path selection, which can be controlled
by the extension of the control marker in the data packet. That means, the
control marker contains the routing information, see Figure 2. The realization
of loops can also be achieved with routers.

3 Low–Level Space Optimization of the Implementation

MACT is a data flow oriented architecture, logic circuits can be generated from
a data flow graph specification by a high level synthesis tool. We used this tool to
draw our data flow graphs for all AES components including the key expansion
in order to get a working prototype [11]. This might have been a straight forward
realization for the MACT architecture. However, while analyzing and testing the
design, we discovered that it was not as space–saving as we had expected.

When dealing with bit–serial designs one might expect small operators and
few input/output pins. While the latter applies for MACT, the first does not
necessarily. Since each MACT operator contains not only the actual operator
logic but also the control logic, it naturally results in a higher hardware uti-
lization, when compared with a bit–parallel operator of the same size without
control logic. Our combinational S-Box implementation uses a huge amount of
simple bit–wise operators like ANDs and XORs, which contribute to the size.

3.1 Analyzing the Design

After we implemented and tested the combinational S-Box we synthesized it,
utilizing a Spartan 3 FPGA evaluation board with the Software Xilinx ISE. The
synthesis report stated a total of 467 occupied slices and 713 utilized 4–input–
look–up–tables. To us, this seemed a rather high device utilization.

We discovered a high level of concurrently operating MACT operators, each
of which receiving its own control signals, even if they arrive at the same time.
Two operators run concurrently, if the packets they process have been synchro-
nized at some point in the data flow graph and stay synchronized.

When taking a closer look at the operators, one can distinguish between
the logic and the control part of the operator. The latter is based on basic
principles of the MACT architecture. Special signals are a result of the design of
the architecture, such as close bypass, open bypass, stall, reset and clock signals.
Figure 3 displays an XOR operator on the register transfer level (RTL).

XOR

CLK

RESET

line_0_in

line_1_in

FDPE

D Q

CE

C

PRE

open _bypass

close_bypass

stall_0_install_0_out

stall_1_out

FDCE

D Q

CE

C
CLR

line_0_out

logical AND logical OR logical NOT

Fig. 3. Register transfer level design of the logical XOR operator.

The framed brightened part in the figure denoted by XOR represents the
logic operators for the logical XOR. The rest of the logic in Figure 3 is dedicated
to control handling. The operator’s logic is necessary, but when two or more
operators receive similar control signals, which eventually result in the same
control behaviour, it might be possible to reduce the number of control signals
needed to get the same behaviour. We propose a new way to exploit similar
control signals of concurrently processing operators.

3.2 Merging Operators

In order to use the same control logic for different operators we part the control
signal processing from the operator logic. This was done via a new modified
Finite State Machine (FSM) design (see Figure 4). The separation improves the
code analysis and processing of the high level synthesis, which was modified to
comply with the new FSM VHDL code of the MACT operators. Thus, we can
replace the operator logic by any other logic without touching the control logic.

wait_for_header bypass

line_in(0) = 1

control(1) = open _bypass = 1

if stall = '1' then

 line <= line;

else

 line <= line_in(0);

end if;

RESET = 1

active

control(0) = close_bypass = 1

if stall = '1' then

 line <= line;

else

 line <= line_in(0) xor line_in(1);

end if;

if stall = '1' then

 line <= line;

else

 line <= line_in(0);

end if;

Fig. 4. Finite State Machine representation of the MACT XOR.

With our new FSM design, it is possible to retrieve the relevant information
of a new operator from the VHDL source file. This approach can not completely
replace the old data flow graph nodes, it merely combines a category of operators
to a more abstract representation. This categorization is done in order to collect
similar nodes of the same category and unite them to a new merged MACT
node. A merged node has multiple inputs and outputs from several operators,
but receives and processes its control signals only once, since it contains only
one logic unit to handle its control signals.

