Modeling Time-Triggered Ethernet in
SystemC/TLM for Virtual Prototyping of
Cyber-Physical Systems

Zhenkai Zhang and Xenofon Koutsoukos

Institute for Software Integrated Systems (ISIS)
Department of Electrical Engineering and Computer Science
Vanderbilt University
Nashville, TN, USA
{zhenkai.zhang, xenofon.koutsoukos}@vanderbilt.edu

Abstract. When designing cyber-physical systems (CPS), virtual pro-
totyping can discover potential design flaws at early design stages to
reduce the difficulties at the integration stage. CPS are typically com-
plex real-time distributed systems which require networks with deter-
ministic end-to-end latency and bounded jitter. Time-triggered Ethernet
(TTEthernet) integrates time-triggered and event-triggered traffic, and
has been used in many CPS domains, such as automotive, aerospace,
and industrial process control. In this paper, a TTEthernet model in
SystemC/TLM is developed to facilitate the design and integration of
CPS. The model realizes all the necessary features of TTEthernet, and
can be integrated with the hardware platform model for design space
exploration. We validate the model by comparing latency and jitter with
those obtained using a commercial software-based implementation. We
also compare our model with the TTEthernet modeled in OMNeT++
INET framework. Our model provides startup and restart services that
are necessary for maintaining synchronized operations in TTEthernet.
We evaluate these services and also the efficiency of the simulation.

Keywords: TTEthernet, SystemC, TLM, Virtual Prototyping

1 Introduction

Cyber-physical systems (CPS) are complex heterogeneous systems whose design
flow includes three layers: the software layer, the network/platform layer, and the
physical layer [1]. The interactions within and across these layers are complex.
The physical layer interacts with the hardware platform through sensors and ac-
tuators. Embedded software runs on the hardware platform and communicates
via a network to realize the desired functionalities. Due to the high degree of
complexity, design flaws often appear at the integration stage. In order to dis-
cover potential design flaws at early stages, a virtual prototyping development
approach is required.

In virtual prototyping of CPS, modeling the hardware platform in a System-
Level Design Language (SLDL) is essential to quickly evaluate the interactions
between the platform and the software layer and the physical layer at early design
stages. Since CPS are typically distributed real-time systems, the network also
plays an important role in design and integration.

In many CPS domains that require known and bounded network latency, such
as automotive, aerospace, and industrial process control, time-triggered Ethernet
(TTEthernet) has been used for real-time communication. Traditional Ethernet
cannot be used, since it suffers from cumulative delay and jitter. TTEthernet
integrates time-triggered traffic and event-triggered traffic together, and provides
the capability for deterministic, synchronous, and lossless communication while
supporting best-effort traffic service of Ethernet at the same time [2].

SystemC, which has become a de facto SLDL [3], is proposed to be one main
part of virtual prototyping of CPS [4]. It allows system modeling and simula-
tion at various levels of abstraction. In addition, the concept of transaction-level
modeling (TLM) is adopted in SystemC to separate the computation and com-
munication. A TLM communication structure abstracts away low-level commu-
nication details while keeping certain accuracy. Thus, both the software layer and
the network/platform layer can be modeled in SystemC/TLM at early design
stages making it suitable for virtual prototyping.

In this paper, we describe a TTEthernet model in SystemC/TLM for virtual
prototyping in order to take into account the network effects in a CPS. The
model in SystemC/TLM offers many advantages: (1) it is easy to acquire at early
design stages; (2) it is scalable to a large number of nodes; (3) the model can be
integrated with the hardware platform model in a straightforward manner; (4)
it provides efficient and accurate simulation.

The main contribution of this work is a TTEthernet model in SystemC/TLM
that realizes all the necessary features for facilitating the design and integration
of CPS. The model is validated by comparing latency and jitter with those
obtained using a commercial software-based implementation and the model in
OMNeT++ INET framework [5]. The model is also evaluated for its startup and
restart services and the simulation efficiency.

The rest of this paper is organized as follows: Section 2 gives the related
work including TTEthernet and related modeling efforts. Section 3 describes
the model in detail. Section 4 validates the model against a real implementation
and the model in OMNeT++ INET framework and also evaluates the services
in the model and the simulation efficiency. Section 5 concludes this paper.

