
FROM TIME-TRIGGERED TO
TIME-DETERMINISTIC REAL-TIME SYSTEMS

Peter Puschner and Raimund Kirner
Vienna University of Technology, A-1040 Vienna, Austria

{peter, raimund}@vmars.tuwien.ac.at

Abstract With the increased use of powerful, performance-optimized hardwarecompo-
nents in embedded systems, timing prediction is getting more and more complex.
Thus while the execution speed of software is generally increasing, it is getting
more and more difficult (if not infeasible) to perform an accurate and safe timing
analysis of software that runs on those high-end embedded computer systems.

This paper presents a very rigid software execution model for building dis-
tributed hard real-time subsystems that are time predictable. The softwaremodel
is based on the time-triggered communication model. It uses a purely time-
triggered input-output interface and relies on single-path code (code that is free
from input-data dependent control flow) in both the operating system andap-
plication software. Tasks are only preempted at pre-planned task preemption
points and a simple clock synchronization keeps the operations of the hardreal-
time subsystem in synchrony with the real-time environment.

The proposed execution model yields software that is time-predictable by
construction. Verifying temporal correctness and tracing the timing behavior of
this software is trivial.

Keywords: Real-time systems, time-triggered architecture, determinism, time predictability.

1. INTRODUCTION

The computer architectures used in embedded systems are becoming in-
creasingly complex. Modern microcontrollers for embedded systems are built
around powerful superscalar CPU cores that use a number speedupfeatures
including instruction pipelines, caches and branch prediction, whose actual
impact on the speedup of a particular block of code strongly depends on the
processor’s execution history, i.e., the stream of instructions the processor ex-
ecuted before the block. As the number of different execution histories at each
point of a program can be enormous, an analysis of all possible behaviors of a
piece of software running on such a high-end computer is generally extremely
difficult. Consequently, worst-case execution time (WCET) analysis (i.e., as-
sessing the timing of single tasks assuming non-preempted execution) is dif-



2 Peter Puschner and Raimund Kirner

ficult for such systems, and analyzing the timing of the whole system, i.e.,
including preemptions and their effects on overall timing, requires unmanage-
ably high efforts.

While the mentioned complexity problem might seem intuitive for highly
dynamic systems with event-triggered task activation and scheduling, it even
applies to very simple systems, e.g., time-triggered systems that use a very
simple table-driven task activation. It thus seems to become more and more
difficult to argue about timing guarantees and the system safety of embed-
ded systems. To avoid the risk of missing a critical deadline, the use of very
defensive estimates about resource needs and an over-dimensioned resource
planning are becoming a necessity, unless simpler execution models are found.

In the light of this unsatisfactory situation we started to search for a real-
time systems architecture which would have time-predictability as its number
one property, i.e., temporal correctness (the absence of timing faults) should
be easy to validate. All other properties, including performance in the classical
sense should come second. This paper presents a software/hardwarearchitec-
ture for safety-critical hard real-time systems that came out of this work.

The only interface of the proposed architecture is a time-triggered state mes-
sage interface that blocks all asynchronous external control signalsthat would
otherwise disrupt the deterministic timing of the subsystem (Section 2). The
software of the proposed architecture builds on a simple task model and table-
driven static scheduling (Section 3.1) as well as on a deterministic code exe-
cution scheme (single-path code) in applications and in the operating-system
code (Section 4). The architecture further uses deterministic task preemption,
i.e., the number of instructions executed between each pair of preemptions
points is planned offline and therefore exactly known (Section 5). A simple
clock synchronization keeps the operations of the hard real-time subsystem
synchronized with the clock of the environment (Section 6).

2. THE SAFETY-CRITICAL SUBSYSTEM
INTERFACE

In this section we describe the interface of the proposed architecture. Asa
prerequisite for building a time-predictable (sub)system, the interface of this
system has to be predictable as well.

The following description uses the model and terminology of the DECOS
integrated architecture (6) for which our work was originally conceived. This
does, however, not mean that our work is only useful in the context of DECOS.
On the contrary, the architecture model can be adopted to any architecturethat
provides a time-triggered state message interface.



From Time-Triggered to Time-Deterministic Real-Time Systems 3

2.1 THE CONNECTOR UNIT

A DECOS component consists of two separated subsystems, the safety-
critical subsystem for executing all safety-critical tasks and the non safety-
critical subsystem for performing all other, non-critical services. Bothtypes
of subsystems are connected to the rest of the distributed computer system via
so-called connector units. The connector units realize the architectural ser-
vices of the distributed architecture, comprising the predictable transportation
of messages, the fault-tolerant clock synchronization, fault isolation, and the
consistent diagnosis of node failures (6).

