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Abstract Exponentially increasing with technology scaling, soft errors have become
a serious design concern in the deep sub-micron embedded systems. Partially Pro-
tected Cache (PPC) is a promising microarchitectural feature to mitigate failures
due to soft errors in embedded processors. A processor with PPC maintains two
caches, one protected and the other unprotected, both at the same level of memory
hierarchy. By finding out the data more prone to soft errors and mapping only that to
the protected cache, the failure rate can be significantly improved at minimal power
and performance penalty. While the effectiveness of PPCs has been demonstrated
on multimedia applications — where the multimedia data is inherently resilient to
soft errors — no such obvious data partitioning exists for applications in general.
This paper proposes profile-based data partitioning schemes that are applicable to
applications in general and effectively reduce failures due to soft errors at mini-
mal power and performance overheads. Our experimental results demonstrate that
our algorithm reduces the failure rate by 47 x on benchmarks from MiBench while
incurring only 0.5% performance and 15% power overheads.

1 Introduction

Reliability is becoming the paramount concern in system design in the deep sub-
micron era [1]. With technology scaling, i.e., smaller feature size, lower voltage
level, etc., microprocessors are becoming increasingly prone to transient faults [9].
A transient fault results in erroneous program states and eventually incorrect out-
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puts, but it is non-destructive, i.e., resetting the device, restores normal behavior.
While transient faults occur due to several reasons, radiation is more responsible
for transient faults than all the other causes combined [4]. Radiation-induced faults
occur when a high energy radiation particle, e.g., an alpha particle, a neutron or a
free proton, strikes the diffusion region of a CMOS transistor and produces charge,
which results in toggling the logic value of the transistor. This phenomenon of
change in the logic state of a transistor is called an Upset. An upset may result
in a change in the architectural state of a processor. The changed architectural state
of a processor is called an Error. An error can cause an observable difference in the
behavior of the program, which is termed as a Failure.

Among all the microarchitectural features in a processor, on-chip caches are most
susceptible to upsets. This is due to the fact that caches cover majority of chip area,
and operate at much lower voltage than combinational circuits [7, 16]. In addition,
while an upset in combinational circuits becomes an error only if it is latched at
the right moment, the absence of latching-window masking in caches ensures that
all upsets translate into errors. Indeed, more than 50% of errors occur in memories
[17]. Consequently, it is very important to prevent errors in memory structures.

Several microarchitectural techniques have been proposed to reduce the impact
of soft errors in memories, the most popular being the use of Error Correction Codes
(ECC). While the ECC-based techniques are well suited for off-chip memories, they
are inappropriate for caches, as they are highly sensitive to any power and perfor-
mance overheads. In fact, implementing an ECC scheme in caches increases the
cache access time by up to 95% [14] and power consumption by up to 22% [24].
Partially Protected Cache (PPC) was proposed by Lee et al. [13] to mitigate the
impact of soft errors on caches. A PPC architecture has two caches, one protected
against soft errors, and the other unprotected, at the same level of memory hierarchy.
The intuition behind PPC is that when soft errors occur, some data is more likely to
cause failures than others. By mapping only this data to the protected cache, the fail-
ure rate can be significantly reduced at minimal power and performance overheads.
PPCs were demonstrated to be extremely effective for multimedia applications. In
multimedia applications, the multimedia data itself is error-resilient. For example,
in an image or video processing application, a soft error in the image or video only
causes a slight loss in Quality of Service (QoS). In contrast, most other data, e.g,
loop control variables, stack pointers, etc., are not error-resilient. Any soft error in
these variables may lead to a failure. However, no obvious data partitioning exists
for general applications. The absence of a data partitioning scheme for applications
in general severely limits the applicability of PPC architectures.

In this paper, we propose schemes to partition the data of general applications
into the two caches of PPC architecture and to achieve high reduction in failure
rate, at minimal power and performance penalty. We develop and test several data
partitioning algorithms. Monte Carlo exploration is unable to find interesting data
partitions. While Genetic Algorithm efficiently searches the exploration space, it
does not achieve high reduction in failure rate. Our approach, DPExplore, efficiently
prunes the search space, and uncovers Pareto-optimal data partitions. Experimen-
tal results on the HP iPAQ h4600 [10]-like processor-memory subsystem running
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benchmarks from MiBench [8] demonstrate that the PPC architectures reduce the
failure rate by 47x with 0.5% performance and 15% energy penalty on average.

2 Related Work

Radiation-induced soft errors have been under investigation since late 1970s. Due to
incessant technology scaling, soft error rate (SER) has exponentially increased [9],
and now it has reached a point, where it becomes a real threat to system reliability.
Microarchitectural solutions attempt to reduce the number of upsets that translate
into errors, and/or errors that result in failures. Solutions at the microarchitecture
level can be categorized based on the components where they are applied: the com-
binational components, the sequential components, and the memory components.

