Contract-based Compositional Scheduling
Analysis for Evolving Systems *

Tayfun Gezgin!, Stefan Henkler!', Achim Rettberg?, and Ingo Stierand?

! Institute for Information Technology (OFFIS)
2 Carl von Ossietzky University Oldenburg

Abstract. The objective of this work is the analysis and verification
of distributed real-time systems. Such systems have to work in a timely
manner in order to deliver the desired services. We consider a system
architecture with multiple computation resources. The aim is to work
out a compositional state-based analysis technique to determine exact
response times and to validate end-to-end deadlines. Further, we consider
such systems in a larger context, where a set of systems work in a col-
laborative and distributed fashion. A major aspect of such collaborative
systems is the dynamic evolution. New systems can participate, existing
systems may leave because of failures, or properties may change. We use
contracts to encapsulate systems which work in a collaborative manner.
These contracts define sound timing bounds on services offered to the
environment. When some systems evolve, only those parts which changed
need to be re-validated.

Keywords: Compositional Analysis, Real-Time Systems, Scheduling Analysis,
Model Checking, Abstraction Techniques

1 Introduction

For safety-critical distributed systems it is crucial that they adhere to their spec-
ifications, as the violation of a requirement could lead to very high costs or even
threats to human life. One crucial aspect for safety critical systems is that they
have to work in a timely manner. Therefore, in order to develop safe and reliable
systems, rigorous analysis techniques of timing-dependent behaviour are nec-
essary. In literature, basically there are two approaches for scheduling analysis
of distributed real-time systems. The classical approach is a holistic one, as it
was worked out by e.g. Tindell and Clark [12]. Here, local analysis is performed

* This work was partly supported by European Commission funding the Large-scale
integrating project (IP) proposal under ICT Call 7 (FP7-ICT-2011-7) Designing
for Adaptability and evolutioN in System of systems Engineering (DANSE) (No.
287716), and by the German Research Council (DFG) as part of the Transregional
Collaborative Research Center 'Automatic Verification and Analysis of Complex
Systems’ (SFB/TR 14 AVACS).

2 Gezgin, Henkler, Rettberg, Stierand

evaluating fixed-point equations. The analysis is very fast and is able to han-
dle large systems evaluating performance characteristics like time and memory
consumption. Unfortunately, it delivers very pessimistic results when inter-ECU
task dependencies exist. In [10] activation pattern for tasks are described by
upper and lower arrival curves realizing a more compositional analysis method.
Based on this work a compositional scheduling analysis tool, called SymTA /S,
was created by SymtaVision. The concept has been developed by Kai Richter
et.al. [8], and was improved and extended in several works, e.g. [9]. The main
idea behind SymTa/S is to transform event streams whenever needed and to
exploit classical scheduling algorithms for local analysis. This concept is very
fast and is able to handle large systems, but typically yields pessimistic results.

The second approach is based on model checking, and has been illustrated
for example in [5,4]. Here, all entities like tasks, processors, and schedulers are
modeled in terms of timed automata. The advantage of this approach is that
one gets exact solutions with respect to the modeled scheduling problem. As the
state space of the analyzed system is preserved, checking complex characteristics
like safety properties is possible. Unfortunately, the approach is not scalable, as
the state space of the whole architecture is generated in one single step.

Our approach for scheduling analysis combines both analytical and model
checking methods. Analogous to [5] we consider the full state space for analysis,
where all inter-leavings and task dependencies are preserved. For this, the state
space of the entire system architecture is constructed in a compositional manner.
Based on the state space of a resource, response times are determined. Further,
we propose a concept in order to handle timing properties of evolving systems.
Evolving systems are such systems, where parts can change during run-time.
Changes can occur due to failures and reconfigurations, or when new tasks are
allocated to existing resources. When such a part of the system changes, it is
desirable to only re-validate this part locally without the rest of the system.

