
Model Checking Memory-Related Properties of
Hardware/Software Co-Designs

Marcel Pockrandt, Paula Herber, Verena Klös, and Sabine Glesner

Technische Universität Berlin
{marcel.pockrandt, paula.herber, verena.kloes,

sabine.glesner}@tu-berlin.de

Abstract. Memory safety plays a crucial role in concurrent hardware/-
software systems and must be guaranteed under all circumstances. Al-
though there exist some approaches for complete verification that can
cope with both hardware and software and their interplay, none of them
supports pointers or memory. To overcome this problem, we present a
novel approach for model checking memory-related properties of digi-
tal HW/SW systems designed in SystemC/TLM. The main idea is to
formalize a clean subset of the SystemC memory model using Uppaal
timed automata. Then, we embed this formal memory model into our
previously proposed automatic transformation from SystemC/TLM to
Uppaal timed automata. With that, we can fully automatically verify
memory-related properties of a wide range of practical applications. We
show the applicability of our approach by verifying memory safety of an
industrial design that makes ample use of pointers and call-by-reference.

1 Introduction

Concurrent HW/SW systems are used in many safety critical applications, which
imposes high quality requirements. At the same time, the demands on multi-
functioning and flexibility are steadily increasing. To meet the high quality stan-
dards and to satisfy the rising quantitative demands, complete and automatic
verification techniques such as model checking are needed. Existing techniques
for HW/SW co-verification do not support pointers or memory. Thus, they can-
not be used to verify memory-related properties and they are not applicable to
a wide range of practical applications, as many HW/SW co-designs rely heavily
on the use of pointers.

In this paper, we present a novel approach for model checking memory-related
properties of digital HW/SW systems implemented in SystemC/TLM [15, 20].
SystemC/TLM is a system level design language which is widely used for the
design of concurrent HW/SW systems and has gained the status of a de facto
standard during the last years. The main idea of our approach is to formalize
a clean subset of the SystemC memory model using multiple typed arrays. We
incorporate this formal memory model into our previously proposed SystemC to
timed automata transformation [13, 14, 21]. With that, we enable the complete

and automatic verification of safety and timing properties of SystemC/TLM de-
signs, including memory safety, using the Uppaal model checker. Our approach
can handle all important elements of the SystemC/TLM language, including port
and socket communication, dynamic sensitivity and timing. Thus, we can cope
with both hardware and software and their interplay. We require our approach
for model checking of memory-related properties of SystemC/TLM designs to
fulfill the following criteria:

1. The SystemC memory model subset must be clearly defined.
2. The automatic transformation from SystemC/TLM to Uppaal must cover

the most important memory related constructs, at least the use of pointer
variables and call-by-reference.

3. The resulting representation should produce as little overhead as possible on
verification time and memory consumption for the Uppaal model checker.

4. To ease debugging, the automatically generated Uppaal model should be
easy to read and understand.

Note that our main goal is to make the theoretical results from formal mem-
ory modeling applicable for practical applications, and in particular, to transfer
the results from the verification of C programs (with pointers) to the verification
of HW/SW co-designs written in SystemC. We do not aim at supporting the full
C memory model, including inter-type aliasing and frame problems. Instead, we
focus on a small, clean subset of the SystemC memory model that is sufficient
for most practical examples and can be verified fully automatically.

The rest of this paper is structured as follows: In section 2, we briefly intro-
duce the preliminaries. In section 3, we summarize related work. In section 4,
we present our approach for the formalization of the SystemC memory model
with Uppaal timed automata. Then, we show how we incorporated the mem-
ory model into our previously proposed automatic transformation from System-
C/TLM to Uppaal. In Section 5, we describe the verification of memory safety
with our approach. Finally, we present the results of this transformation for our
case study in Section 6 and conclude in Section 7.

2 Preliminaries

In this section, we briefly introduce the preliminaries that are necessary to un-
derstand the remainder of the paper. First, we give an overview over the system
level design language SystemC/TLM and Uppaal timed automata (UTA). Then
we give a brief introduction into our transformation from SystemC to timed au-
tomata.

