TRENDS IN TIMING ANALYSIS

Bjorn Lisper

Dept. of Computer Science and Electronics
Mdlardalen University

P.O. Box 883

SE-721 23 Visteras

Sweden

bjorn.lisper@mdh.se

Abstract Static Worst-Case Execution Time (WCET) analysis aims to find safe
upper bounds to the execution time of a program. We give a brief status
report on the field of static WCET analysis, and we then present a
personal perspective on the current and anticipated forthcoming trends
in the area.

Keywords: Real-time System, Timing Analysis, Program Analysis

1. INTRODUCTION

A Worst-Case Ezecution Time (WCET) analysis finds an upper bound
to the largest possible execution time of a computer program, or a
time-critical part of a program. Reliable WCET estimates are crucial
when designing and verifying embedded and real-time systems, espe-
cially safety-critical ones.

The WCET is often estimated through measurements. Estimates ob-
tained in this way are, however, not reliable in general. An alternative
is static WCET analysis, which determines a timing bound from mathe-
matical models of the software and hardware. If the models are correct,
then the analysis will derive a timing bound that is safe, i.e., greater
than or equal to the true WCET.

In this paper, we discuss WCET analysis, its current status, and
trends. What can be achieved today? How will trends in hardware
and software affect the field? What is needed to turn WCET analysis
into a widespread technique? This is a personal perspective, and we
make no claims of completeness and scientific rigor.

The rest of this paper is organized as follows. In Section 2 we describe
briefly what WCET analysis is, which basic approaches there are, and

2 Bjorn Lisper

Program development

AN
AN
AN

Software
Component
Other Lib

Object File
Object File

Target Actual

Binary
Hardware % WCET)

Compiler Executable

C Source Object File
Corre-
- Info — spondence
Flow > i & -5
Analysis __| Calculation P cstimate
Low-Level
. Analysis
WCET analysis phases y

Figure 1. Embedded program development and static WCET analysis.

give a short account for the current status of the field. In Section 3 we
discuss how trends in hardware architecture will affect WCET analysis.
Section 4 provides a similar discussion as regards software, and require-
ments on WCET analysis. In Section 5, we monitor the research trends
in WCET analysis. In Section 6, finally, we wrap up.

2. WCET ANALYSIS

Static WCET analysis is usually divided into three phases: a (fairly)
machine-independent flow analysis of the code, where information about
the possible program execution paths is derived, a low-level analysis
where the execution times for sequences of instructions are decided from
a performance model for the target architecture, and a final calculation
phase where the flow and timing information are combined to yield a
WCET estimate. See Figure 1.

The purpose of the flow analysis phase is to find constraints on the
possible execution paths of the program, like upper limits to loop itera-
tions, infeasible path constraints, etc. Automatic low analysis calculates
this information with little or no manual intervention. It is in general
impossible to derive exact information. Automatic methods therefore
calculate approximate flow information, and allow additional informa-
tion as manual annotations (3, 13, 14).

Flow analysis can be done on source code, on compiler-intermediate
code, or on binary code. In the first two cases, the flow information must
somehow be mapped to the binary code. Approaches include abstract
interpretation to bound the values of execution counters (7), pattern-
matching (8, 24), symbolic execution (17), and the use of Presburger
Arithmetics to identify loop parameters (3).

Today, most processors use performance-enhancing features such as
pipelines, caches, branch predictors, and instruction-level parallelism.

Trends in Timing Analysis 3

These features unfortunately yield complex timing models. Low-level
analysis research mostly concerns methods to deal with such timing
models.

The timing effects of pipelines are mostly local, and can be handled
quite well (4). Caches are harder to analyze, since they yield a global,
history-dependent timing model, where memory access times depend
on the current contents in the cache. A cache analysis attempts to
predict the contents of the cache (6). Instruction streams often are quite
easy to predict, and thus instruction caches can often be handled quite
well, whereas data caches often are subject to more dynamic memory
accesses, and thus are harder to analyze. Branch predictors, like caches,
yield history-dependent performance models, and low-level analyses for
branch predictors attempt to estimate their states (2).

Modern high-end processors use instruction-level parallelism, often
through a superscalar architecture. Such architectures are hard to ana-
lyze w.r.t. timing properties, due to their dynamic instruction schedul-
ing. Nevertheless, attempts have been made (15).