Next, we present in Section 2 the foundation of our approach. In Section
3 we introduce operations on symbolic transition systems in order to realize
our compositional analysis. In Section 3.3, we present our state-based analysis
technique. The contract based approach for evolving systems is illustrated in
Section 4, and finally we give a conclusion.

2 Fundamentals

In this work we consider system architectures consisting of sets of processing
units (ECU). A set of tasks is allocated to each ECU. Our goal is to deter-

m|
0|
=

]

O

n I_I ECU2 01
[z | T3

S gl o e 0 e ®

JSU— O

13 03

Fig. 1. Left: characterization of event streams; Right: example architecture

Contract-based Compositional Scheduling Analysis 3

mine for each task corresponding response times, and whether all task dead-
lines and end-to-end deadlines are satisfied. More specific, a task is a tuple
T = (bcet, wcet, d, pr), where beet, wcet € N>(are the best and worst case ex-
ecution times with respect to the allocated ECU with bcet < wcet, d € N> is
its deadline determining the maximal allowed time frame from release time to
task termination, and pr € N> is the fixed priority of the task. We will refer
to the elements of a tasks by indexing, e.g. beet, for task 7. The set of all tasks
is called T. Independent tasks are triggered by events of a corresponding event
stream (ES). An event stream ES = (p,j) is characterized by a period p and a
jitter j with p,j € N>¢. Such streams can be characterized by upper and lower
occurrence curves as introduced in the real-time calculus [11] or timed automata
(introduced in the next section) like illustrated in the left part of Figure 1. In
this work we will restrict to event streams where j, < p, for all 7 € T. Also more
general event streams with bursts would be possible. Automata for such event
streams were presented in [6]. Task dependencies are captured by connecting
corresponding tasks, like e.g. in Figure 1 where t3 depends on t,.

Each ECU in a system is modeled by the tuple ecu = (T,Sch,R,S,A).
A mapping 7 : T — B determines the set of tasks that are allocated to the
ECU. For each ECU, a scheduling policy Sch is given. Three additional state
dependent functions provide dynamic book keeping needed to perform scheduling
analysis: (i) a ready map R : T — B determines tasks, which are released but to
which no computation time has been allocated up to now, (i) a start delay map
S : T — [t1,te] with ¢1,t; € N5y which determines the delay interval for a task
getting from status released to run, and (iii) an active task map A : T — [t1, o]
with t1,t2 € N5 which determines the interruption times of tasks. This map is
ordered and the first element determines the currently running task.

2.1 Timed Automata: Syntax and Semantics

Timed automata [1] are finite automata extended with a finite set of real-valued
variables called clocks. Here, we define syntax and semantics of timed automata
as employed by Uppaal. Uppaal adapts timed safety automata introduced in [7].
In such automata, progress is enforced by means of local invariants. States (or
locations) may be associated with a timing constraint defining upper bounds
on clocks. Let C be a set of clocks. A clock constraint is defined by the syntax
pu=ci~t|er—ca~t] A, where c1,c0 € C,t € Q¢ and ~€ {<, <, =,>
,>}. The set of all clock constraints over the set of clocks C is denoted by #(C).
Valuation of a set of clocks C is a function v : C — R, assigning each clock in
C' a non-negative real number. We denote v |= ¢ the fact that a clock constraint
@ evaluates to true under the clock valuation v. We use O¢ to denote the clock
valuation {c¢ — 0 | ¢ € C}, abbreviate the time shift by v + d := v(c) + d for
all ¢ € C, and define clock resets for a set of clocks ¢ C C by v[o — 0] with
vjip— 0](c) =0if c € p, and v[p — 0] = v(c) else.

Definition 1 (Timed Automaton).

A Timed Automaton (TA) is a tuple A= (L,1°, X, C, R, I) where
— L is a finite, non-empty set of locations, and I° € L is the initial location,
— XY is a finite alphabet of channels, and C is a finite set of clocks,

4 Gezgin, Henkler, Rettberg, Stierand

—RCLxXx®C)x 2¢ x L is a set of transitions. A tuple r = (1,0, 0, 0,1")
represents a transition from location 1 to location I’ annotated with the action o,
constraint ¢, and a set o of clocks which are reset.

