
MODEL-BASED TEST SELECTION FOR INFINITE
STATE REACTIVE SYSTEMS ∗

Thierry Jéron
Irisa/Inria Rennes, Campus de Beaulieu, 35042 Rennes, France

Thierry.Jeron@irisa.fr

Abstract We address the problem of off-line selection of test cases for testing the confor-
mance of a black-box implementation with respect to a specification of a reactive
systems. Efficient solutions to this problem have been proposed in the context
of finite-state models, based on the ioco conformance testing theory. We ex-
tend them in the context of infinite state specifications, modelled as automata
extended with variables. We consider the selection of test cases according to test
purposes describing abstract scenarios that one wants to test. The selection of
program test cases then consists in syntactical transformations of the specifica-
tion model, using approximate analysis.

1. INTRODUCTION AND MOTIVATION

Testing is the most used validation technique to assess the correctness of
reactive systems. For more than a decade, model-based testing (see e.g. [1])
advocates the use of models to formalize this validation activity. The formal-
ization relies on precise models of specifications, implementations and test
cases, a formal definition of correctness, required properties of test cases with
respect to correctness, and test generation algorithms.

In this paper we address the generation of test cases in the framework of
conformance testing of reactive systems [6]. Conformance testing consists
in checking that a black-box implementation of a system, only known by its
interactions with the environment, behaves correctly with respect to its specifi-
cation. Conformance testing then relies on experimenting the system with test
cases, with the objective of detecting some faults with respect to the specifica-
tion’s external behaviour.

We consider models of reactive systems, called Input/Output Symbolic Tran-
sition Systems (ioSTS), which are automata extended with variables, with dis-

∗This paper is partly based on [11, 8, 12].

2 Thierry Jéron

tinguished input and output actions, and corresponding to reactive programs
without recursion. Their semantics can be defined in terms of infinite state In-
put/Output Labelled Transition Systems (ioLTS). For ioLTS, the ioco testing
theory [13] defines conformance as a partial inclusion of external behaviours
(suspension traces) of the implementation in those of the specification. Several
research works have considered this testing theory and propose test generation
algorithms. We focus on off-line test selection where a test case is built from a
specification and a test purpose (representing abstract behaviours one wants to
test), and further executed on the implementation. Test cases are built directly
from the ioSTS model rather than constructing test cases from the enumerated
ioLTS semantic model. This construction relies on syntactic transformations of
the specification model, guided by an approximate analysis of the set of states
co-reachable from a set of final state.

2. ioSTS: A MODEL OF REACTIVE SYSTEMS

Syntax of the ioSTS model. We propose a model called ioSTS for In-
put/Output Symbolic Transition Systems. It extends labelled transition sys-
tems for modelling imperative programs without recursion and communicat-
ing with their environment. An ioSTS is made of variables, input and output
actions carrying communication parameters carried by actions, guards and as-
signments. In ioSTS, a data d (variable or communication parameter) has a
type type(d), with values in Dom(d). For a data set B = {d1, . . . , dn}, we
note Dom(B) = Dom(d1)× · · ·Dom(dn). A predicate φ (e.g. a guard) on a
data set B defines the subset of vectors in Dom(B) satisfying φ.
Definition 1 (ioSTS) An input/output symbolic transition system (ioSTS)
is a tuple M = 〈D,Θ, L, l0,Σ,T 〉 where

D = V ∪P is a finite set of data partitionned into variables V and com-
munication parameters P . We note V = Dom(V) and Π = Dom(P).
Θ called the initial condition is a predicate on variables V .
L is a finite set of locations, with l0 ∈ L the initial location.
Σ = Σ? ∪ Σ! is the finite alphabet of actions partitionned into inputs
Σ? and outputs Σ! 1 . An action a ∈ Σ is characterized by its signature
sig(a) = 〈p1, . . . , pk〉 ∈ P k specifying types of communication param-
eters carried by the action a. We note Πa = Dom(sig(a)).
T is a finite set of symbolic transitions. A transition is a tuple t =
〈l, a,G,A, l′〉 defined by: its origin and destination locations l and l′ ∈
L; an action a ∈ Σ; a guard G is a predicate on V ∪ sig(a); an assign-
ment A, of the form (x := Ax)x∈V such that, for each x ∈ V , Ax is an

1The general model also considers internal actions

Model-based Test Selection for Infinite State Reactive Systems 3

expression on V ∪ sig(a) defining the evolution of variables 2. We note
IdV the identity assignment (x := x)x∈V .