2 Related Work

Time-triggered architecture (TTA) has been widely used in safety-critical CPS,
which require reliable time-triggered communication systems, such as TTP/C,
FlexRay, and TTEthernet [6]. Compared to the maximum bandwidth of TTP/C
(25Mbit/s) and FlexRay (10Mbit/s), the bandwidth of TTEthernet can reach
100Mbit /s or even 1Gbit/s, making it very attractive in many CPS domains. As

mentioned in [7], there are two versions of TTEthernet. The academic version
uses preemption mechanism and only supports time-triggered (TT) and event-
triggered (ET) traffic, while the industrial version uses non-preemptive integra-
tion of TT and ET and divides ET into rate-constrained and best-effort traffic
classes. In [8], the academic version of TTEthernet is introduced to integrate
TT and ET traffic together. In [9], an academic version of TTEthernet switch
is developed which preempts ET message transmission when a TT message ar-
rives to guarantee a constant transmission delay of TT messages caused by the
switch regardless of the load of ET traffic on the network. In [10], a prototypi-
cal TTEthernet controller is described and implemented in an FPGA. TTTech
Computertechnik AG company issued the TTEthernet specification in [11] and
also developed industrial products [12]. Finally, the TTEthernet specification is
standardized by SAE in [2].

Modeling TTEthernet has been used to simulate in-vehicle communication
systems. In [5], an extension to the OMNeT++ INET framework is made to
support simulation of TTEthernet. The model is based on standard Ethernet
model in the INET framework. Although the evaluation shows the model is in
good agreement with real implementation, the model does not consider different
protocol state machines for different roles of synchronization, which results in
some services of TTEthernet are simplified or not supported.

In order to support Ethernet networks in the system-level design in a SLDL,
various models/approaches have been proposed. In [13], a half-duplex Ethernet
based on CSMA/CD MAC protocol is simply modeled using SpecC and TLM
techniques. In [14], an Ethernet interface in SystemC/TLM-2.0 is modeled for
virtual platform or architectural exploration of Ethernet controllers. Another
approach is to integrate network simulators with simulation kernels of SLDLs.
In [15], the NS-2 network simulator is integrated into the SystemC/TLM de-
sign flow. The advantage of this approach is that network simulators have a
good support for almost every commonly used network. However, such an ap-
proach requires the integration of two discrete-event simulation kernels, which
can greatly reduce the simulation efficiency.

3 Modeling TTEthernet in SystemC/TLM

3.1 Framework

Our TTEthernet model in SystemC/TLM aims at facilitating the design and
integration of the network/platform layer in a CPS, especially if the system is a
distributed mixed time-triggered/event-triggered real-time system. As shown in
Fig. 1, the network/platform layer consists of several computational nodes which
communicate with each other through a TTEthernet network. The TTEthernet
model includes two separate parts: the TTEthernet controller and the TTEther-
net switch. The network is deployed in star topology or cascaded star topology
which uses switches to integrate each star topology.

In each node of the system, a TTEthernet controller communicates with
other designed hardware components through a memory-mapped bus. Standard

Node 1 Node 2

¥l
£y
v, i

Peripherals

Ethernet Socket
Forward Transport

ol
Backward Transport

Fig. 1. Network/Platform Layer Design Using TTEthernet Model in SystemC/TLM.

TLM-2.0 sockets are used for this purpose. As a target of TLM, the TTEthernet
controller implements a blocking transport interface method for fast but loosely-
timed simulation and non-blocking transport interface methods for slow but
approximately-timed simulation.

In order to simulate the bidirectional communication link between two ports
of the TTEthernet devices, a specific Ethernet socket is used to model the port.
As the TLM-2.0 Ethernet socket introduced in [14], our Ethernet socket is a
derived class from both initiator and target sockets of TLM-2.0. In order to
distinguish different ports of a TTEthernet device, tagged initiator and target
sockets are used as base classes of the Ethernet socket. For binding two Ether-
net ports, bind() and operator() are overwritten to bind the initiator socket of
each port to the target socket of the other port. For invoking transport interface
methods, the operator— distinguishes which socket of a port should be accessed
according to the calling method. Since our TTEthernet model uses Ethernet
rather than memory-mapped bus, interoperability is not concerned by introduc-
ing new transaction type for Ethernet which is similar to the TLM Ethernet
payload type introduced in [14].