The final step in WCET analysis is to calculate a WCET estimate
from flow and timing information. Three common methods are tree-based
calculation (18), path-based calculation (8, 23), and IPET (Implicit Path
Enumeration Technique) (14, 21). IPET is the most common calculation
method today, and it calculates a WCET bound by solving an integer
linear programming problem.

WCET analysis is currently taking the step from research to industrial
use. Three commercial tools exist, which are mainly used in automotive
and avionics industry to analyze hard real-time systems. The technique
is, however, not yet widely adopted.

For reasonably simple embedded processors, with pipeline but without
cache, the current tools can provide WCET estimates which are typically
5-10% larger than the largest measured execution time. However, most
programs today require extensive manual annotations, constraining the
program flow, to get there. The annotations often require deep under-
standing of the code, and they are cumbersome to make. More complex
processor architectures can also be handled, but for a more limited set
of programs, and analysis times grow rapidly. The practical limit today
seems to be at the level of processors like Motorola ColdFire 5307 and
PowerPC 755 (24).

3. HARDWARE

We see a trend towards even more complex processor architectures,
with more advanced features enhancing the overall performance. Em-

4 Bjorn Lisper

bedded systems tend to migrate towards more complex processors. There-
fore, future WCET analysis methods must be able to keep up with the
development of high-performance architectures.

There is an inherent conflict between analyzability and modern per-
formance-enhancing features. These features typically make the proces-
sor adapt dynamically to run the code at hand faster, through caches,
branch predictors, etc. They typically record the execution history into
a complex internal processor state. The more complex the internal state,
the harder the timing analysis. Not only does it become harder to es-
timate the WCET with good precision, the difference between the true
WCET and the average execution time also tends to increase.

On the other hand, a trend in embedded systems is to put more of
the architecture under software control, in order to cut corners in chip
cost, and to allow for smart optimizations. Two examples are software-
controlled cache locking, and scratchpad memories. Both allow a more
explicit handling of on-chip memory, which is beneficial for analyzabil-
ity (26, 25).

Unwanted interaction between hardware features can hurt the analy-
sis. A modularized WCET analysis is often less costly. For instance, the
analysis is simplified if the cache behaviour can be analyzed separately,
to provide information about hits and misses, which then is used in the
further low-level analysis. If more misses always implies longer execution
time, then the cache analysis can safely assume that a memory access is
a miss if it is not surely found to be a hit, which makes the analysis less
complex. However, for superscalar processors, a cache miss may yield
a shorter execution time (17). This is due to the dynamic instruction
scheduling, where a delayed release of an instruction in the end may
give a better schedule. Unwanted interactions of this kind necessitate
a more integrated low-level analysis, which can be very detrimental to
performance since the sets of possible hardware states grow rapidly.

Another kind of unwanted interaction is due to sharing of resources
which have a stateful timing model. For instance, if a processor has
separate instruction and data caches, then the analysis of one cache
may be precise even if the other is not. However, some processors have
a shared cache: a poor cache hit/miss estimation for one of the access
streams will then typically pollute the information about the whole cache
contents, even if the other access stream could have been accurately
analyzed. As a result, the total cache analysis will be less precise.

A very important paradigm shift in processor architecture is the in-
troduction of multicore processors, where a single chip hosts a multipro-
cessor. High-end PC’s already have dual-core Pentiums, and in a few

Trends in Timing Analysis)

years multicore processors are likely to prevail. This changes the rules
of the game radically.

On the positive side, the processor cores will be simpler than current
high-performance processors. Thus, that part of the low-level analysis
will be simpler. On the other hand, the processors will often have shared
resources, like buses, and cache memories. Since different threads will
access these resources, the concurrency will lead to a combinatorial ex-
plosion of possible state transitions, which then yields both long analysis
time and poor precision.

A big problem is that all current WCET analysis methods assume a
strictly sequential execution model. In general, the real-time research
community seems to assume that parallel hardware is to be utilized by
sequential tasks running on different processors. This assumption is very
doubtful: computationally heavy tasks are advantageous to parallelize,
and most likely this will happen. WCET analysis for parallel programs
must then be developed in order to analyze such tasks.

4. SOFTWARE AND REQUIREMENTS

Traditionally, time-critical embedded applications have been program-
med in C or assembler, and current WCET analysis methods mostly
target C or code generated from C. This is imperative code, which of-
ten has a reasonably simple structure. Such code is relatively easy to
analyze. Whole programs are typically analyzed, which means that the
tool has full information about the code.