Semantics of ioSTS. The semantics of M = 〈D,Θ, L, l0,Σ,T 〉 is an in-
put/ouput labelled transition system (ioLTS) �M� = 〈Q,Q0,Λ,→〉, where:

Q = L×V is the set of states and Q0 = l0×Θ its subset of initial states;

Λ = Λ? ∪ Λ! s.t. for # ∈ {?, !}, Λ# = {〈a, π〉|a ∈ Σ#, π ∈ Πa} is the
set of valued actions partitionned into valued inputs Λ?, and outputs Λ!,
→⊆ Q × Λ × Q is the smallest relation defined by the following rule:

〈l, ν〉, 〈l′, ν′〉 ∈ Q 〈a, π〉 ∈ Λ t = 〈l, a,G, A, l′〉 ∈ T G(ν, π) = true ν′ = A(ν, π)

(〈l, ν〉, 〈a, π〉, 〈l′, ν′〉) ∈→

Intuitively, the ioLTS semantics of an ioSTS enumerates all possible states
(pairs q = 〈l, ν〉 composed of a location and the vector of values of variables)
and valued actions (pairs α = 〈a, π〉 composed of an action and the vector
of values of its communication parameters) between states. The rule means
that in a state 〈l, ν〉, a transition t = 〈l, a,G,A, l′〉 is fireable if there exists a
valuation π of sig(a) such that G evaluates to true for ν and π. The system
then moves from with the action 〈a, π〉 to a state 〈l′, ν ′〉 where ν′ is the new
valuation of variables obtained from ν and π by the assignment A.

As usual for ioLTS, we note q
α→ q′ for (q, a, q′) ∈→. For a sub-alphabet

Λ′ ⊆ Λ, we say that M is Λ′-complete in a state q if ∀α ∈ Λ′ : q
α→. An

ioSTS is deterministic if Θ has a unique solution and in each location l, for all
action a, for all pairs of transitions starting in l and carrying a, the conjonction
of their guards is empty.

A run of an ioSTS M is an alternate sequence of states and valued actions
ρ = q0α0q1 . . . αn−1qn ∈ Q0.(Λ.Q)∗ s. t. ∀i, qi

αi→ qi+1. ρ is accepted
in F ⊆ Q if qn ∈ F . Runs(M) (resp. RunsF (M)) denotes the set of
runs (resp. accepted runs in F) of M. When modelling the testing activity,
we need to abstract away states which are not observable from the environ-
ment. A trace of a run ρ ∈ Runs(M) is the projection projΛ(ρ) of ρ on
actions.b Traces(M) � projΛ(runsM) denotes the set of traces of M and
TracesF (M) � proj Λ(RunsF (M)) is the set of traces of runs accepted in F .

Visble behaviour for testing. During conformance testing, the tester stim-
ulates inputs of the system under test, and observes not only its outputs, but
also its quiescences (absence of output) using timers, assuming that timeout
values are large enough such that, if a timeout occurs, the system is indeed

2The scope of parameters is limited to one transition

4 Thierry Jéron

quiescent. The tester should be able to distinguish between specified and un-
specified quiescence. But as trace semantics does not preserve quiescence in
general, possible quiescence should be made explicit on the specification by
a transformation called suspension [13]. This consists in adding a self-loop
labelled with a new output δ in each quiescent state. We define suspension for
ioSTS as follows. For an ioSTS M = 〈D,Θ, L, l0,Σ = Σ! ∪ Σ?,T 〉, the sus-
pension of M is the ioSTS Δ(M) = 〈D,Θ, L, l0,Σδ = (Σ!∪{δ})∪Σ?,T δ, 〉
with T δ = T ∪ {〈l, δ,Gδ,lIdV , l〉 | l ∈ L} and

Gδ,l = ¬
∨

〈l,a,G,A,l′〉∈T , a∈Σ!