3.2 Clock Model

In TTEthernet, a synchronized global time is the base for all time-triggered op-
erations. Each TTEthernet device (controller/switch) is driven by a clock having
a clock drift. Thus, the clock synchronization service is crucial for the correct
operation. In order to simulate its synchronization service, each TTEthernet de-
vice needs to have an independent clock with its own drift and offset. However,
SystemC uses a discrete event simulation kernel which maintains a global time.
If we simulate every tick of a clock with a drift, the simulation overhead will
be too large, which can seriously slow down the simulation. Instead, we model
the clock as follows: a random ppm value is assigned to each clock in the in-
terval [-MAX_PPM, -MIN_PPM] U [MIN_PPM, MAX_PPM]. According to the
time-triggered schedule, the duration in clock ticks from the current time to the
time when the next time-triggered action needs to take place is calculated. After
that, we can get the duration in simulation time by taking into account its clock

drift: durationin simulationtime = durationinclockticks x (ticktime+drift),
and then we can arrange a clock event with this amount of time by using the
notification mechanism of sc_event in SystemC.

Because the clock will be adjusted periodically by the synchronization ser-
vice, the arranged clock event will be affected (its occurrence in simulation time
becomes sooner or later). In order to simulate this properly, the arranged clock
event and its occurring time in clock ticks is stored in a linked list in an order of
occurring time. When a clock event occurs or its time has passed due to clock
adjustment, it will be deleted from the linked list and processes pending on it
will be resumed. When the clock is corrected, notifications of the arranged clock
events are canceled and new simulation times for the notifications of the events
are recalculated based on the corrected clock.

A timer model is also built on the clock model, which uses the drift of the
clock model to calculate the duration in simulation time and is used for timeout
events. In contrast to clock events, timeout events are not affected by clock
synchronization and only depend on how many ticks should pass before they
occur.

3.3 TTEthernet Traffic Classes

TTEthernet supports three traffic classes: time-triggered (TT), rate-constrained
(RC), and best-effort (BE). In order to recognize which traffic class a frame
belongs to, either encoding it in the Ethernet MAC destination address or using
EtherType field of the Ethernet frame header is feasible [2]. In our model, we
employ the destination address divided into two parts to identify critical traffic
(CT) including TT and RC. The first part (32 bits) of the destination address
shows whether a frame belongs to CT by checking this part against the result of
bitwise AND of CT marker and CT mask. The second part (16 bits) gives the
CT ID which is used for further checking and scheduling.

TT messages are used for applications with strict requirements like deter-
ministic end-to-end latency and bounded jitter. RC messages, compliant with
ARINC 664 standard part 7, are used for applications with less strict require-
ments, for which sufficient bandwidth should be allocated. BE messages, using
the remaining bandwidth of the network, form the standard Ethernet traffic
which has no guarantee of delivery and transmission latency.

TTEthernet also has a transparent traffic used for its synchronization proto-
col. The synchronization message is called protocol control frame (PCF), and has
three types: coldstart frames (CS) and coldstart acknowledgment frames (CA)
are used for startup and restart services, and integration frames (IN) are used
for synchronization service. In our model, the PCF traffic also uses the MAC
destination address to encode its identity.

3.4 TTEthernet Device

The TTEthernet controller and switch have several common functions/services.
We extract all the common ones, and implement them in a class named tte_device.

detgct_cligue_s)
detect_cfique_gsync()

Fe————————————————1
I psm_sm_thregd()

i psm 4c_thregl)

i g @mad{j =
|

[

|

|

|

Fig. 2. TTEthernet Device Main Structure.

tte_device is the abstract base class of tte_controller and tte_switch which has pure
virtual functions that need to be implemented by tte_controller and tte_switch
to define different behaviors of these two different devices. Fig. 2 shows the main
SystemC processes in tte_device. There is an init_method() SystemC method
process which is sensitive to a power-on event and initializes the device. This is
used to model different power-on times given in a configuration file of different
devices. After power-on, startup service of TTEthernet will try to bring the
device into synchronized operation mode.