2.1 SystemC/TLM

SystemC [15] is a system level design language and a framework for HW/SW co-
simulation. It allows modeling and executing of hardware and software on various
levels of abstraction. It is implemented as a C++class library, which provides the

language elements for the description of hardware and software, and an event-
driven simulation kernel. A SystemC design is a set of communicating processes,
triggered by events and interacting through channels. Modules and channels
represent structural information. SystemC also introduces an integer-valued time
model with arbitrary time resolution. The execution of the design is controlled
by the SystemC scheduler. It controls the simulation time, the execution of
processes, handles event notifications and updates primitive channels.

Transaction Level Modeling (TLM) is mainly used for early platform evalua-
tion, performance analysis, and fast simulation of HW/SW systems. The general
idea is to use transactions as an abstraction for all kind of data that is transmit-
ted between different modules. This enables simulations on different abstraction
levels, trading off accuracy and simulation speed. The TLM standard [20] and
its implementation are an extension of SystemC, which provide interoperabil-
ity between different transaction level models. The core of the TLM standard
is the interoperability layer, which comprises standardized transport interfaces,
sockets, and a generic payload.

2.2 Uppaal Timed Automata

Timed automata [1] are finite-state machines extended by clocks. Two types of
clock constraints are used to model time-dependent behavior: Invariants are as-
signed to locations and restrict the time the automaton can stay in this location.
Guards are assigned to edges and enable progress only if they evaluate to true.
Networks of timed automata are used to model concurrent processes, which are
executed with an interleaving semantics and synchronize on channels.

Uppaal [2] is a tool suite for modeling, simulation, and verification of net-
works of timed automata. The Uppaal modeling language extends timed au-
tomata by bounded integer variables, a template mechanism, binary and broad-
cast channels, and urgent and committed locations. Binary channels enable a
blocking synchronization between two processes, whereas broadcast channels
enable non-blocking synchronization between one sender and arbitrarily many
receivers. Urgent and committed locations are used to model locations where
no time may pass. Furthermore, leaving a committed location has priority over
non-committed locations.

A small example Uppaal timed automaton (UTA) is shown in Figure 1. The
initial location is denoted by ©◦ , and request? and ack! denote sending and
receiving on channels, respectively. The clock variable x is first set to zero and
then used in two clock constraints: the invariant x <= maxtime denotes that
the corresponding location must be left before x becomes greater than maxtime,
and the guard x >= mintime enables the corresponding edge at mintime. The
symbols ©∪ and ©c depict urgent and committed locations.

2.3 Transformation from SystemC to UPPAAL

In previous work [13, 14, 21], we have presented an approach for the automatic
transformation of the informally defined semantics of SystemC/TLM designs

x <= maxtime

ack!
value = f(t)

x >= mintime

request?
x = 0

Fig. 1: Example Timed Automaton

into the formal semantics of UTA. The transformation preserves the (informally
defined) behavioral semantics and the structure of a given SystemC design and
can be applied fully automatically. It requires two major restrictions. First, we
do not handle dynamic process or object creation. This hardly narrows the ap-
plicability of the approach, as dynamic object and process creation are rarely
used in SystemC designs. Second, the approach only supports data types that
can be mapped to (structs and arrays of) int and bool.

In our transformation, we use predefined templates for SystemC constructs
such as events, processes and the scheduler. Then, each method is mapped to
a single UTA template. Call-return semantics is modeled with binary channels.
Process automata are used to encapsulate the method automata and care for
the interactions with event objects, the scheduler, and primitive channels. Our
transformation is compositional in the sense that we transform each module
separately and compose the system in a final instantiation and binding phase.
For detailed information on the transformation of SystemC/TLM designs to
UTA we refer to [12].

3 Related Work

In the past ten years, there has been a lot of work on the development of formal
memory models for C and C-like languages and in particular on the verification of
pointer programs. Three main approaches to reason about memory in C (cf. [26])
exist: First, semantic approaches regard memory as a function from some kind of
address to some kind of value. Second, there exist approaches that use multiple
typed heaps in order to avoid the necessity of coping with inter-type aliasing. In
these approaches, a separate heap is used for each language type that is present in
a given program or design. In [5], Bornat describes under which restrictions such
a memory model is semantically sound. Third, approaches based on separation
logic (an extension of Hoare logic) [22] are able to cope with aliasing and frame
problems. The main idea of separation logic is to provide inference rules that
allow for the expression of aliasing conditions and local reasoning.