Solutions for Combinational Logic Logic elements were considered more ro-
bust against soft errors than memory elements but many researchers predict that the
logic soft errors will become one of main contributions to the system unreliability
[4, 23, 28]. The simplest and most effective way to reduce failures due to soft errors
in combinational logic is Triple Modular Redundancy (TMR) [25], which typically
uses three functionally equivalent replicas of a logic circuit and a majority voter.
But the overheads of hardware and power for conventional TMR exceed 200% [23].
Duplex redundancy [18, 23] is also available but it requires more than 100% area
and power overheads without any optimization techniques. In order to reduce the
high overheads in conventional redundancy techniques, Mohanram et al. in [18] pre-
sented a partial error masking by duplicating the most sensitive and critical nodes
in a logic circuit based on the asymmetric susceptibility of nodes to soft errors. Re-
cently, Nieuwland et al. in [23] proposed a structural approach analyzing the SER
sensitivity of combinational logic to identify the critical components at circuits.

Solutions for Sequential Logic Temporal redundancy is another main approach
that has been used to combat soft errors in circuits. In order to detect soft errors,
Nicolaidis in [22] applied fine time-grain redundancy within the clock cycle greater
than the duration of transient faults by using the temporal nature of soft errors. Sim-
ilarly, Anghel et al. in [2] exploited the temporal nature to detect timing errors and
soft errors by means of time redundancy. Krishnamohan et al. in [12] proposed the
time redundancy methodology by using the timing slack available in the propagation
path from the input to the output in CMOS circuits. A Razor flip-flop was presented
in [6] to detect transient errors by sampling pipeline stage values with a fast clock
and with a time-borrowing delayed clock.

Solutions for Memories By far, reducing soft errors in memories has been the
most extensive research topic. Error detection and correction codes (EDC and ECC)
have been widely investigated and implemented as the most effective schemes to de-
tect and correct soft errors in memory systems. However, an ECC system consists of
an encoding block as well as a decoding block responsible for detection and correc-
tion, and of extra bits storing parity values. Thus, ECC-based techniques consume
extra energy and incur performance delay as well as additional area cost [14, 24, 25],
and are therefore not suitable for caches. Thus, only a few processors such as the
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Intel Itanium processor [26] protect L2 and L3 caches with ECC, but we are not
aware of any processor employing ECC-based protection mechanism on L1-cache.
This is mainly due to high overheads of ECC implementation [11, 19].

Mukherjee et al. in [20] proposed a cache scrubbing technique that can avoid po-
tential double-bit errors by reading cache blocks periodically and fixing all single-bit
errors. Li et al. in [15] evaluated the drowsy cache and the decay cache exploiting
voltage scaling and shut-down schemes, respectively, in order to efficiently decrease
the power leakage. They also proposed an adaptive error correcting scheme to dif-
ferent cache data blocks, which can save energy consumption by protecting clean
data less than dirty data blocks. Kim in [11] proposed the combined approach of
parity and ECC codes to generate the reliable cache system in an area-efficient way.
However, they all exploit expensive error correcting codes in order to protect all
the data unnecessarily. Recently, Sugihara et al. in [30] presented a task scheduling
method to dynamically switch the operation modes between the performance and
vulnerability in cache architectures of multiprocessor systems.

Partially Protected Cache Architecture Lee et al. in [13] proposed PPC archi-
tecture and demonstrated the effectiveness in reducing the failure rate with minimal
power and performance overheads. However, the effectiveness of PPCs has been
limited only on multimedia applications, and there is no known approach to use
PPCs for general applications.

The contribution of this paper is in developing techniques to utilize PPC archi-
tectures for applications in general and establish PPC as an effective microarchi-
tectural solution to mitigate failures due to soft errors.

3 Partially Protected Caches and Problem Definition

Processor
Pipeline

I Processor

Unprotected Cache —‘

T Memory
Protection ;
Overhead '
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Fig. 1 Partially Protected Cache Architecture: one protected cache and the other unprotected cache
at the same level of hierarchy

In a processor with Partially Protected Cache (PPC), the processor has two
caches at the same level of memory hierarchy. As shown in Fig. 1, one of two caches
is protected from soft errors, while the other is unprotected. Any protection mech-
anism can be implemented in the protected cache, e.g., increasing the thickness of
oxide layer of the transistors, or adding redundancy logic like a Hamming Code
[25]. The protected cache is typically smaller than the unprotected cache to keep
the access latencies of both caches the same. Each page in the memory is mapped
exclusively to one of the caches in a PPC architecture. The page mapping is set as
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a page attribute by the compiler. The mapping of the pages present in the cache
resides in the Translation Lookaside Buffer (TLB). On a cache access, first a TLB
lookup is performed to find out if the page is present in the cache, and if so, in which
one? Thus, only one cache lookup is performed per cache access.