Ports: An Ethernet socket is used to realize the functions of Ethernet ports.
The TLM-2.0 transport interface methods are implemented to transmit standard
Ethernet frames. Ethernet socket has both blocking transport interface and non-
blocking transport interface. Due to the star or cascaded star network topology of
TTEthernet, the collision domain is segmented and only two TTEthernet devices
which are directly connected may contend for the use of the medium. We model
TTEthernet working in full-duplex mode so that collisions become impossible;
moreover, the non-preemptive integration of TT and ET is used that is compliant
with the products in [12]. Thus, the efficient blocking transport method becomes
accurate enough to model the communication between two TTEthernet devices.

Each TTEthernet device (controller/switch) can have several Ethernet ports
according to its configuration. For a controller, multiple ports represent redun-
dancy which send the same frame in order to realize fault-tolerance. For a switch,
each port can be connected to a controller or a switch to create a separate
collision domain. Each port is associated with three dynamic thread processes
which are send_thread(), recv_thread(), and release_ET(). The send_thread() and
recv_thread() processes with the scheduler model the data link layer of TTEther-
net, which uses TDMA MAC protocol. The send_thread() process is responsible
for starting a frame transmission, and is controlled by the scheduler process
and the release_ET() process via events. The release_ET() process knows the
schedule and is responsible for signaling the send_thread() process to send an
ET frame if there is enough gap for this frame before next T'T frame dispatch-
ing time comes. The recv_thread() process waits for an incoming frame delivered
by the b_transport() method registered to the Ethernet socket. When a frame
is transmitted through the b_transport() method, it will be processed by the

recv_thread() process. According to the analysis of the destination address, ei-
ther a PCF handler process will be dynamically spawned, or one of the traf-
fic processing functions (TT, RC, or BE) will be called. The traffic processing
functions are pure virtual functions which need to be implemented by different
TTEthernet device to realize different behaviors.

Scheduler: Every TTEthernet device sends packets according to a static
schedule that relies on synchronized global time. The static schedule is generated
by an off-line scheduling tool and used by the TTEthernet device through a
configuration file. We use the off-line scheduling tool provided by TTTech [12],
which guarantees two TT frames never contend for transmission.

The exec_sched_thread() process implements the function of the scheduler and
is responsible for signaling the send_thread() processes of the ports to start a TT
frame transmission according to the static schedule. It pends on a synchroniza-
tion event occurring when the device enters the synchronized states, and starts
executing the schedule when the event happens. If the device goes out of the syn-
chronized states, it also signals the exec_sched_thread() process to stop executing
the schedule. If the device is a synchronization master, the scheduler process
also signals send_thread() processes to send out an integration PCF when PCF’s
dispatching time is reached (dispatching time is 0 in our model).

Protocol State Machine: Each TTEthernet device executes exactly one of
the protocol state machines to maintain its role for synchronization, which are
formulated in [2]. All TTEthernet devices can be classified into three different
roles: synchronization masters (SMs), synchronization clients (SCs), and com-
pression masters (CMs). Startup service of the protocol state machines tries to
establish an initial synchronized global time to make devices operate in synchro-
nized mode. When a device detects it is out of synchronization, restart service
of the protocol state machines will try to resynchronize itself.

The model has three SystemC thread processes to realize different protocol
state machines respectively, which are psm_sm_thread() for SM, psm_sc_thread()
for SC, and psm_cm_thread() for CM, as shown in Fig. 2. Each state has its
own sc_event object which is pended on by the state. If a state has a transition
fired because of timeout, it also sets an event’s notification by using the timer
model, and pends on the event “OR” list of its own sc_event object and the
timeout sc_event object. The sc_event object will be notified when any one of
transitions of this state is enabled, and corresponding transition flag will be set
showing the guard of this transition is met. By checking the flags in an order
that is defined in [2], priorities of concurrent enabled transitions are enforced
in the protocol state machines, which guarantees determinism. Since concurrent
sc_event notifications will not queue up, events enabling concurrent transitions
will not queue up during execution of the protocol state machines.

Clique detections are used in TTEthernet to detect clique scenarios where dif-
ferent synchronized time bases are formed in a synchronization domain. When
cliques are detected, protocol state machines will try to reestablish synchro-
nization. The detect_clique_sync() method process is responsible for synchronous
clique detection and is sensitive to an event that will be notified when the accep-

tance window for receiving scheduled PCFs is closed. The detect_clique_async()
method process is responsible for asynchronous clique detection and is sensitive
to an event that will be notified when the acceptance window for receiving sched-
uled PCFs is closed in CMs or when the clock reaches the dispatching time in
SMs or SCs.