With our approach, we mainly adapt the idea of multiple typed heaps [5] by
providing a separate memory array for each datatype used in a given design.

There also have been several approaches to provide a formal semantics for
SystemC in order to enable automatic and complete verification techniques.
However, many of them only cope with a synchronous subset of SystemC [18,
23, 24, 10], cannot handle dynamic sensitivity or timing, and do not consider
pointers or memory. Other approaches which are based on a transformation

from SystemC into some kind of state machine formalism [11, 25, 27, 19], pro-
cess algebras [17, 9] or sequential C programs [6, 7] do not cope with pointers
or memory as well. Furthermore, most of these approaches lack some important
features (e.g., no support for time, no exact timing behavior, no automatic trans-
formation). To the best of our knowledge, the only approach that can cope with
pointers and memory is the work of [16, 4]. There, a labeled Kripke structure-
based semantics for SystemC is proposed and predicate abstraction techniques
are used for verification. However, the main idea of this approach is to abstract
from the hardware by grouping it into combinational and clocked threads, which
are then combined into a synchronous product for the overall system. They do
neither address timing issues nor inter-process communication via sockets and
channels. Thus, it remains unclear how they would cope with deeply integrated
hardware and software components and their interplay. Several approaches ex-
ists for the verification of memory safety properties. However, these approaches
focus on pure C (e.g., BLAST [3] and VCC/Z3 [8]) and cannot cope with the
special semantics of SystemC/TLM.

4 Formalization and Transformation of the SystemC
Memory Model

In this paper, we present a novel approach for model checking memory-related
properties of HW/SW systems implemented in SystemC/TLM. The main idea
of our approach is to formalize a clean subset of the SystemC memory model
using separate memory arrays for each type present in a given design (cf. [5]).
In order to enable model checking of memory-related properties, we incorporate
this formal memory model into our SystemC to Timed Automata Transforma-
tion Engine (STATE) [13, 14, 21]. To this end, we define a set of transformation
rules, which covers all memory-related constructs that are relevant for our subset
of the SystemC memory model. For each memory-related construct, we define
a UTA representation. With that, we can automatically transform a given Sys-
temC/TLM design that makes use of pointers and memory into a UTA model.

In the following, we first state a set of assumptions that define a subset of the
SystemC memory model. Then, we present our representation of the SystemC
memory model within Uppaal. Finally, we present the transformation itself.

4.1 Assumptions

Our memory model covers many memory related constructs like call-by-reference
of methods, referencing of variables, derefencing of pointers and pointers to
pointers in arbitrary depth. However, we require a given SystemC/TLM model
to fulfill the following assumptions:

1. No typecasts are used.
2. No direct hardware access of memory addresses (e. g., int *p; p = 0xFFFFFF;).
3. Structs are only referenced by pointers of the same type as the struct. This

also means that there are no direct references to struct members.

4. No pointer arithmetic is used.
5. No dynamic memory allocation.
6. No recursion is used.
7. No function pointers are used.

Assumptions 1, 5, and 6 are necessary as Uppaal does not support typecasting,
dynamic memory allocation or recursion. The second assumption is necessary
because we do not model the memory bytewise and can only access it per vari-
able. The third assumption is due to the fact that we do not flatten structs and
therefore struct members do not have an own address. As we only model the data
memory, assumption 7 is necessary. The Assumptions 1-4 can be considered as
minor ones and hardly restrict the expressiveness of our memory model. As most
SystemC/TLM models do neither make use of dynamic memory allocation nor
of recursion, Assumptions 5 and 6 are acceptable as well.

With the assumptions above, we have a clear definition of the subset of the
SystemC memory model that we want to support with our approach.

4.2 Representation

The main idea of our representation is to model the memory of the System-
C/TLM design with multiple typed arrays. As Uppaal does not support poly-
morphic datatypes, we create a separate array for each datatype used in the
design. Pointers then can be modeled as integer variables, which point to a po-
sition in the array for the corresponding type. Array variables are interpreted as
pointers to the first array element. All other variables are modeled as constant
pointers if they are ever referenced (e.g., call-by-reference or direct referencing).