∃π ∈ Πa.G(a, π)

For an ioSTS M modelling a system, the behaviour considered for testing
is then STraces(M) � Traces(Δ(M)).

3. CONFORMANCE TESTING THEORY

We now reformulate the ioco testing theory from [13]. It mainly consits
in defining models for specifications, implementations and test cases, defining
conformance, test executions and verdicts.

Conformance relation. We assume that the specification is an ioSTS S ,
and that the behaviour of the unknown implementation could be modelled by
an (non-deterministic) ioLTS I = 〈QI , Q

0
I ,Λ

! ∪ Λ?,→I〉 with same interface.
We also assume that I is Λ?-complete 3. The conformance relation then defines
the set of correct implementation models:

I ioco S � STraces¬ioco(S) ∩ STraces(I) = ∅
where STraces¬ioco(S) = STraces(S) · (Λ! ∪ {δ}) \ STraces(S).

STraces¬ioco(S) exactly represents the set of non-conformant behaviours: I
is non-conformant as soon as it may exhibit a suspension trace of S prolon-
gated with an unspecified outputs or quiescence. Interestingly, our formulation
of ioco explicits the fact that conformance is a safety property of I: confor-
mance is violated if one exhibits a finite trace of I in STraces¬ioco(S). If I was
known, verifying conformance would then amount to building a deterministic
non-conformance observer can(S) equiped with a set of states Fail such that
TracesFail(can(S)) = STraces¬ioco(S), computing the synchronous product
of I and can(S) and checking whether Fail is reachable.

However, as I is unknown, one can only experiment it with selected test
cases, providing inputs and checking that outputs and quiescences of I are
specified in S . This entails that, except in simple cases, conformance cannot
be proved by testing, only non-conformance witnesses can be exhibited.

3This ensures that the composition of I with a test case TC never blocks because of non-implemented
inputs.

Model-based Test Selection for Infinite State Reactive Systems 5

Test cases, test executions and verdicts. In our modelling framework, we
aim at building test cases in the form of ioSTSȦ test case for the specification
ioSTS S is a deterministic ioSTS T C = 〈D = V ∪P,ΘTC , LTC , l0TC ,ΣTC =
Σ!

TC ∪Σ?
TC ,T TC〉 with Σ!

TC = Σ? and Σ?
TC = Σ!∪{δ} (actions are mirrored

w.r.t. S) with semantics �TC� = TC . T C is equipped with a collection of sets
of verdict locations Verdict partitionned into Fail (meaning rejection), Pass
(meaning that targetted behaviours have been reached) and Inconc (meaning
that targetted behaviours cannot been reached anymore). We also call Verdict
the collection of sets of states of TC where the location is in Verdict. We
assume that Verdict states are trap states (with no transitions) and that all states
except Verdict ones are Λ?

TC-complete.
We model the execution of a test case T C on an implementation I by the

parallel composition of TC = �T C� with Δ(I) (quiescences of I are ob-
served) with synchronization on common actions. Let Δ(I) = 〈QI, Q

0
I ,Λ

! ∪
{δ} ∪ Λ?,→Δ(I)〉 and TC = 〈QTC, q

0
TC,Λ

? ∪ Λ! ∪ {δ},→TC〉, Δ(I)‖TC is
the ioLTS (QI × QTC, Q

0
I × {q0

TC},Λ! ∪ {δ} ∪ Λ?,→Δ(I)‖TC) where, for α ∈
Λ! ∪ {δ} ∪ Λ?, (q1, q

′
1)

α→Δ(I)‖TC (q2, q
′
2) iff q1

α→Δ(I) q2 and q′1
α→TC q′2.