Synchronization Service: When operating in synchronized mode, TTEth-
ernet uses a two-step synchronization mechanism: SMs dispatch PCFs to CMs,
and CMs calculate the global time from the PCFs (i.e. “compress”) and dispatch
“compressed” PCFs to SMs and SCs. SMs and SCs receive “compressed” PCFs
and adjust their clocks to integrate into the synchronized time base.

When a PCF arrives, a dynamic PCF handler process (process-PCF()) will
be spawned to cope with this PCF. Concurrent PCF handler processes may
exist due to multiple PCFs arriving with small time difference. Permanence
function [2] is used to reestablish the temporal order of the received PCFs. The
process-PCF() implements the permanence function by using the timer model.
By checking the PCFs, the process also enables some transitions whose guards
only count on PCFs in the protocol state machines.

If the TTEthernet device is a CM, a dynamic compression process (compres-
sion()) may be spawned if there is no process handling corresponding integration
cycle of the PCF. The integration cycle filed of a PCF shows which round of
synchronization this PCF belongs to. Compression function [2] is used to collect
PCFs having the same integration cycle number within a configurable interval
and compress these PCFs for calculating the synchronized global time. The com-
pression() also uses the timer model to realize all the time delays needed by its
collection and delay phases.

When the acceptance window for receiving PCFs ends, the sync_thread()
process will be resumed to calculate the clock correction from the PCFs that
are in-schedule. After a fixed delay (at least greater than half of the acceptance
window), the clock will be adjusted by the calculated correction value.

3.5 TTEthernet Controller & Switch

Both the TTEthernet controller and switch are derived from TTEthernet de-
vice, and implement the pure virtual functions to realize different behaviors of
processing the traffic.

The TTEthernet controller also acts as a TLM-2.0 target which receives
transactions containing Ethernet frames via a target socket. Extensions are made
to the generic payload to show which traffic class the Ethernet frame belongs
to. Each traffic class has its own transmission and reception buffers. In the case
of a write command, the controller puts the extracted Ethernet frame into the
corresponding traffic transmission buffer. When the controller receives a frame,
it will signal the processor to read it via interrupt, and it puts the received
frame into a transaction in response to a read command and sets the traffic class
extension.

The TTEthernet switch uses critical traffic table and schedule table to route
and forward CT (TT and RC) frames, and uses static/dynamic routing tables

for BE frames. It also acts as a temporal firewall for TT traffic to segregate faulty
controllers if they are babbling. For RC traffic, it uses token bucket algorithm
to enforce a bandwidth allocation gap between two consecutive RC frames.

4 Experimental Results

In this section, we compare our TTEthernet model with the model in OM-
NeT++/INET framework [5] and a real TTEthernet implementation from TT-
Tech for validation. We also evaluate the startup and restart services as well as
the efficiency of the simulation.

Node 1

Node 4 Node 2 Node 4 Node 6 Node 8

(a) Validation Setup (b) Evaluation Setup

Fig. 3. Experiment Scenarios.

4.1 Validation

We set up a star topology which has four nodes connected to a central TTEth-
ernet switch with 100Mbit/s links as shown in Fig. 3 (a). Node 1 sends both
TT traffic and BE traffic to Node 2, and both Node 3 as well as Node 4 send
only BE traffic to Node 2. All the traffic goes through a TTEthernet switch.
The communication period is 10ms, and the time slot is 200us. The maximum
clock drift is set as 200ppm for the models. Node 1 sends a TT frame at 1ms
offset of each period. The configuration files including their corresponding XML
files for the nodes and switch are generated by the TTTech toolchain [12]. From
the generated XML files, we extract parameters such as critical traffic table
and schedule table to configure our model and the model in OMNeT++. In this
setup, the switch dispatches the T'T frame sent by Node 1 at 1.4ms offset of each
period. The metrics we measure are average end-to-end latency and jitter of TT
frames which are important factors for real-time communication systems. We
measure these metrics for different TT frame sizes under full link utilization of
BE traffic. Fig. 4 shows the results of our model in SystemC/TLM, the model in
OMNeT++ INET framework, and the software stack implementation in Linux
from TTTech [12].