Figure 2 shows a small example of our Uppaal representation for the Sys-
temC memory model. While pointers, integers and struct variables are arbitrarily
spread over the memory in the SystemC memory model, we group them together
in our Uppaal representation. In our example, there exist an integer variable i

and two objects s and t of type data. Furthermore, there is an integer pointer
p, pointing to i, and a pointer q of type data, pointing to t. In the resulting
Uppaal model, i is placed in the array intMem and s and t are placed in the
array dataMem. The pointers are transformed from real addresses into the corre-
sponding array indices. Note that the arrays have a finite and fixed size which
cannot be altered during the execution of the model. However, the pointers can
point to all existing data of their type.

4.3 Transformation

For the transformation of a given design, we sort all variables into three disjunct
sets: PTR, containing all pointers, REF containing all referenced nonpointer
variables and all arrays and VAR containing all other nonpointer variables.

The result can be used to extract the memory model of the SystemC/TLM
model and to transform it into a Uppaal memory model as proposed in 4.2.
Figure 3 shows a small example for the transformation. Except for additional

t

q

s

i p

int *p

int i

intMem

dataMem

data *q

data s

data t

Fig. 2: Memory Representation in SystemC and UPPAAL

array accesses, the resulting Uppaal model has the same structure and variable
names as the original design. This eases manual matching with the corresponding
SystemC/TLM design to correct detected errors in SystemC/TLM designs.

1

2 data ar r [3] ;
3 data x ;
4 data ∗p ;
5

6 x . va l = 23 ;
7 p = &x ;
8 p−>va l = 42 ;
9 ar r [2] . va l = 12 ;

10 ∗p = arr [1] ;
11 p = &arr [2] ;

(a) SystemC/TLM representation

1 i n t dataMEM[DATAMEMSIZE] ;
2 const i n t a r r = 0 ;
3 const i n t x = 3 ;
4 i n t p ;
5

6 dataMEM[x] . va l = 23 ;
7 p = x ;
8 dataMEM[p] . va l = 42 ;
9 dataMEM[ar r +2] . va l = 12 ;

10 dataMEM[p] = dataMEM[ar r +1] ;
11 p = arr + 2 ;

(b) Uppaal representation

Fig. 3: Memory Representation Examples

Table 1 shows the transformation rules we use, with var ∈ REF, arr ∈ REF∧
isArray(arr), p,q ∈ PTR, arbitrary data types T, U, V and W, and the arbitrary
expression E. In general, every referenced variable is converted into a typed array
index. While for nonpointer variables this index is constant, pointers can be
arbitrarily changed. Direct accesses to these variables and pointer dereferencing
operations can be modeled by typed array accesses. Direct pointer manipulation
and variable referencing can be performed without any typed array access.

For all variable types in the REF and PTR sets, we generate a typed array
representing the memory for this type. The size of each typed array is determined

by the total amount of referenced variables of this type. For all members of the
REF set, we reserve one field in the typed array per variable per module instance
and generate a constant integer with the name of the variable and the index
of the reserved field. For arrays, we reserve one field per element and set the
constant integer to the index of the first element in the array. We replace every
variable access with an array access to the typed array and every referencing of
the variable by a direct access. If the variable is an array, the index is used as an
offset. For all members of the PTR set we generate an integer variable with the
initial value NULL (-1) or the index of the variable the pointer points to. As -1 is
not a valid index of the typed array, all accesses to uninitialized pointers result
in an array index error. Furthermore, we replace every dereferencing operation
to the pointer with an array access to the corresponding typed array.

We implemented the transformation rules in our previously proposed trans-
formation from SystemC to Uppaal and thus can transform a given System-
C/TLM model with pointers fully automatically. Currently, our implementation
does not support pointers to pointers and arrays of pointers, though both can
be added with little effort.