— I1:L— ®&(C) is a mapping which assigns an invariant to each location,
The semantics of timed automata is given by timed transition systems.

Definition 2 (Timed Transition System). Let A; = (L;, 12, %:,Ci, Ry, I;)
with i € {1,...,n} be a network of timed automata with pairwise disjoint sets of clocks
and alphabets. The semantics of such a network is defined in terms of a timed transition
system T (A1 || ... || An) = (Conf,Conf°, C, X, —), where

= Conf={(lLv)|l€Lix..xLy N vEN_ I} is the set of configurations,
and Conf® = (1°,0¢), where 1° = (19,...,1%) is the initial location and Oc is the
initial clock valuation,
- C=CiU..UC,, XY =X1U..UX,,
— =C Conf x (¥ U Ry) x Conf is the transition relation. A transition
((L,v),\, (I',v")), also denoted by (l,u)@(l',u/), has one of the following types.
o A flow transition (I,v)<(l,v+1t) with t € Ry can occur, if v+t = Nj=1 1i(15).
o A discrete transition (I,v)>(1',v') with I = I[l; — I] and X\ € X can occur,
if for some i € {1,...,n} it holds that (L;, \i, i, 0i,1;) € R, such that v |= ¢4,
V' =vloi = 0] and v' = \]_y I;(15).

The function [[l; — If] for a location vector | = (ly,...,1;, ..., 1) represents the
location vector | = (I1,...,1},...I,). As the set of configurations is infinite, [1]
gives a finite representation which is called region graph. In [2] a more efficient
data structure called zone graph was presented. A zone represents the maximal
set of clock valuations satisfying a corresponding clock constraint. Let g € &(C)
be a clock constraint, the induced set of clock valuations Dy, = {v | v |= g}
is called a clock zone. Let DT = {v+d | v € DAd € Ry} and D[o — 0] =
{v[o — 0] | v € D}. The finite representation of a timed automaton is given by
a symbolic transition system.

Definition 3 (Symbolic Transition System). Let A be a network of timed
automata with pairwise disjoint sets of clocks and alphabets. The symbolic transition
system (zone graph) of A is a tuple STS(A) = (S, 5%, =) where
— S ={{,Dy) |l € L1 X ... X Lpn,p € ®(C)} is the symbolic state set, and S° =
(1°,0¢) is the initial state,
— —C 8§ x S is the symbolic transition relation with
e (I,D) = (I, D" N D), where I(1) = NJ_, I;(1;)

e (I,D) = (I',(DN Dy,)ei = 0] N D) where ' = I[l; — 1], if there is a
i € {1,...,n} such that (Li, \i, i, 0i,1;) € Ri .

Note that for the general case some so called normalization operations on zones
are necessary. If we build the symbolic transition system for an automaton con-
taining clocks without a ceiling, i.e. some maximal reachable upper bound, it
will lead to infinite sets of symbolic states. Nevertheless, for our cases the above
definition will be sufficient as we always will have ceilings for all clocks. Please
refer to [2] for more details on zone normalization operations.

Contract-based Compositional Scheduling Analysis 5

3 Compositional Analysis

We build the state spaces - i.e. the symbolic transition systems (STS) - of each
resource successively. These state spaces contain the response times of the al-
located tasks. To construct the STS of a resource, besides the behaviour of the
scheduler and characteristics of the allocated tasks, an input STS describing the
activation times of the tasks is necessary. Generally, the inputs of the tasks are
originated from different sources, such that multiple input STSs are given and
we have first to build the product of these STS. As an example, consider Figure
1: to compute the STS of FCU2, we need the activation behaviour of task t4,
which is given by the event stream I3, while the input for t3 is given by the
output STS of resource ECU1. Further, the input STS of a resource can include
behaviour which is not relevant for the computation of the resource STS. In the
above example, to compute the STS of ECU2, only the part of the state space
of ECU1 containing the behaviour of task t, is relevant. We can skip the part
of the state space, in which detailed information about task t; is present.