Application Computer

Safety-
Critical

Connector
Unit

S
a
fe
ty
-C
ritic

a
l

H
R
T
 S
u
b
s
y
s
te
m
 

o
f a
 C
o
m
p
o
n
e
n
t

Time-Triggered Communication

Time-Triggered
State Message Port

Memory Element
for a Single State
Message

Synchronized Clock

Control Signal Port

Symbols

Figure 1. Interfacing between the Safety-Critical Hard Real-Time Subsystem of a Component
and the Time-Triggered Communication Channel.

Within this paper our focus is on the safety-critical subsystem of a compo-
nent (see Figure 1). This is where time predictability is needed. The applica-
tion computer of this subsystem communicates with its environment solely via
the safety-critical connector unit. The connector unit provides the following
services in support of the time-predictable software architecture of the appli-
cation computer.

The connector unit implements a temporal firewall interface (5) for all
data elements exchanged between the application computer and the com-
munication subsystem. The read and write operations of the communi-
cation subsystem access the memory elements of the temporal firewalls
only at predefined times, according to the a-priory known time-triggered
communication schedule (in Figure 1 envelopes represent the memory
elements and the arrows marked with light clocks show the accesses of
the communication subsystem to the firewalls).

The time windows during which the communication system accesses the
memory elements of the connector unit are known for each of temporal
firewall.



4 Peter Puschner and Raimund Kirner

The communication system provides a time-signal service to the appli-
cation computer. A dedicated memory element in the connector unit can
be written to set the timer (Figure 1, left). When the global system time
reaches the timer value, the connector unit sends an interrupt signal over
the signal port to the application processor.

3. A TIME-PREDICTABLE APPLICATION
COMPUTER

The timing of the actions performed by a computer system depends on both,
the software running on the computer and the properties of the hardware exe-
cuting the software (8). We therefore list the hardware and software features
that in combination allow us to make an application computer time-predictable.

3.1 HARDWARE ARCHITECTURE

A central idea of our approach is to obtain time predictability by using a
software architecture that has an invariable control flow (see below). As a
consequence of using this restrictive software model, we can allow for theuse
of hardware features that are otherwise considered as being “unpredictable”
(e.g., instruction caches) and yet build systems whose timing is invariable. So
the idea is to keep hardware restrictions and modifications within limits (e.g.,
we restrict caches to direct-mapped caches but do not demand special hardware
modifications as, for example, needed for the SMART cache (2)). To support
our execution model, the following hardware properties have to be fulfilled:

The execution times of instructions do not depend on the values of the
operands.

The CPU supports a conditional move instruction or a set of predicated
instructions that have invariable execution times.

Instruction caches are either direct mapped or set-associative with LRU
replacement strategy.

Memory access times for data are invariable for all data items. (In our
view, this is the strongest limitation at the moment. We will try to relax
this in future work).

CPU has a counter that counts the number of instructions executed. The
counter can be reset and used to generate an interrupt when a given num-
ber of instructions has been completed.



From Time-Triggered to Time-Deterministic Real-Time Systems 5

3.2 THE SOFTWARE ARCHITECTURE

To construct a time-predictable computer system while being not more re-
strictive about the hardware than explained above, we need to be very strict
about the software structure. In fact, the proposed software architecture does
not allow for any decisions in the control flow whose outcome has not already
been determined before the start of the system. This property is true for both
the application tasks and the operating system. Even task preemptions are
implemented in a way that does not allow for any timing variation between
different task invocations.

Task Model. The structure of all tasks follows the simple-task model found
in (4). Tasks never have to wait for the completion of an input/output opera-
tion and do never block. There are no statements for explicit input/output or
synchronization within a task. It is assumed that the static schedule of appli-
cation tasks and kernel routines ensures that all inputs for a task are available
when the task starts and that outputs are ready in the output variables when
the task completes. The actual data transfers for input and output are under
control of the operating system and are scheduled before respectively after the
task execution.

An important and unique property of our task model is that all tasks have
only a single possible execution path. By translating the code of all real-time
tasks into single-path code we ensure that all tasks follow the only possible,
pre-determined control flow during execution and have invariable timing. For
more details about the single-path translation see Section 4.

Operating System Structure. If not properly designed, the activities of the
operating system can create a lot of indeterminism in the timing of a computer
system. We have therefore been very restrictive in the design of the operating
system and its mechanisms.

Predictability in the code execution of the operating system is achieved by
two mechanisms. First, single-path coding is used wherever possible. Second,
all data that are relevant for run-time decisions of the operating system are
computed at compile time. These data include the pre-determined times for
I/O, task communication, task activation, and task switching. They are stored
in static decision tables that the operating system interprets at runtime.