From the figure we can see the model in SystemC/TLM and the model in
OMNeT++ INET framework give very similar results. In [16], the method of
measuring end-to-end latency of software-based implementation of TTEthernet

g
3

w ——SW Stack in Linux
=3 ~&--Model in OMNeT++ INET 25
Faad Model in SystemC/TLM ——SW Stack in Linux
S -o--Model in OMNeT++ INET
& _» Model in SystemG/TLM
- 550 n
e =
w
i | F
& B E
=g 500 - =
5 10/
a
o0
\f! 450
k) 5
>
<
400 L L L L L " " ol
o 200 400 600 800 1000 1200 1400 1600 o 200 400 600 800 1000 1200 1400 1600
Frame Size (byte) Frame Size (byte)

Fig. 4. Average End-to-End Latency and Jitter of Different Frame Sizes.

is stated. According to [16], the measured latency gap (90us) between frame
size of 123 and 124 bytes of the software-based implementation is caused by the
measuring port driver configuration. The measured jitter of the software-based
implementation is bounded by 30us [16]. The hardware-based implementations
will bound the jitter more tightly [12].

4.2 Evaluation

We set up the network as shown in Fig. 3 (b) to evaluate the startup and restart
services implemented in our model. In this cluster, Node 1, Node 2, Node 5, and
Node6 are SMs; Switch 1, Switch 2, and Switch 3 are CMs; the rest are SCs.
The integration cycle is 10ms, and the parameters are generated by the TTTech
toolchain [12].

With different power-on times, we record the time when every powered device
in the cluster enters its synchronized state in Tab. 1. Since different power-on
times of Switch 2 may cause cliques in the cluster, we also record the time
when every powered device is resynchronized back to its synchronized state due
to clique detection and restart service. Since in this setup SCs only passively
receive PCFs, we set the power-on times of them as 0s.

Table 1. Startup and Restart Service Evaluation

N1 & N2 & N5 & N6 SW1 & SW2 & SW3 Sync Resync
0s/0s/0s/0s 0s/0s/0s 29.834ms -
0.1ms/1ms/0.5ms/1.2ms 1.1ms/0.8ms/1.5ms 30.845ms -
2ms/4ms/8ms/6ms 30ms/10ms/40ms 79.856ms -
0s/0s/0s/0s 0s/30ms/0s 38.677ms -

0s/0s/0s/0s 0s/50s/0s 29.776ms 50.0256s

When every device approximately starts at the same time, the devices will
be synchronized quickly which are shown in the first two cases. When the CMs
are powered later than the SMs, the time when every one is synchronized will
be delayed as shown in the third case. In the fourth case, Node 1, Node 2, and
Switch 1 establish a synchronized time base at about 29.8ms; likewise, Node
5, Node 6, and Switch 3 establish the other synchronized time base. Switch 2
which is the CM connecting with the other two CMs is powered just a little bit

later than the time when the two synchronized time bases are established. Since
during this small time interval the clock drifts have not caused the two time
bases to differ too much, Switch 2 will join in the synchronization quickly and
the two time bases will be merged into one time base. In the fifth case, two sepa-
rate synchronized time bases are established before Switch 2 is powered as well.
However, this time Switch 2 is powered much later (about 49.07s) than the time
when the two time bases are established. The clock drifts have caused the two
subsets of devices not to be synchronized over subset boundaries. When Switch
2 is started, asynchronous clique detection and restart service implemented in
our model result in a new synchronized global time, and at 50.0256s every device
is synchronized.

Finally, we evaluate the scalability and simulation efficiency of our approach.
We set up the evaluation using a central switch, and all the nodes are connected
to the switch. The simulation time is 1000s, and increasingly add a pair of
nodes into the network. Each pair of the nodes, such as Node 1 and Node 2,
communicates with each other using TT, RC, and BE traffic. Each node sends
out a TT frame, a RC frame, and a BE frame every 10ms. Thus, there are
300,000 x number of nodes frames totally. The result is shown in Fig 5.

400

L
a0 -&--Model in OMNeT++ INET e
~+ Model in SystemC/TLM =
e
300 .
s
= 250 e
v ¥4
E g
(S e
2 ,w’m
& 150 Tl
100 /E-"'- ¥
- et
sy’ P
e "
o . , . .
2 4 12 14 16

s g 0
Number of Nodes

Fig. 5. Used CPU Time of Different Number of Nodes.