In the following, we will first introduce both operations on STS, i.e. the
abstraction operation in Section 3.1 and the product computation in Section
3.2. The construction of the STS of a resource is detailed in Section 3.3.

3.1 State Abstraction

In general, an abstraction function is defined as « : S — §’, where S’ C S for a
state set S. In the context of scheduling analysis we will define in the following
the state space of our considered problem domain. Then, we will introduce two
specific abstraction functions, one operating on zones and one on locations. These
two abstraction functions will then be combined and applied to our problem
domain.

Considered State Space To capture the initial non-determinism of the
input event streams of n independent tasks of a ECU as defined in the
previous section, the corresponding STS consists of 2" locations. Let L =
{0, (1Y), ...(I™), (11, 12), ..., (I, ...,I")} be a set of discrete locations over index set
I ={1,...,n}. The location (I%) indicates that an instance of task 7; has already
been released at least once. Analogously, location (I},...,1") indicates that all
tasks have already been released at least once.

Besides the set of locations the considered state set is defined over clock
valuations over a set of clocks C. For each independent task 7 two types of
clocks are needed, i.e. (i) clocks which trace the periodical activation of each
task (cp(7) for task 7), and (¢%) clocks which trace the time frame from releasing
a task up to the finish of computation (¢setive(7)). In order to capture overlapping
task activations, i.e., where multiple task instances t; of task 7 may be active
at the same time, multiple clocks cuetive(t;) exist, one for each task instance.
We need multiple clocks as we rely on using simple clocks in order to realize
our scheduling analysis with preemption, i.e. we cannot change the derivative
of a clock. Otherwise, we would have so called stopwatch automata where a
stopwatch is used to track the allocated execution times of tasks. For this class
of automata the reachability problem is known to be undecidable [3]. As we

6 Gezgin, Henkler, Rettberg, Stierand

need to use one separate clock per task instance, we need to know a priory
the maximal number of possible parallel activations of one task. For dependent
tasks we need only the second class of clocks as we do not have to trace the
activation times. For a task set T we will denote with clk(T) the set of clocks
of all tasks in T. As an example, consider the right part of Figure 1, where we
have the periodical clocks ¢, (t1), ¢p(t2), cp(ts), and allocated computation time
clocks Cactive(tl)7 Cactive(tQ)v Cactive(t?))a Cactive(tél) .

Abstraction on Zones Let C' C C. For a constraint g € $(C) let g;cv be the
constraint, where all propositions containing clocks of the set C\C’ are removed.
Analogously, for a constraint g € #(C”) let g be the constraint extended with
propositions containing clocks in C\C”. The extension is defined in such a way,
that it does not affect the original zone, i.e. Dy = (Dg c)|cr and the new con-
straints are of the form 0 < ¢ < oo forall ¢ € C\C". For example, consider the
sets C' = {c1,c2},C’ = {ca} and the constraint g = ¢y —ca <3Ac; <5Acg < 1.
Then g|cv = ¢z < 1. Further, we have (gjc/)jc = c2 < 1A0 < ¢ < oo. For a
zone D = {v | v [g} defined over C' we define the zone projection operation
Dicr = {v | v = g|cv } accordingly. Note that we have Dy, C D¢

Abstraction on Locations Let a set of locations L over index set I be given.
For I' C I'let oy (L) be the set of locations over index set I’, where locations with
indexes not in I’ are left out. For this, consider for example I’ = I\{i}. Then
ap (It 0 0 = (19, 17 1P ™). As abbreviation we will directly use
tasks instead of explicit indexes, e.g. a(r, -} == a; ;.