Table 1: Transformation Rules
SystemC Uppaal

Declarations
T var; ⇒ const int var = newIndex(T);
T var = E; ⇒ const int var = newIndex(T);

TMEM[var] = E;
U arr[E]; ⇒ const int arr = newIndex(U, E);
U arr[] = {v0,...,vn−1}; ⇒ const int arr = newIndex(U, n);

UMEM[arr+0] = v0; ...;
UMEM[arr+(n-1)] = vn−1;

V *p; ⇒ int p = -1;
W *q = E; ⇒ int q = E;

Variable Access
var ⇒ TMEM[var]
arr[E] ⇒ UMEM[arr+E]
&(E) ⇒ E
&arr[E] ⇒ arr+E

Pointer Access
*(E) ⇒ TMEM[E] (with E of type T)
NULL ⇒ -1

Field Access
var.field ⇒ TMEM[var].field
var.p→field ⇒ VMEM[TMEM[var].p].field
arr[E].field ⇒ UMEM[arr+E].field
arr[E].p→field ⇒ VMEM[UMEM[arr+E].p].field
p→field ⇒ VMEM[p].field
p→q→field ⇒WMEM[VMEM[p].q].field

5 Verification of Memory Safety

As our transformation from SystemC to Uppaal is able to cope with pointers
and other memory-related constructs, the Uppaal model checker can now be
used to verify memory safety properties. In general, we can verify all properties
that can be expressed within the subset of CTL supported by Uppaal [2] (e.g.,
safety, liveness and timing properties as shown in [21]). For convenience, our
verification framework generates two memory safety properties automatically:

(a) All pointers in the design are always either null, or they point to a valid part
of the memory array corresponding to their type.

(b) The design never tries to access memory via a null pointer.

To verify the first property, it is necessary to check for all pointers p0...pn that
they are either null or have a value within the range of their typed array. If the
function u(pi) yields the size of the typed array of the type of pi, property (a)
can be formalized as follows:

AG (p0 = null ∨ 0 ≤ p0 ≤ u(p0)− 1) ∧ ... ∧ (pn = null ∨ 0 ≤ pn ≤ u(pn)− 1)

The second property cannot be captured statically, as it needs the dynamic
information where in the program a pointer is used to access memory. To solve
this problem, we have developed an algorithm identifying all memory accesses in
all processes Proc0...Procn. For each transition comprising a memory access, a
unique label li is assigned to its source location. With these labels, the property
that a memory access mai that uses a pointer pj is valid can be formalized as
follows:

safe(mai) ≡ (Proc(mai).li =⇒ (pj 6= null))

Using this abbreviation, the second property can be formalized as follows:

AG safe(ma0) ∧ ... ∧ safe(man)

Both memory safety properties described above are automatically generated for
all pointers in a given design within our verification framework.

6 Evaluation

In this section we evaluate our approach with an industrial case study, namely a
TLM implementation of the AMBA AHB, provided by Carbon Design Systems.

The original model consists of about 1500 LOC. To meet the assumptions
of our approach, we performed the following modifications: (1) we changed the
sockets to TLM standard sockets, (2) we replaced the generic payload type with
a specific one, (3) we replaced operators for dynamic memory management (e.g.,
new, delete) by static memory allocation and (4) we only transfer constant data
through the bus. The latter modification drastically simplifies the verification
problem. However, our focus is on verifying the correct concurrent behavior,

Table 2: Results from the Amba AHB Design
Verification time ([h:]min:sec)

Pointer-free design Design with pointers

1M1S 1M2S 2M1S 2M2S 1M1S 1M2S 2M1S 2M2S

transformation time 0:04 0:04 0:04 0:04 0:03 0:03 0:04 0:05

deadlock freedom < 1 < 1 0:27 1:08 6:17 12:06 37:28 1:24:25
only one master - - 0:14 0:34 - - 24:07 54:32
bus granted to M1 < 1 < 1 0:15 0:37 3:56 7:47 24:10 54:06
bus granted to M2 - - 0:15 0:38 - - 24:10 54:02
timing < 1 < 1 0:22 0:54 11:37 22:24 1:09:15 2:32:04
memory safety (a) - - - - 4:36 9:16 27:57 1:04:07
memory safety (b) - - - - 6:36 13:19 39:12 1:27:29

states 5K 9K 537K 1M 15M 26M 64M 127M
memory usage < 1 mb 2 mb 61 mb 112 mb 873 mb 1.5 gb 2.2 gb 3.9 gb

synchronization, timing, and memory safety which do not depend on the data
that is transfered over the bus. The modified model consists of about 1600 LOC.