For the merging of nodes to work correctly, the data flow graph has to be
analyzed, since this approach is only applicable under certain circumstances.
Operators only receive similar control signals when they are synchronized and
have the same packet layout and duration. This applies for large parts of the
S-Box. First off, we assume that the targeted data flow graph has been analyzed
so that the synchronization information is available, this includes synchronized

classes as described in our previous work in [3]. Our approach can be decomposed
into three steps:

– look for all synchronized operators in the same category and the same syn-
chronized class, for example XORs, ANDs, ORs, etc.

– replace these sets of operators by a single new merged node with as many
in- and outputs as the operators in the associated set, store the information
in the merged node for code generation

– generate the merged nodes with the FSM VHDL interface as described above

“Information” in the second step can for example refer to the mathematical
representation of the operator, or the way the routing information is handled.
This information can be stored in comments. Later on, the generated interfaces
can be parsed using the very same function as for parsing MACT operators to
retrieve operator information. Thus, our approach is scalable and extensible for
future reuse.

3.3 Optimizing the Implementation via Merged Nodes

We implemented and integrated the conceptual approach explained in the last
subsection into the high level synthesis tool and generated the AES cipher algo-
rithm utilizing the new merged nodes.

As an example, where it can be observed what exactly changed, we applied
our merging nodes optimization to the isomorphic mapping δ, which is a part of
the combinational S-Box. Figure 5 displays the data flow structure of δ including
the reduced amount of control signals for the operators. The b8 till b20 represent
XOR operators, the D’s denote delay elements.

D

b0 b1 b2 b3 b4 b5 b6 b7

D D b12 b14 b9 b13 b8

b16 b15D D Db17 b10 b18

D D D D Db20 b11 b19

δ(b0) δ(b1) δ(b2) δ(b3) δ(b4) δ(b5) δ(b6) δ(b7)

Fig. 5. Data flow graph of the optimized isomorphic mapping with merged nodes.

There are three merged nodes (the dark backgrounded shapes) containing 5,
5, and 3 XORs. For example the lower merged node only needs 2 control signals

instead of 6 which results in a smaller control logic. Applying the merging to the
other AES transformations resulted in less optimization possibilities. Nonethe-
less, the AddRoundKey and MixColumns transformations use some XORs, which
have been merged. The next section will state the results of the prototype and
the optimized implementation, compare them and draw a conclusion.

4 Results and Conclusion

We synthesized our implementation for an inexpensive Xilinx Spartan 3 board,
running at 50 MHz. One AES round takes 62 cycles, capable of processing two
blocks at once. The packets are 13 bits long, so the minimum loop duration is
26 cycles (the minimum gap between packets is also 13). The logic (including an
RS232 interface) utilizes 4,745 of the 4-input LUTs.

With a 50 MHz clock frequency and encrypting 128 bit in a total of 626
clock cycles we calculate a throughput of 9.75 MBit per second. As we stated
earlier, the S-Box has quite some parallelism in it. We minimized the number
of control signals by merging logic nodes. Table 1 shows a direct comparison
between the prototype and the optimized S-Box. The maximum clock frequency
has improved by 38.3% from 141.824 MHz to 196.155 MHz.

Logic utilization prototype optimized reduced perc.

No. of occupied Slices 467 327 30.0%

No. of Slice FF 646 543 15.9%

Total no. 4–input LUTs 713 491 31.1%

Table 1. Comparison between the prototype and the optimized S-Box.

The table indicates an improvement of ≈ 30%. Occupied slices have been
reduced by 30.0%. The number of occupied slice flip–flops has been reduced by
only 15.9%. Table 2 shows the comparison between prototype and optimized
AES-128. The maximum clock frequency shrunk by 24%.

Logic utilization prototype optimized reduced perc.

No. of occupied Slices 3616 2960 18.1%

No. of Slice FF 5902 4663 21.0%

Total no. 4–input LUTs 4745 2905 38.8%

Table 2. Comparison between the prototype and the optimized AES-128.