From the results we can see the model in SystemC/TLM has good simulation
efficiency when the number of nodes increases. The simulation speed of the model
in OMNeT++ INET framework is also evaluated under the same computation
environment (2.50GHz dual-core CPU and 6GB memory). We simulate the same
topology and traffic by using the fastest mode in OMNeT++ to get rid of the
influence of animation and text outputs.

5 Conclusions

Due to the complex interactions between different layers of a CPS, virtual pro-
totyping has become an important approach to discover potential design flaws
before the last integration stage. SystemC/TLM has been adopted for virtual
prototyping because of its capability of modeling both the software layer and
the network/platform layer of a CPS. TTEthernet has been used in many CPS
domains and provides bounded end-to-end latency and jitter.

In order to take into account the network effects caused by TTEthernet when
designing a CPS, a model in SystemC/TLM is proposed in this paper. The
developed model considers all the necessary features of TTEthernet and can
be integrated into the hardware platform model in a straightforward manner.
We validate the model against the model in OMNeT++ INET framework and
the software-based implementation from TTTech, and evaluate the startup and
restart services which are used to maintain the synchronization by powering on
the devices at different times.

The future work focuses on integrating this model into a mixed TT/ET
distributed CPS simulation framework and using timed automata to verify this
model.

Acknowledgments. This work has been partially supported by the National
Science Foundation (CNS-1035655).

References

1. Sztipanovits, J., Koutsoukos, X.D., Karsai, G., Kottenstette, N., Antsaklis, P.J.,

Gupta, V., Goodwine, B., Baras, J.S., Wang, S.: Toward a Science of Cyber-

Physical System Integration. Proceedings of the IEEE 100(1) (2012) 29-44

SAE Standard AS 6802: Time-Triggered Ethernet (2011)

IEEE Standard 1666-2011: Standard SystemC Language Reference Manual (2011)

Mller, W., Becker, M., Elfeky, A., DiPasquale, A.: Virtual Prototyping of Cyber-

Physical Systems. In: ASP-DAC ’12. (2012) 219-226

5. Steinbach, T., Kenfack, H.D., Korf, F., Schmidt, T.C.: An Extension of the OM-
NeT++ INET Framework for Simulating Real-time Ethernet with High Accuracy.
In: SIMUTools ’11. (2011) 375-382

6. Kopetz, H., Bauer, G.: The Time-Triggered Architecture. Proceedings of the IEEE
91(1) (2003) 112-126

7. Steiner, W., Bauer, G., Hall, B., Paulitsch, M.: Time-Triggered Ethernet: TTEth-
ernet (Nov. 2010)

8. Kopetz, H., Ademaj, A., Grillinger, P., Steinhammer, K.: The Time-Triggered
Ethernet (TTE) Design. In: ISORC ’05. (2005)

9. Steinhammer, K., Grillinger, P., Ademaj, A., Kopetz, H.: A Time-Triggered Eth-
ernet (TTE) Switch. In: DATE ’06. (2006) 794-799

10. Steinhammer, K., Ademaj, A.: Hardware Implementation of the Time-Triggered
Ethernet Controller. In: IESS ’07. (2007) 325-338

11. Steiner, W.: TTEthernet Specification (2008)

12. TTTech Computertechnik AG: TTEthernet Products. http://www.tttech.com/
en/products/ttethernet/

13. Banerjee, A., Gerstlauer, A.: Transaction Level Modeling of Best-Effort Channels
for Networked Embedded Devices. In: IESS ’09. (2009) 77-88

14. GreenSocs Ltd: Ethernet Communication Protocol using TLM 2.0. http://www.
greensocs.com (2010)

15. Bombieri, N., Fummi, F., Quaglia, D.: TLM/Network Design Space Exploration
for Networked Embedded Systems. In: CODES+ISSS ’06. (2006) 58-63

16. Bartols, F., Steinbach, T., Korf, F., Schmidt, T.C.: Performance Analysis of
Time-Triggered Ether-Networks Using Off-the-Shelf-Components. In: ISORCW
"11. (2011) 49-56

= w N