The possible rejection of I by TC is defined by the fact that Δ(I)‖TC may
lead to Fail in TC: TC mayfail I � TracesQI×Fail(Δ(I)‖TC)
= ∅ which is
equivalent to Traces(Δ(I)) ∩ TracesFail(TC)
= ∅.

Now, test generation algorithms should produce test cases with properties
relating rejection with non-conformance. Formally, let TS be a set of test
cases. We say that TS is complete if it is both correct and exhaustive where:

TS is correct � ∀I, (I ioco S =⇒ ∀TC ∈ TS,¬TC mayfail I).
i.e. only non-conformant implementations can be rejected by a test case in TS.

TS is exhaustive � ∀I, (¬(I ioco S) =⇒ ∃TC ∈ TS, TC mayfail I).
i.e. every non-conformant implementation can be rejected by a test case in TS.

Using the definitions of I ioco S and TC mayfail I , one can now prove:
TS is correct ⇐⇒

⋃
TC∈TS TracesFail(TC) ⊆ STraces¬ioco(S) and

TS is exhaustive ⇐⇒
⋃

TC∈TS TracesFail(TC) ⊇ STraces¬ioco(S).
Interestingly, if one considers the non-conformance observer can(S) as a

test case (by mirroring its actions), as TracesFail(can(S)) = STraces¬ioco(S),
it immediately follows that the singleton {can(S)} is a complete test suite, in
some sense the most general testing process for conformance w.r.t. S. More-
over, all correct test cases should be sub-observers of can(S), while an ex-
haustive test suite must reject all implementations rejected by can(S). In fact,
all test generation algorithms for ioco producing complete test suites can be
understood as producing an infinite number of unfoldings of can(S). But in
practice, can(S) cannot be used directly as a test case. One wants to select in-
dividual test cases focussed on some particular behaviour. Selection of a sound
test suite will then be based on the selection of sub-behaviours of can(S). The

6 Thierry Jéron

selection algorithm should remain limit exhaustive: for any non-conformant
implementation, one could generate a test case that could reject it.

4. TEST SELECTION FOR ioSTS

At the end of the section an example illustrates the principles of test se-
lection. As explained previously, test selection consists in extracting a sub-
observer of the non-conformance observer can(S). The first operation consists
in constructing the ioSTS can(S) such that �can(S)� = can(�S�). When S
is deterministic (or determinized) 4, this is easily done by adding, in every lo-
cation l and for all output a, a new transition 〈l, a,GFail, IdV , Fail〉 where
GFail = ¬

∨
〈l,a,G,A,l′〉∈T G and Fail is a new location.

In this paper we focus on the selection of test cases by test purposes de-
scribing some abstract behaviour one wants to test. We define test purposes
as ioSTS equipped with a set of accepting locations playing the role of a non
intrusive observer. Its set of variables consists of its set of proper variables and
the set of variables of the specification that it may observe, but cannot modify.

A Test Purpose for a specification ioSTS S = 〈V ∪ P,Θ, L, l0,Σ,T 〉 is an
ioSTS T P = 〈Vp ∪ V ∪ P,ΘTP , LTP , l0TP ,Σ ∪ {δ},T TP 〉 equipped with a
distinguished set of locations Accept ⊆ LTP . We assume that T P is complete
in all locations except Accept (for each action a the conjunction of guards of all
transitions carrying a is true) and cannot modify variables in V (assignments
to these variables are the identity assignment).

The role of the test purpose is to select suspension traces of can(S) ac-
cepted by T P. The usual way to define this intersection for ioLTS is to
perform a synchronous product. We define a corresponding syntactic opera-
tion on ioSTS where transitions with same actions synchronize on the con-
junction of their guards. Formally, the synchronous product of can(S) =
〈V ∪P,Θ, L∪{Fail}, l0,Σ,T c〉 and T P = 〈V ∪Vp∪P,ΘTP , LTP , q0

TP ,Σ∪
{δ},T TP 〉 is the ioSTS can(S)×T P = 〈V ∪Vp ∪P,Θ∧ΘTP , L∪{Fail}×
LTP , (l0, l0TP),Σ,T ′〉 where 〈(l1, l2), a,G1 ∧G2, A1;A2, (l′1, l