The space reduction is ≈ 25% on average. As can be seen, the reduction in
percent is about the same for the S-Box and the complete AES-128. This is due
to the fact that the S-Boxes in the AES-128 make up the most costly part.

Special data computation algorithms proved to offer high optimization po-
tential for our space reduction algorithm. They produced excellent results for the
AES implementation, especially the combinational S-Box. Within the scope of
this paper, we did not describe all optimization possibilities, we merely restricted
the space reduction to the most important MACT parts. However, the proto-
type and optimized AES-128 algorithm proved the MACT architecture and the
MHLS tool being capable of implementing and handling very complex designs.

In our opinion, MACT has a high potential, but scheduling and optimizing
remains a difficult task. Future work could focus on a deeper analysis of MACT’s
unique properties and possible applcations to give new research directions.

References

1. K. Atasu, L. Breveglieri, and M. Macchetti. Efficient AES implementations for
ARM based platforms. In SAC ’04: Proceedings of the 2004 ACM symposium on
Applied computing, pages 841–845, New York, NY, USA, 2004. ACM.

2. P. Chodowiec and K. Gaj. Very Compact FPGA Implementation of the AES
Algorithm. In Proceedings of 5th International Workshop on Cryptographic Hard-
ware and Embedded Systems (CHES), number 2779 in Lecture Notes in Computer
Science, pages 319–333. Springer-Verlag, 2003.

3. F. Dittmann, A. Rettberg, and R. Weber. Optimization techniques for a recon-
figurable self-timed and bit-serial architecture. In Proceedings of the SBCCI 2007,
Rio de Janeiro, Brazil, 3 - 6 Sept. 2007.

4. H. M. Jacobson, P. N. Kudva, P. Bose, P. W. Cook, S. E. Schuster, E. G. Mercer,
and C. J. Myers. Synchronous interlocked pipelines. In 8th Intern. Symposium on
Asynchronous Circuits and Systems, Apr. 2002.

5. E. N. Mui. Practical Implementation of Rijndael S-Box Using Combinational Logic.
Available from: http://www.xess.com/projects/Rijndael_SBox.pdf, 2007.

6. D. Renshaw and P. Denyer. VLSI Signal Processing: A Bit Serial Approach.
Addison-Wesley, 1985.

7. A. Rettberg, F. Dittmann, M. C. Zanella, and T. Lehmann. Towards a high-
level synthesis of reconfigurable bit-serial architectures. In Proceedings of the 16th
Symposium on Integrated Circuits and System Design (SBCCI), Sao Paulo, Brazil,
8 - 11 Sept. 2003.

8. A. Rettberg, M. C. Zanella, C. Bobda, and T. Lehmann. A fully self-timed bit-
serial pipeline architecture for embedded systems. In Proceedings of the Design
Automation and Test Conference (DATE), Messe Munich, Munich, Germany, 3 -
7 Mar. 2003.

9. A. Satoh, S. Morioka, K. Takano, and S. Munetoh. A Compact Rijndael Hardware
Architecture with S-Box Optimization. In ASIACRYPT ’01: Proceedings of the
7th International Conference on the Theory and Application of Cryptology and
Information Security, pages 239–254, London, UK, 2001. Springer-Verlag.

10. E. Trichina and L. Korkishko. Secure and Efficient AES Software Implementation
for Smart Cards. In WISA ’04: 5th Workshop on Information Security Applications
2004, pages 425–439. Springer-Verlag, 2004.

11. R. Weber and A. Rettberg. Implementation of the AES Algorithm for a Recon-
figurable, Bit Serial, Fully Pipelined Architecture. In Reconfigurable Computing:
Architectures, Tools and Applications, 5th International Workshop, ARC 2009.
Proceedings, pages 330–335, Karlsruhe, Germany, 16 - 18 Mar. 2009.