We also performed experiments on a pointer-free variant of the AMBA AHB
design to evaluate the additional verification effort produced by our memory
model. Therefore, we manually removed all memory related constructs from the
original design and tried to keep the resulting design completely side-effect free.
In the following, we compare the results of two different experiments: transfor-
mation and verification of (1) the pointer-free design and (2) of a design featuring
pointers and other memory-related constructs (like call-by-reference).

For both designs, we verified the following properties: (1) deadlock freedom,
(2) a bus request is always eventually answered with a grant signal, (3) the bus is
only granted to one master at a time, (4) a transaction through the bus is always
finished within a given time limit. For the CTL formulae we refer to [21]. For
the design with pointers and other memory-related constructs, we additionally
verified memory safety, as described in Section 5. All experiments were run on a
64bit Linux system with a dual core 3.0 GHz CPU and 8 GB RAM. To evaluate
the scalability of our approach we used different design sizes (from 1 master and
1 slave, 1M1S, to 2 master and 2 slaves, 2M2S). The results of the verification
are shown in Table 2.

All properties have been proven to be satisfied at the end of the verification
phase. During the verification, we detected a bug in the original design which
led to a deadlock situation. When a transaction is split into several separate
transfers, a counter variable is used to store the number of successful transfers
before the split occurs. This variable was not reset in the original design. As a
consequence, all split transactions besides the first one failed. This is a typical
example which is both difficult to detect and to correct with simulation alone.
With our approach, the generation of a counter example took only a few min-
utes. Due to the structure preservation of our transformation and the graphical
visualization in Uppaal, it was easy to understand the cause of the problem.

Our results show that the verification effort, in terms of CPU time and mem-
ory consumption, is drastically increased if pointers and other memory-related
constructs are taken into account. This is due to the fact that the memory model
introduces an additional integer variable for each variable in the design. How-
ever, formal verification via model checking, if successful, is only performed once
during the whole development cycle. At the same time, the generation of counter
examples only takes a few minutes. Most importantly, we are not aware of any
other approach that can cope with the HW/SW interplay within SystemC/TLM
models and at the same time facilitates the verification of memory-related prop-
erties, for example memory safety.

7 Conclusion and Future Work

We presented a novel approach for model checking of memory-related properties
on HW/SW systems implemented in SystemC/TLM. We formalized a clean sub-
set of the SystemC memory model with UTA. We use this formalization for a
fully-automatic transformation of SystemC/TLM into equivalent Uppaal timed
automata. This enables the use of the Uppaal model checker to verify memory-
related properties. For convenience, we generate two memory safety properties,
namely that all pointers only point to valid memory locations or null and that no
null pointer accesses are used, automatically within our verification framework.

We implemented our approach and showed its applicability with an industrial
design of the AMBA Advanced High Performance Bus (AHB). We were able to
verify deadlock freedom, timing, and memory safety. We detected a deadlock sit-
uation in the AMBA AHB design, which could easily be resolved with the help
of the counter-example generated by the Uppaal model checker. Our memory
model produces a significant overhead to verification time and memory con-
sumption. However, this overhead is compensated with the possibility to verify
memory-related properties and the drastically increased practical applicability
of our approach.

In our case study, we manually modified the design such that only constant
data is transfered over the bus. For future work, we plan to extend our approach
with automatic data abstraction techniques to enable the verification of even
larger SystemC/TLM designs without manual interaction.