′
2)〉 ∈ T ′ if and

only if 〈l1, a,G1, A1, l
′
1〉 ∈ Tc ∧ 〈l2, a,G2, A2, l

′
2〉 ∈ TTP and A1;A2 is the

sequential composition of assignments affecting disjoint sets of variables.
T P is non-intrusive, thus Traces(can(S) × T P) = Traces(can(S)) and

TracesFail×LTP
(can(S) × T P) = TracesFail(can(S)) = STraces¬ioco(S)

meaning that can(S) × T P is a non-conformance observer. We also have
TracesL×Accept(can(S) × T P) = STraces(S) ∩ TracesAccept(T P) mean-
ing that can(S) × T P is an observer of traces accepted by T P, restricted to

4For the sake of simplicity, we restrict here to deterministic ioSTSspecifications. Non-deterministic
ioSTScan be handled at least for a sub-class of ioSTS where non-determinism can be solved with bounded
lookahead [9].

Model-based Test Selection for Infinite State Reactive Systems 7

suspension traces of S . Thus, depending on the considered distinguished loca-
tions Fail × LTP or L × Accept, the ioSTS observer can(S) × T P can play
two different roles.

But can(S)×T P is just an unfolding of can(S) from which we now need to
select traces by focussing on traces accepted in Accept. Ideally, we want to se-
lect exactly STraces(S)∩TracesAccept(T P), plus unspecified outputs prolon-
gating these traces in STraces¬ioco(S) . However we consider non-controllable
system models, for which an input does not determine an unique output. After
a trace, the tester should then consider all possible outputs: those from which
Accept is reachable or Fail is reached, but also those after which Accept is not
reachable anymore. In this last case, we want to detect this divergence as soon
as possible, and set the Inconc verdict. This reduces to the problem of comput-
ing the set coreach(Accept) of states co-reachable from L × Accept. This is
easy for finite state systems and solved with graph algorithms. However, this
problem is undecidable for ioSTS models.

Our solution, implemented in the STG tool [3], consists in computing an
over-approximation coreachα ⊇ coreach(Accept) represented by a predicate.
This is provided by an interface with the NBac tool [7] using abstract interpre-
tation [4]. For any assignment A of a transition t ∈ T ′, we also compute an
over-approximation of the set of values for variables and parameters allowing
to stay in coreachα when firing t, noted preα(A)(coreachα). In other words
it is a necessary condition to go in coreach(Accept) by t. Its negation is thus a
sufficient condition to leave coreach(Accept). The selection of a test case T C
from can(S)×T P then consists in mirroring actions, transforming Accept lo-
cations into Pass and modifying the transitions in T ′ into T TC with the two
following rules:

Keep:
〈l, a, G, A, l′〉 ∈ T ′

〈l, a,G ∧ preα(A)(coreachα), A, l′〉 ∈ T TC

Inconc:
〈l, a,G, A, l′〉 ∈ T ′ a ∈ Σ!

〈l, a, G ∧ ¬preα(A)(coreachα), A, Inconc〉 ∈ T TC

The effect of rule (Keep) is to discards all (semantic) transitions labeled by
a (controllable) input that certainly exit coreach(Accept), and rule (Inconc)
“redirects” to a new location Inconc all transitions labelled by an (uncontrol-
lable) output that certainly exit coreach(Accept). The test case can be further
simplified (without modifying its semantics) with an over-approximation of
its reachable states reachα(Θ ∧ ΘTP). Notice that these analysis can be im-
proved using the dynamic partitionning facility of NBac, allowing to separate
locations with respect to the analysis.

Test case properties. As can(S) is sound and is not modified by the syn-
chronous product and selection, all test cases are sound. Limit exhaustiveness
comes from the following construction: for any non-conformant implementa-

8 Thierry Jéron

tion, there exists a trace σ.a in TracesI ∩ STraces¬ioco(S). It then suffices to
construct a test purpose T P such that the trace σ.a leads to Accept. The test
case obtained from S and T P then may reject I .