Task communcation and I/O is implemented by simple read and write op-
erations to specific memory locations. As these memory accesses are pre-
scheduled together with the application tasks, no synchronization and no wait-
ing is necessary at run time.

The two greatest challenges in building a fully predictable operating system
were in maintaining time-predictability in case of task preemptions and keep-



6 Peter Puschner and Raimund Kirner

ing the activities of the application computer in synchrony with its environment
(the rest of the system).

To maintain the deterministic timing in the presence of preemptions it
was necessary to introduce a mechanism that allows for a precise pre-
emption when a given number of instructions have finished execution,
i.e., planning preemptions at specific times of the CPU clock turned out
to be insufficient (see Section 5).

The programmable time interrupt provided by the communication sys-
tem is used to synchronize the operation of the application computer
with the global time base (see Section 6).

3.3 TOOL SUPPORT

The software structure of our architecture is very specialized. Code genera-
tion for an application therefore needs to be supported by a number of tools:

To generate single-path code, either a special compiler or a code conver-
sion tool that converts branching code into single-path code is needed.

A tool for worst-case execution-time analysis (either a static analyzer
or a measurement tool) returns the execution times of the tasks and the
operating system routines.

An off-line scheduler generates the tables that control all operations of
the application computer. The scheduler has to resolve all precedence
and mutual exclusion constraints between task pairs as well as tasks
and the communication system. It further has to plan all preemptions,
thereby taking into account the effects of the preemptions on the system
timing.

4. DETERMINISTIC SINGLE-PATH TASK
EXECUTION

As all branches in the control flow of a task may potentially cause variable
timing, we translate the code of all tasks into so-called single-path code (9).
The code resulting from the single-path translation has only a single execution
trace, hence the name single-path translation.

The strategy of the single-path translation is to remove input-data depen-
dencies in the control flow. To achieve this, the single-path translation replaces
all input-data dependent branching operations in the code by predicatedcode.
It serializes the input-dependent alternatives of the code and uses predicates
(instead of branches) and, if necessary, speculative execution to select the right
code to be executed at runtime.



From Time-Triggered to Time-Deterministic Real-Time Systems 7

For pieces of code with an if-then-else semantics, a similar transformation,
called if-conversion, has been used before to avoid pipeline stalls in proces-
sors with deep pipelines (1). In addition to code with if-then-else semantics
the single-path translation transforms loops with input-data dependent control
conditions. This transformation yields loops with constant iteration counts,
again with a single execution path (7).

As a prerequisite for the single-path translation of a piece of code, the upper
bounds for the number of iterations of all loops have to be available. These
numbers can either be computed by a semantic analysis of the code or can be
provided by the programmer in the form of annotations, in case an automated
analysis is not possible or available.

5. PREDICTABLE TASK PREEMPTION

The idea of predictable task preemption is to preempt each task that needs
to be preempted at the same points in time in each execution cycle of the static
schedule. By doing so, the overall timing of all repetitive executions of the
cyclic schedule would also be invariable.

Our original plan was to implement the predictable task preemption by using
the CPU clock for task preemptions, i.e., preempt tasks always when the CPU
clock assumed one of the values given in the preemption-time tables of the op-
erating system. It turned out, however, that on hardware with instruction cache
this simple preemption strategy does not guarantee temporal predictability. It
may lead to oscillating task execution times, see (3).

Figure 2 shows the execution of two tasks,T1 andT2. T1 preemptsT2 at the
pre-scheduled time marked by the dashed line on the left.T2 resumes afterT1

has completed its execution. Let us assume thatT1 andT2 execute instructions
that map to the same cache line of a direct mapped cache (T2 executes these
instructions twice, e.g., in a loop). The execution of these conflicting instruc-
tions is marked by the dark boxes; upon a cache miss, the execution time of
the instruction increases, which is shown by the striped boxes.

Let us assume the very first activation of our schedule leads to the execution
shown in Scenario A. The first access ofT2 to the conflicting cache line leads
to a cache miss, and so do the other accesses byT1 respectivelyT2 (The latter
misses are due to the order in which the tasks access memory).

When the schedule is repeated,T2 has a cache hit on the first memory access.
SoT2 makes faster progress and the second access to the conflicting address
occurs beforeT2 is preempted, thus resulting in a hit, too.T1 then executes
with a cache miss, and asT2 has already completed its two critical memory
accesses, the instruction ofT1 remains in cache (see Scenario B). On the next
execution of the schedule,T2 has a cache miss when accessing the conflicting



8 Peter Puschner and Raimund Kirner

T1

T2

T1

T2

Scenario A 

Scenario B 

Figure 2. Task preemption by clock interrupt.

address, and so Scenario A is repeated. Following Scenario A, Scenario B
happens again, and so on. The timing does not stabilize.