Abstraction on States of Symbolic Transition Systems With the intro-
duced abstraction functions on both clock zones and sets of locations we can
now define the abstraction function which abstracts sets of states of a STS. Note
that these states are tuple over locations and zones. Let T' C T., where T, is
the set of tasks allocated to ECU e. The abstraction function abstracts from
the state set of the STS of ECU e to the parts where only information about a
chosen sub-task set T is kept:

ar : (I, D) = (ar(l), Derr))- (1)
This abstraction function induces the following over-approximated STS:
Definition 4. Let STS A = (S, So, —) be a STS over a task set T. The induced
abstraction for T C T from ar is the STS A" = (5,5}, =) with
— 8" = ap(S) is the induced set of abstract states, and S{ = ar(Sp) is the
initial abstract state,
— —='C 8" x S’ the abstract transition relation, where a —' b iff there exists a
51 € ag'(a) and sy € ag'(b) such that s; — sb.
Due to the definition of the transition relation it is obvious that this abstraction
yields an over-approximation of the original STS.

3.2 Product Construction

Let A; = (S;,52,—;) for i = {1,....,n} be a set of STSs over disjoint clock
sets C; and alphabets X;. In the following, we define the product construction
A= A x ... x A,, which is a STS over clock set C = Cy U ... U C,,. For each

Contract-based Compositional Scheduling Analysis 7

created state of the product STS we need to keep track from which input states,
i.e. states of the input STSs A, ..., A,, it resulted. For this, we introduce for
each A; the function &; that maps each product STS state to a state of A;. The
initial state of the product is given by

(I°,0¢) = (19, ...,17),0¢, U...UOc,) (2)
where (I9,0¢,) is the initial state of A;. Note that &((I°,0¢)) = (19,0¢,). The
time successor (I, D') of state (I, D) is then determined by

(I,D"y = ({1, D" NDycN...0 Dy 0) (3)

where &;((I, D)) = (l;, D}) for i € {1,...,n} are the time successors of the input
states. Note that the zones from all STSs are extended to the global clock set C.
Starting from the computed time successor, to compute all possible discrete
steps in the product transition system, each outgoing transition from each STS
is tried to be fired. In fact, this is also done in Definition 3: whenever the guards
of a transition are fulfilled, a discrete transition is enabled and can be fired.
This is the case, when the intersection of the zone induced by the guard and
the current zone is not empty. The discrete successors of a state (I, D) of the
product STS are given by the following set:
dSucc((l, D)) = {(l[l = U], D) | {li, D) = (l;; Di) A D" #0} (4)
where D' = (D N p~Y(D})c)[p(D]) — 0] N DQ\C and (I;, D;) = &({l, D)) for all
i € {1,...,n}. The function p(D) represents the set of clocks, which are reseted
in the corresponding zone and p~!(D) represents the symbolic state before the
reset operation of the corresponding transition has been performed. A discrete
step is possible, if the resulting zone is not empty.

3.3 Resource Graph computation

In this section we will illustrate the construction of the state space of a resource.
Due to the limited page size we will only sketch the idea of our algorithm here.
In the following we will use the functions i.lb() and i.ub() to access the lower
and upper bound of an interval i.

Listing 1.1. Main code computeResourceSTS(STS Sin, Configuration cin).
set ¥((I°,0c)) and £.add((1°,0c), (12,,00,,))
while(¥.size >0)
forall (edgein € outgoingEdges({lin, Din)) : computeSuccessor ((I, D), edgein)
checkDeadlines ()

The main algorithm for the computation of a resource STS is illustrated in
Listing 1.1. The input parameters are an input STS S, describing the task
activation times, and some configuration data such as the scheduling policy and
informations about the allocated tasks. Analogous to the computation of the
product, we need to keep track for each of the resource state, from which input
state (i.e. state of the input transition system) it resulted. For this, we introduce
the function £ which maps each resource STS state to an input STS state.

8 Gezgin, Henkler, Rettberg, Stierand

The algorithm starts by creating the initial symbolic state so = (I, Cp) of
the resource STS. This state is added to a set ¥, which determines the states, for
which successors have to be computed. The initial state (I2 ,0c¢,,) of the input
transition system is set as the corresponding input state of sq.