What is lost by the over-approximation of coreach(Accept), compared with
an (hypothetical) exact computation, is the hability to detect infeasible traces
to Accept as soon as this happens. Of course, the more precise is the approxi-
mation, the sooner is the detection [8].

Simple example.

x = y = 0

!nok(p)

!end

CmpRyRx

End
!ok(p)

p = y − x ∧ p ≥ 2

p = y − x ∧ p < 2

x := p
?in(p)

y := p
?in(p)

Fail

!nok(p)

!end

CmpRyRx

End
!ok(p)

p = y − x ∧ p ≥ 2

p = y − x ∧ p < 2

x := p
?in(p)

y := p
?in(p)

x = y = 0

!δ

!δ

!otherwise

Figure 1. (Left) ioSTS S reading and comparing two values. (Right) canonical tester can(S).

¬(p = 2 ∧ x ≥ 3)

!ok(p)
AcceptWait

∗

p = 2 ∧ x ≥ 3

true

!ok(p)
!nok(p)

Sink
!otherwise

!δ

End,Wait

!ok(p)
p = y − x ∧ p ≥ 2
p = 2 ∧ x ≥ 3∧

p = y − x ∧ p < 2
!nok(p)

!ok(p)
p = y − x ∧ p ≥ 2
¬(p = 2 ∧ x ≥ 3)∧

x = y = 0
Rx,Wait

?in(p)
x := p Ry,Wait

?in(p)
y := p

Cmp,Wait Accept

Rx,Sink

!end !δ

Fail

Figure 2. (Left) ioSTS test purpose T P . (Right) Synchronous product can(S) × T P .

x ≥ 3

!δ

End,Wait

!ok(p)
p = y − x ∧ p ≥ 2
p = 2 ∧ x ≥ 3∧

p = y − x ∧ p < 2
!nok(p)

!ok(p)
p = y − x ∧ p ≥ 2
¬(p = 2 ∧ x ≥ 3)∧

x = y = 0
Rx,Wait

?in(p)
x := p Ry,Wait

?in(p)
y := p

Cmp,Wait Accept

Rx,Sink

!end !δ

true

false
false

true

Fail

!otherwise

x ≥ 3 y − x = 2

x = y = 0
Rx,Wait

x := p Ry,Wait y := p
Cmp,Wait

Fail

?end

Inconc

p ≥ 3
!in(p) !in(p)

?δ p = x + 2
p = 2
?ok(p)

?otherwise

Pass

Figure 3. (Left) Computation of coreachα. (Right) Resulting test case T C.

Test execution:. Test cases produced so far are ioSTS. In particular the val-
ues of communication parameters of test cases are not instanciated. During test
execution, values of communication parameters have to be chosen for outputs

Model-based Test Selection for Infinite State Reactive Systems 9

of the test cases, among values satisfying the guard (e.g. p = 5 for p ≥ 3 in
the example). This is simply done by a constraint solver. Conversely, when
receiving an input from the implementation, as the test case is input complete
and deterministic, one has to check which transition can be fired, by checking
the guard with the value of the received communication parameter (e.g. go to
Pass is p = 2, and Fail otherwise).

5. CONCLUSION AND PERSPECTIVES

There is still very few research work on model-based test generation which
are able to cope with models containing both control and data without enu-
merating data values. Some exist however in the context of the ioco testing
theory. In [10] the authors use selection hypotheses combined with operation
unfolding for algebraic data types and predicate resolution to produce test cases
from Lotos specifications. The paper [5] lifts the ioco theory from LTS to STS
(Symbolic Transition Systems) but addresses the on-line test generation prob-
lem where next actions of test cases are computed during execution. In [2] the
authors start with a specification model similar to ioSTS, abstract the model in
a finite state one, use our TGV tool to generate test cases in the abstract do-
main, and then solve a constraint programming problem in the concrete model.