We found that preempting tasks based on the number of instructions exe-
cuted yields the desired time-predictable behavior. So instead of using a clock
we count the number of instructions completed. Preemptions happen when the
value of this counter matches an entry in the scheduling table.

T1

T2

T1

T2

First cycle 

All other 
cycles 

Figure 3. Task preemption by instruction counter.

Figure 3 shows the schedule for our example, using an instruction counter.
Still, the timing of the second execution of the schedule differs from the first,
in which we have an initial cache miss. From the second execution on, how-



From Time-Triggered to Time-Deterministic Real-Time Systems 9

ever, the execution always starts from the same cache state and has a constant
execution time.

6. MAINTAINING SYNCHRONY WITH THE
GLOBAL CLOCK

To keep in phase with the rest of the system, the execution of all actions of
the application computer has to be synchronized to the global time reference
that is provided by the time-triggered communication system. Deviations of
the local clock from the global time are corrected. This clock synchronization
uses the clock signal from the communication subsystem. Whenever the pro-
grammed timer expires the clock of the application computer is reset and a new
round of the execution cycle is started.

In order to maintain the time predictability of the software, the clock syn-
chronization must not interfere with the software execution on the application
computer (i.e., the clock signal, that it is not in synchrony with the CPU clock,
must not preempt any software running). As a consequence, the application
computer has to be idle when a clock signal arrives. This is achieved by us-
ing schedules that consist of alternative intervals of task activity and inactivity,
where the latter are used as synchronization windows. Clock synchronization
interrupts have to be configured such that the clock signals arrive insidethe
synchronization windows even in case of the worst-case deviation of the local
time from the global time.

7. SUMMARY AND CONCLUSION

In this paper we described a software architecture for safety critical hard
real-time systems. This software architecture relies on time-triggered com-
munication and uses the static task-activation scheme of a cyclic executive.
Further, the operating system design and the single-path translation of code,
together with a task preemption mechanism that triggers preemptions based
on the number of instructions executed and the simple master clock synchro-
nization make it possible to build fully time-deterministic computer systems
on powerful, state-of-the-art hardware. These computer systems areeasy to
analyze for their timing and their timing properties and correctness can eas-
ily be traced. So they can safely be used in time-critical systems for which
temporally correct behavior has to be guaranteed.

ACKNOWLEDGMENTS

This work has been supported in part by the European IST project ARTIST2
under project No. IST-004527 and the European IST project DECOSunder
project No. IST-511764.



10 Peter Puschner and Raimund Kirner

REFERENCES

[1] Allen, J., Kennedy, K., Porterfield, C., and Warren, J. (1983). Conversion of Control
Dependence to Data Dependence. InProc. 10th ACM Symposium on Principles of Pro-
gramming Languages, pages 177–189.

[2] Kirk, D. B. (1989). Smart (strategic memory allocation for real-time) cache design. In
Proc. 10th Real-Time Systems Symposium, pages 229–237, Santa Monica, CA, USA.

[3] Kirner, Raimund and Puschner, Peter (2006). Time-Predictable Task Preemption in Real-
Time Systems with Instruction Cache. Research Report 27/2006, Technische Universit-at
Wien, Institut f-ur Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria.

[4] Kopetz, H. (1997).Real-Time Systems. Kluwer Academic Publishers.

[5] Kopetz, Hermann and Nossal, Roman (1997). Temporal Firewallsin Large Distributed
Real-Time Systems. InProc. 6th IEEE Workshop on Future Trends of Distributed Com-
puting Systems, pages 310–315.

[6] Obermaisser, Roman, Peti, Philipp, and Kopetz, Hermann (2005).Virtual Networks in
an Integrated Time-Triggered Architecture. InProc. 10th IEEE International Workshop
on Object-Oriented Real-Time Dependable Systems, pages 241–253.

[7] Puschner, Peter (2002). Transforming execution-time boundable code into temporally
predictable code. In Kleinjohann, Bernd, Kim, K.H. (Kane), Kleinjohann, Lisa, and Ret-
tberg, Achim, editors,Design and Analysis of Distributed Embedded Systems, pages 163–
172. Kluwer Academic Publishers. IFIP 17th World Computer Congress- TC10 Stream
on Distributed and Parallel Embedded Systems (DIPES 2002).

[8] Puschner, Peter and Burns, Alan (2000). A review of worst-case execution-time analysis.
Journal of Real-Time Systems, 18(2/3):115–128.

[9] Puschner, Peter and Burns, Alan (2002). Writing temporally predictable code. InProc.
7th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems,
pages 85–91.