However, there is a migration to higher levels of abstractions. Higher
level programming languages, such as object-oriented (OO) languages,
become more used. Model-based design, where code is generated from
models, is rapidly gaining ground in many application areas. Component-
based software engineering, where program components are reused and
combined, is also a strong trend.

Higher-level programming languages give rise to new problems. The
control structure typically becomes more dynamic. For OO languages,
with methods rather than functions, methods are accessed indirectly
through a method table. This makes it harder to reconstruct the con-
trol flow. Data structures also tend to be more dynamic, and memory
management might be automatic. It is then harder to decide the adresses
of memory accesses, which makes it much harder to predict the memory
access times.

Some high-level languages, like Java, are implemented on virtual ma-
chines. These machines introduce an additional abstraction layer be-
tween the program and the hardware, which makes analysis harder. If

6 Bjorn Lisper

the implementation uses just-in-time compilation, then it will be very
hard to predict the actual instructions executed. WCET analysis of
JVM code has been attempted (19), but the results have not been too
encouraging.

However, many programs written in high-level languages do have a
quite static structure. The abstraction mechanisms may be used to sup-
port reuse over different static configurations, rather than for truly dy-
namic run-time behaviour. For such programs, program analyses may be
able to uncover the static structure, as well as other properties like sizes
of computed data structures (9). Program specialization techniques,
such as partial evaluation (10), may also yield more analyzable (and
also faster) programs. Declarative languages are particularly amenable
to program analysis and transformation, due to their clean semantics.

Model based design, where code is generated from models, poses new
challenges and possibilities as regards WCET analysis. Since different
tools, for different purposes, generate very different code, the challenges
will be very tool-specific. For instance, code generated for a state ma-
chine is likely to be highly unstructured, whereas control system code
generated from a simulation model should have a more regular structure.
The way a tool chooses to implement a model feature, like a FSM, can
also have a great impact on the WCET analyzability.

Obviously, WCET analysis of generated code should use tool-specific
information about how the code is generated whenever possible. It may,
for instance, be the case that a tool generates code where the loop iter-
ation bounds are directly related to the size of a matrix in the model.
Annotations bounding the loop iterations can then be automatically gen-
erated from the model. Experiments in this direction have been done
for Simulink (12).

Component-based software engineering (CBSE) is gaining ground. It
emphasizes the structuring of software into reusable components, with
well-defined interfaces. There are many different component models,
ranging from quite static models, where components are statically con-
figured, to very dynamic models where components can be swapped at
runtime.

A key feature is communication. Since the component model typically
is independent of the component implementation language, and even the
host processor, the communication often includes marshaling of data
between different formats. This is especially noticeable for distributed
component models, where middleware like CORBA is common.

There is an increasing interest in CBSE for embedded systems. This
raises the issue of how to analyse such software w.r.t. timing. Again,
there are a number of problems. First, components may be “black

Trends in Timing Analysis 7

boxes”, with little information about the code. Second, reusable com-
ponents may be heavily parameterized. If the WCET is parameter-
dependent, then a single upper bound may be very untight. Third,
complex communication protocols may make the component communi-
cation very hard to analyze.

These problems must be solved to make WCET analysis useful for
component-based software systems. Conversely, component models for
hard real-time systems should be designed to be analyzable.

Little attention has been paid to the role of WCET analysis in the
software development process. The current tools require compiled bi-
naries, and can thus be applied only late in the development process.
However, timing-aware software design is often done with time budgets,
where different software parts are given maximal execution times. It
is then very interesting to estimate the execution time early, before the
complete binaries are available, to help set up these budgets. Thus, there
seems to be a market for early, approximate WCET analysis, using, say,
incomplete source code and crude performance models.

For high performance processors, the current WCET estimates tend
to be very pessimistic compared with the average execution time. Many
applications, especially in areas like telecommunications and multimedia,
have Quality of Service (QoS) requirements. Infrequent deadline viola-
tions are then not harmful, and some violations are typically allowed
in order to utilize the hardware better. For such systems, it would be
more appropriate to derive statistical estimates for violations of given
deadlines, rather than absolute upper WCET bounds. A step in that
direction is the pWCET framework for probabilistic WCET analysis (1).