In the present paper, we have presented an approach to the off-line genera-
tion of test cases from specification models with control and data (ioSTS) and
test purposes in the same model. The main advantage of this test generation
technique is to avoid the state explosion problem due to the enumeration of
data values. Test generation reduces to syntactic operations on these models
and an over-approximate analysis of the co-reachable states to a target location.
Test cases are generated in the form of ioSTS, thus representing uninstanciated
test programs. During execution of test cases on the implementation, con-
straint solving is used to choose output data values. For simplicity, the theory
exposed in this paper is retricted to deterministic specifications. However non-
determnistic specifications can be taken into account if ioSTS have no loops of
internal actions and have bounded lookahead.

Among the perspectives of this work, we expect to consider more powerful
models of systems with features such as time, recursion and concurrency. For
test generation, one problems to address in these models is partial observability,
which entails the identification of determinizable sub-classes corresponding to
applications. We also think that the ideas of this technique can also be used
in other contexts, in particular for structural white box testing where test cases
are generated from the source code of the system. One of the main problems
of these techniques which is to avoid infeasible paths, could be partly solved
by techniques similar to ours.

10 Thierry Jéron

ACKNOWLEDGMENTS

I wish to thank the Organizing Committee of DIPES for this invitation, as
well as all my colleagues who participated in this work.

REFERENCES

[1] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner, editors. Model-Based
Testing of Reactive Systems: Advanced Lectures, volume 3472 of LNCS. Springer, 2005.

[2] J. R. Calamé, N. Ioustinova, J. van de Pol, and N. Sidorova. Data abstraction and con-
straint solving for conformance testing. In Proc. of the 12th Asia-Pacific Software En-
gineering Conference (APSEC 2005), Taipei, Taiwan, pages 541–548. IEEE Computer
Society, December 2005.

[3] D. Clarke, T. Jéron, V. Rusu, and E. Zinovieva. STG: a symbolic test generation tool. In
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’02), volume
2280 of LNCS, pages 470–475, Grenoble, France, avril 2002.

[4] P. Cousot and R. Cousot. Abstract intrepretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In 4th ACM Symposium on
Principles of Programming Languages, pages 238–252, 1977.

[5] L. Frantzen, J. Tretmans, and T. Willemse. Test generation based on symbolic speci-
fications. In 4th International Workshop on Formal Approaches to Testing of Software
(FATES 2004), Linz, Austria, volume 3395 of LNCS. Springer-Verlag, 2004.

[6] ISO/IEC 9646. Conformance Testing Methodology and Framework, 1992.

[7] B. Jeannet. Dynamic partitioning in linear relation analysis. Formal Methods in System
Design, 23(1):5–37, 2003.

[8] B. Jeannet, T. Jéron, V. Rusu, and E. Zinovieva. Symbolic test selection based on approx-
imate analysis. In 11th Int. Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’05), Edinburgh, Scottland, volume 3440 of LNCS. Springer,
april 2005.

[9] T. Jéron, H. Marchand, and V. Rusu. Symbolic determinisation of extended automata.
In 4th IFIP International Conference on Theoretical Computer Science, 2006, Santiago,
Chile. SSBM (Springer Science and Business Media), August 2006.

[10] G. Lestiennes and M.-C. Gaudel. Testing processes from formal specifications with in-
puts, outputs and data types. In 13th International Symposium on Software Reliability
Engineering (ISSRE’02), Annapolis, Maryland. IEEE Computer Society Press, 2002.

[11] V. Rusu, L. du Bousquet, and T. Jéron. An approach to symbolic test generation. In Inter-
national Conference on Integrating Formal Methods (IFM’00), volume 1945 of LNCS,
pages 338–357. Springer Verlag, November 2000.

[12] V. Rusu, H. Marchand, and T. Jéron. Automatic verification and conformance testing
for validating safety properties of reactive systems. In John Fitzgerald, Andrzej Tarlecki,
and Ian Hayes, editors, Formal Methods 2005 (FM05), volume 3582 of LNCS. Springer,
juillet 2005.

[13] J. Tretmans. Test generation with inputs, outputs and repetitive quiescence. Software—
Concepts and Tools, 17(3):103–120, 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