The possible successors of a state (I, D) are determined by the successors of
the corresponding input state £((I, D)). The computation of the successors of a
resource state proceeds analogous to the successor computation of the product
STS introduced in the previous section. For this, the algorithm iterates through
all outgoing transitions of the corresponding input state defining either the set
of tasks, which can be released, or the (single) time successor, and builds a
set of corresponding successors of the resource state. If edge;,, defines the time
successor (lin, Din), we get the time successor of the current resource state (I, D)
by computing DTﬂDm‘C. If a task instance ¢ is running in state (I, D), we further
intersect the zone with the response time of the running task, i.e. cactive(t) <
weety + interruptTimes;.ub().

If else edge;, defines a discrete successor which constitutes to a release of
a new instance of task 7, we need to perform a case distinction: If there is
no running task in the current resource state (I, D) (i.e. when the active task
map A; in location ! is empty), we build the successor resource state (I’, D')
by intersecting the current resource D with the zone of the successor of the
corresponding input state. The active task map 4; then gets the entry (¢, [0, 0]).

Else when we have a running task, we have to determine, whether this task
can finish its computation before a new instance of the task determined by edge;,
can be released. This is done as follows.

1. If the running task ¢ cannot terminate, i.e. Coctive(t).ub() < bert, we try
to release a new task instance as defined in the input STS state. For this,
the intersection of the current resource state and the successor state of the

corresponding input state is computed. Two cases can occur here:

(a) If the intersection results in an empty zone, the discrete step cannot be
taken and the next input edge is considered.

(b) Else, a new instance of task 7 can be released. The active task map
A; gets the new entry (t.,[0,0]). Then, the next running task wrt. the
considered scheduling policy is determined. At least the new state is

added to the graph and the set ¥’.
2. If a running task ¢ will terminate (Cactive(t).Ib() == werty), its execution

time is accumulated to all interrupted tasks by incrementing their interrupt
times in the active task map 4;. Then we determine the next running task
according to the scheduling policy. If we move the task ¢ from the ready
map to the active map (i.e. a previously released task which did not get
computation time so far), we have to store the time frame from release to
start of ¢ in order to correctly determine its allocated execution time. This
time frame is given by clock cuerive(t) and is stored in the start delay map
S. Further, we have to reset cCuetive(t) as no computation time has been
allocated so far. At least, we are recursing computeSuccessor((l', D"y, 7).

If cactive (t).ub() > berts Acqetive (t).10() < werty then both 1) and 2) are executed
in this order.

Contract-based Compositional Scheduling Analysis 9

Each state which is generated in the computeSuccessor method is added to
the set ¥. For all newly generated states ¥’ we determine whether a deadline is
violated as follows.

V(I,D) e W' t € A/ URy: Dyub() < dy. (5)

If Equation 5 is violated or no state is left in ¥, the algorithm terminates.

4 Contract based Analysis

Systems in our context may evolve. Such an evolution is illustrated in Figure
2. The system System1 is first composed of two resources which deliver some
service to its environment. After some time a reconfiguration of this system may
occur. In Figure 2 the system is changed to a new decomposition structure

A:"a" occurs with period p
G: delay between 'a' and 'g' is within [t7, t,]

System 1 f<<satisfios>> System 2
Resource 1 Resource 2 E
2 1 I g
— Task 1} Task2 |~} Task4

A:"a" occurs with period p
G: delay between 'a' and 'g' is within [t7, t,]

System 1 i<<satisfies>>

Resource 1 Resource 3 Resource 2

Task 1 }--M—{- Task 4 J|>—

!
la

if

[[Task 3 l] JI Task 5 1] System n { Task 5 }——<

Fig. 2. Changing part of a system.