References

1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science
126, 183–235 (1994)

2. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal. In: Formal Meth-
ods for the Design of Real-Time Systems. pp. 200–236. LNCS 3185, Springer (2004)

3. Beyer, D., Henzinger, T., Jhala, R., Majumdar, R.: Checking Memory Safety with
Blast. In: Fundamental Approaches to Software Engineering, pp. 2–18. LNCS 3442,
Springer (2005)

4. Blanc, N., Kroening, D., Sharygina, N.: Scoot: A Tool for the Analysis of SystemC
Models. In: TACAS. pp. 467–470. LNCS 4963, Springer (2008)

5. Bornat, R.: Proving pointer programs in Hoare Logic. In: MPC. pp. 102 – 126.
LNCS 1837, Springer (2000)

6. Cimatti, A., Micheli, A., Narasamdya, I., Roveri, M.: Verifying SystemC: A soft-
ware model checking approach. In: FMCAD. pp. 51 –59 (2010)

7. Cimatti, A., Griggio, A., Micheli, A., Narasamdya, I., Roveri, M.: Kratos - A
Software Model Checker for SystemC. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV, pp. 310–316. LNCS 6806, Springer (2011)

8. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: A Practical System for Verifying Concurrent C. In:
TPHOL. pp. 23–42. LNCS 5674, Springer (2009)

9. Garavel, H., Helmstetter, C., Ponsini, O., Serwe, W.: Verification of an industrial
SystemC/TLM model using LOTOS and CADP. In: MEMOCODE. pp. 46–55.
IEEE (2009)

10. Große, D., Kühne, U., Drechsler, R.: HW/SW Co-Verification of Embedded Sys-
tems using Bounded Model Checking. In: Great Lakes Symposium on VLSI. pp.
43–48. ACM Press (2006)

11. Habibi, A., Moinudeen, H., Tahar, S.: Generating Finite State Machines from Sys-
temC. In: DATE. pp. 76–81. IEEE (2006)

12. Herber, P.: A Framework for Automated HW/SW Co-Verification of SystemC
Designs using Timed Automata. Logos (2010)

13. Herber, P., Fellmuth, J., Glesner, S.: Model Checking SystemC Designs Using
Timed Automata. In: CODES+ISSS. pp. 131–136. ACM press (2008)

14. Herber, P., Pockrandt, M., Glesner, S.: Transforming SystemC Transaction Level
Models into UPPAAL Timed Automata. In: MEMOCODE. pp. 161 – 170. IEEE
Computer Society (2011)

15. IEEE Standards Association: IEEE Std. 1666–2005, Open SystemC Language Ref-
erence Manual (2005)

16. Kroening, D., Sharygina, N.: Formal Verification of SystemC by Automatic Hard-
ware/Software Partitioning. In: MEMOCODE. pp. 101–110. IEEE (2005)

17. Man, K.L.: An Overview of SystemCFL. In: Research in Microelectronics and
Electronics. vol. 1, pp. 145– 148 (2005)

18. Müller, W., Ruf, J., Rosenstiel, W.: SystemC: Methodologies and Applications,
chap. An ASM based SystemC Simulation Semantics, pp. 97–126. Kluwer Aca-
demic Publishers (2003)

19. Niemann, B., Haubelt, C.: Formalizing TLM with Communicating State Machines.
Forum on specification and Design Languages (2006)

20. Open SystemC Initiative (OSCI): TLM 2.0 Reference Manual (2009)
21. Pockrandt, M., Herber, P., Glesner, S.: Model Checking a SystemC/TLM Design

of the AMBA AHB Protocol. In: ESTIMedia. pp. 66 – 75. IEEE (2011)
22. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:

LICS. pp. 55–74. IEEE Computer Society (2002)
23. Ruf, J., Hoffmann, D.W., Gerlach, J., Kropf, T., Rosenstiel, W., Müller, W.: The

Simulation Semantics of SystemC. In: DATE. pp. 64–70. IEEE (2001)
24. Salem, A.: Formal Semantics of Synchronous SystemC. In: Design, Automation

and Test in Europe (DATE). pp. 10376–10381. IEEE Computer Society (2003)
25. Traulsen, C., Cornet, J., Moy, M., Maraninchi:, F.: A SystemC/TLM semantics in

Promela and its possible applications. In: SPIN. pp. 204–222. LNCS 4595, Springer,
Berlin (2007)

26. Tuch, H.: Formal Memory Models for Verifying C Systems Code (2008)
27. Zhang, Y., Vedrine, F., Monsuez, B.: SystemC Waiting-State Automata. In: Pro-

ceedings of VECoS 2007 (2007)