5. WCET ANALYSIS TECHNIQUES

What developments can be expected in WCET analysis? We be-
lieve that there is a need for approximate WCET analyses, with some
kind of probabilistic guarantees. This is due to the demands from the
large set of QoS-oriented applications, as well as the wish to introduce
timing analysis early in the tool chain. We also believe that hybrid
analyses, involving both static analysis and measurements, will be fur-
ther developed. Such analyses can avoid the costly and pessimistic low-
level analysis, at the price of not obtaining absolutely safe upper WCET
bounds. For single-path programs, measurements can give safe and ac-
curate WCET estimates, and a single-path programming style has been
advocated (20). The aforementioned probabilistic WCET analysis (1)
also includes measurements.

8 Bjorn Lisper

Traditional, static low-level analysis is also developing. A very in-
teresting trend is the incorporation of methods from model checking
to handle very large state spaces. For instance, BDD’s have been pro-
posed (27).

WCET-aware compilation attempts to improve the WCET, or its an-
alyzability, rather than average performance. An example is dynamic
cache locking to keep the cache contents predictable (25).

An important aspect of WCET analysis tools is their usability. Cur-
rent tools require many manual annotations, in particular to constrain
the program flow. To give flow information manually is cumbersome,
and requires a deep understanding of the code. This restricts the us-
ability of the tools (5). The level of automation must be raised, which
requires better methods in automatic flow analysis.

However, to find tight flow information is difficult. Loop bounds may
depend in complex ways on inputs, pointers, etc. Flow analysis of binary
code is especially difficult. If the compiler can map flow information
from the source code to the binaries, then this problem is alleviated. In
particular, manual annotations are best given on source code level, and
they cannot be completely avoided in general. Studies in this direction
have been made (11), but production compilers must adopt this kind of
technique if it is to have any impact on real practice.

Another option is parametric WCET analysis (16). Such an analysis
computes a formula for the WCET bound rather than a single num-
ber. Code with input-dependent WCET is common in many applica-
tions (22). A parametric analysis can also help analyze the sensitivity of
the WCET w.r.t. different parameters, which is useful when developing
code with time budgets.

6. CONCLUSIONS

WCET analysis is a maturing technology that is currently being in-
troduced in industry. However, it is not widely established yet. While
promising and important, many challenges remain to meet before the
technique will be adopted on a wider basis. The most important chal-
lenges are to keep up with the hardware development, to increase the
level of automation of the analysis, and to widen the scope to include
also soft real-time systems with QoS requirements.

The ability to meet these challenges depends on hardware, compilers,
and other tools which generate code. If one were to make a wish list, it
would include: WCET-aware compilers, with the ability to map program
flow information from source code to binary code, and hardware which
avoids shared resources and hidden stateful features to improve average

Trends in Timing Analysis 9

performance. For future multicore processors, we wish for mechanisms to
partition shared resources, like caches or scratchpad memories, between
tasks.

ACKNOWLEDGMENTS

I want to thank Jan Gustafsson, Andreas Ermedahl, and Christer
Sandberg for their valuable comments.

REFERENCES

(1

2l

(7l

(8]

(10]

(11]

(12]

(13]

Guillem Bernat, Antoine Colin, and Stefan M. Petters. WCET analysis of prob-
abilistic hard real-time systems. In Proc. 23"¢ IEEE Real-Time Systems Sym-
posium, 2002.

Francois Bodin and Isabelle Puaut. A WCET-oriented static branch prediction
scheme for real time systems. In Proc. 17" Euromicro Conference of Real-Time
Systems, pages 33—40, July 2005.

Bound-T tool homepage, 2006. www.tidorum.fi/bound-t/.

Jakob Engblom. Processor Pipelines and Static Worst-Case Execution Time
Analysis. PhD thesis, Uppsala University, Sweden, April 2002.

Andreas Ermedahl, Jan Gustafsson, and Bjorn Lisper. Experiences from in-
dustrial WCET analysis case studies. In Reinhard Wilhelm, editor, Proc. 5"
Int. Workshop on Worst-Case Execution Time Analysis, pages 19—22, Palma de
Mallorca, July 2005.

Christian Ferdinand and Reinhard Wilhelm. Efficient and precise cache behavior
prediction for real-time systems. Real-Time Systems, 17:131-181, 1999.