consisting of three resources. Such reconfigurations would get necessary if for
example some resources fail, loads of the tasks get larger, or new tasks are
allocated to the system, such that new resources get necessary. If such systems
are annotated by constraints determining the quality of the offered services,
internal changes would not affect other systems, as these rely on the quality
guarantees of the system. In the above example, a contract consisting of an
assumption (A) and a guarantee (G) is annotated to the system. An assumption
specifies how the context of the component, i.e. the environment from the point
of view of the component, should behave. Only if the assumption is fulfilled,
the component will behave as guaranteed. If now a change of a system occurs,
we only need to check this part rather than all other systems. When a change
occurs, we use the algorithm presented in Section 3.3 to re-validate the contract.
This concept can be further extended to parts of Systems of Systems (SoS): if
several systems cooperate in order reach some goals and to offer some services
to their environment, these cooperating systems can again be annotated by such
timing contracts. When a whole system is exchanged by another system in this
part of the SoS, again only the STSs of the constituent systems of this part have
to be build to re-validate the contract. As we do the analysis in a compositional
manner, we further can reuse the STSs of these constituent systems, which are
not affected by the changing system. This is for example the case, when they
only deliver services to the changed systems and do not adhere on their services.

10 Gezgin, Henkler, Rettberg, Stierand

5 Conclusion and Future Work

In this work we presented a scheduling analysis technique for systems with mul-
tiple resources and potential preemptions of tasks. The state space of the entire
system architecture is defined by symbolic transitions systems (STS) and is con-
structed in a compositional manner. For this, we introduced two operations on
STSs, namely the product construction and the abstraction on parts of a STS.
Further, we proposed a concept in order to handle timing properties of evolving
systems. We proposed to encapsulate cooperating system by contracts, such that
changes of such a part do not affect other systems. Currently, we are implement-
ing our proposed concept. The implementation so far builds up the STS of the
whole architecture and performs the response time analysis in a holistic man-
ner. In future work we will validate our approach and compare it with related
tools. We will investigate new abstraction techniques which will further boost
the scalability of our approach.

References

1. Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183-235, 1994.

2. Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools.
In W. Reisig and G. Rozenberg, editors, In Lecture Notes on Concurrency and Petri
Nets, Lecture Notes in Computer Science vol 3098. Springer—Verlag, 2004.

3. Franck Cassez and Kim Larsen. The impressive power of stopwatches. In In Proc.
of CONCUR 2000: Concurrency Theory, pages 138—152. Springer, 1999.

4. Alexandre David, Jacob Illum, Kim G. Larsen, and Arne Skou. Model-based frame-
work for schedulability analysis using uppaal 4.1. In G. Nicolescu and P.J. Moster-
man, editors, Model-Based Design for Embedded Systems, pages 93—-119, 2009.

5. E. Fersman, P. Pettersson, and W. Yi. Timed automata with asynchronous pro-
cesses: schedulability and decidability. In Proceedings of TACAS. Springer, 2002.

6. M. Hendriks and M. Verhoef. Timed automata based analysis of embedded system
architectures. In Parallel and Distributed Processing Symposium, April 2006.

7. T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for
real-time systems. Information and Computation, 111:394-406, 1992.

8. Kai Richter. Compositional Scheduling Analysis Using Standard Event Models.
PhD thesis, Technical University of Braunschweig, Braunschweig, Germany, 2004.

9. J. Rox and R. Ernst. Exploiting inter-event stream correlations between output
event streams of non-preemptively scheduled tasks. In Proceedings of the Confer-
ence on Design, Automation and Test in Furope, DATE, Leuven, Belgium, 2010.

10. L. Thiele, S. Chakraborty, M. Gries, A. Maxiaguine, and J. Greutert. Embedded
software in network processors - models and algorithms. pages 416 —434. Springer
Verlag London, UK, 2001.

11. L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling hard
real-time systems. In IEEE International Symposium on Circuits and Systems
(ISCAS), volume 4, pages 101 —104 vol.4, 2000.

12. Ken Tindell and John Clark. Holistic schedulability analysis for distributed hard
real-time systems. Microprocess. Microprogram., 40:117-134, April 1994.