Jan Gustafsson, Andreas Ermedahl, and Bjérn Lisper. Towards a flow analysis
for embedded system C programs. In Proc. 10" IEEE Int. Workshop on Object-
oriented Real-time Dependable Systems, Sedona, USA, February 2005.

C. Healy, R. Arnold, Frank Miiller, David Whalley, and M. Harmon. Bounding
pipeline and instruction cache performance. IEEE Transactions on Computers,
48(1), January 1999.

John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive
systems using sized types. In Proc. 23rd ACM Symposium on Principles of
Programming Languages, pages 410-423, 1996.

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Fvaluation and
Automatic Program Generation. Prentice Hall, Hertfordshire, UK, 1993.

Raimund Kirner. FEaxtending Optimising Compilation to Support Worst-Case
Ezecution Time Analysis. PhD thesis, Technische Universitdt Wien, Austria,
2003.

Raimund Kirner, R. Lang, G. Freiberger, and Peter Puschner. Fully automatic
worst-case execution time analysis for matlab/simulink models. In Proc. 14"
Euromicro Conf. of Real-Time Systems, pages 31-40, June 2002.

Raimund Kirner and Peter Puschner. Transformation of path information for
WCET analysis during compilation. In Proc. 13" Euromicro Conf. of Real-
Time Systems, pages 29-36, Delft, June 2001. IEEE Computer Society Press.

10

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

22]

23]

(24]

(25]

[26]

27]

Bjorn Lisper

Y-T. S. Li and S. Malik. Performance analysis of embedded software using
implicit path enumeration. In Proc. 32:nd Design Automation Conf., pages
456-461, 1995.

S. Lim, J. Han, J. Kim, and S. L. Min. A worst case timing analysis technique
for multiple-issue machines. In Proc. 19" IEEE Real-Time Systems Symposium,
December 1998.

Bjorn Lisper. Fully automatic, parametric worst-case execution time analysis.
In Jan Gustafsson, editor, Proc. 8¢ International Workshop on Worst-Case
Execution Time Analysis), pages 77-80, Porto, July 2003.

Thomas Lundqvist and Per Stenstrom. An integrated path and timing analysis
method based on cycle-level symbolic execution. Journal of Real-Time Systems,
May 2000.

Chang Yun Park and Alan C. Shaw. Experiments with a program timing tool
based on a source-level timing schema. IEEE Computer, 24(5):48-57, 1991.

Peter Puschner and Guillem Bernat. WCET analysis of reusable portable code.
In Proc. 18" Euromicro Conf. of Real-Time Systems, pages 45-52, Delft, June
2001.

Peter P. Puschner and Alan Burns. Writing temporally predictable code. In
Proc. 7" IEEE Int. Workshop on Object-oriented Real-time Dependable Sys-
tems, pages 85-94, San Diego, January 2002. IEEE Computer Society.

Peter P. Puschner and Anton V. Schedl. Computing maximum task execution
times — a graph-based approach. Journal of Real-Time Systems, 13(1):67-91,
July 1997.

D. Sandell, A. Ermedahl, J. Gustafsson, and B. Lisper. Static Timing Analysis of
Real-Time Operating System Code. In Proc. 15 Int. Symposium on Leveraging
Applications of Formal Methods, October 2004.

Friedhelm Stappert, Andreas Ermedahl, and Jakob Engblom. Efficient longest
executable path search for programs with complex flows and pipeline effects.
In Proc. 4™ Int. Conf. on Compilers, Architecture, and Synthesis for Embedded
Systems, November 2001.

S. Thesing. Safe and Precise WCET Determination by Abstract Interpretation
of Pipeline Models. PhD thesis, Saarland University, 2004.

Xavier Vera, Bjorn Lisper, and Jingling Xue. Data Cache Locking for Higher
Program Predictability. In Proc. Int. Conf. on Measurement and Modeling of
Computer Systems, pages 272282, San Diego, CA, June 2003. ACM Press.

Lars Wehmeyer and Peter Marwedel. Influence of onchip scratchpad memories
on WCET prediction. In Isabelle Puaut, editor, Proc. 4" Int. Workshop on
Worst-Case Ezecution Time Analysis, pages 15-18, Catania, June 2004.
Stephan Wilhelm. Efficient analysis of pipeline models for WCET computation.
In Reinhard Wilhelm, editor, Proc. 5" Int. Workshop on Worst-Case Ezecution
Time Analysis, pages 19-22, Palma de Mallorca, July 2005.