1 Failure Rate (Susan Corners)

Normalized Failure Rate (LOG)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
The number of pages mapped into the protected cache

Fig. 2 Failure Rate Reduction by Moving Pages from the Unprotected Cache into the Protected
Cache One by One in a PPC

While PPC architectures are very effective in reducing the failure rate with min-
imal performance and power overheads, the effectiveness hinges on the ability to
partition the application data between the two caches in a PPC. To motivate for the
need of page partitioning to reduce the failure rate, we perform a small experiment.
First we map all the application pages to the unprotected cache, and then move the
pages to the protected cache one by one. Fig. 2 plots the failure rate at each step
of this exploration for susan corners, and shows that the failure rate drops rapidly
as pages are moved from the unprotected cache to the protected cache. However,
the pages have to be carefully moved to the protected cache, as it is small; mapping
too many pages to the small cache increases the misses and results in significant
penalties of performance and energy consumption due to frequent memory accesses.
Therefore, the data partitioning is a multi-objective optimization problem in which
we need to reduce the failure rate, at minimal overheads of performance and energy
consumption. Since, even medium sized applications use a large number of pages;
our benchmarks from [8] access 27 - 95 pages. Owing to its exponential complexity,
enumerative techniques (e.g. trying all the possible page partitions) do not work.

We formulate our problem as: Given an allowable performance degradation, de-
termine the page partitioning to minimize the failure rate at minimal energy penalty.

4 Our Approach

4.1 Vulnerability: A Metric for Failure Rate

To partition pages for a PPC architecture, we need a metric to quantitatively com-
pare page partitions in terms of susceptibility to soft errors. We use the concept of
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vulnerability, proposed in [3, 21], to partition the data into the protected and unpro-
tected caches in a PPC. If an error is injected in a variable that will not be used, the
error does not matter. However, if the erroneous value is used in the future, then it
will result in a failure. Thus a data is defined to be vulnerable for the time it is in
the unprotected cache until it is eventually read by the processor or written back to
the memory. The vulnerability of an application is the summation of the individual
data vulnerability measured in cycles to present the vulnerable time of this data.

3.5E+10 ﬁVulnerabilily vs. Failure Rate (Susan Corners)’i’ 35
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Fig. 3 Vulnerability and Failure Rate: vulnerability is a good metric for estimating failure rate

To validate our idea using vulnerability as a failure rate metric, we simulated
the susan corners benchmark from [8] on a modified sim-outorder simulator from
SimpleScalar [5] to model HP-iPAQ [10] like system for various L1 cache sizes.
Our modified simulator calculated the vulnerability for each cache size as discussed
above. To estimate the failure rate, we injected soft errors on data caches for each
run of the benchmark, counted the number of failed runs out of a thousand runs,
and calculated the failure rate in %. Each run is defined as a success if it ends and
returns the correct output. Otherwise, it is a failure. Fig. 3 plots the vulnerability and
the failure rate obtained by simulations and shows that the shape of the vulnerability
closely matches the failure rate curve. Other applications also show similar trends.
On average, the error in predicting the failure rate using vulnerability is less than
5%. In this paper, we use vulnerability as the metric to estimate the failure rate, and
perform automated design space exploration to decide the page partitioning between
the two caches of a PPC. Reducing vulnerability can be contrary to performance
improvement. For example, to reduce the vulnerability of data, data should not re-
main in the cache for long. It is better to evict and reload the reused data to reduce
the vulnerability, but this degrades performance. Therefore, there is a fundamental
trade-off between performance improvement and vulnerability reduction.

4.2 Page Partitioning: DPExplore

Fig. 4 outlines our DPExplore partitioning algorithm, which starts from the case
when no page is mapped to the protected cache. In each step, pages are moved
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from the unprotected to the protected cache, to minimize the vulnerability under the
runtime penalty. Our page partitioning algorithm takes three inputs: (i) allowable
runtime penalty (rPenalty), (ii) exploration width (eWidth), the number of partitions
maintained as best configurations for the whole exploration, and (iii) pCount, the
number of pages in a benchmark. DPExplore searches for page mappings that will
suffer no more than the specified rPenalty, while trying to minimize the vulnera-
bility. DPExplore maintains a set of best page mappings found so far (Line 05) in
bestConfigs, sorted in an increasing order of vulnerability. After initialization, the
algorithm goes into a forever loop in Line 07. It takes each existing best solution
and tries to improve it by mapping a page to the protected cache (Lines 11-12). If
the new page mapping is better than the worst solution in the newBestCon figs, then
the new page mapping is saved in the list. The loop in Lines 09-21 is one step of
exploration. After each step, the new set of page mappings is trimmed down to ex-
ploration width (Lines 22-24). The termination criterion of the exploration is when
an exploration step cannot find any better page mapping. In other words, no page
can be mapped to the protected cache to improve vulnerability (Lines 25, 27) under
the runtime penalty. Otherwise, the global collection of the best page mappings are
updated (Line 26).

DPExplore(rPenalty, eWidth, pCount)

01: pageMap0 = 0...0

02: runtime, power,vulnerability = simulate(pageMap0)
03: config0 = (pageMapO, runtime, power, vulnerability)
04: for (k = 0;k < eWidth;k++)

05:  bestConfigs.insert(config0)

06: endFor

07: for (;:)

08:  newBestConfigs = bestConfigs

09:  for (i =0;i < eWidth;i++)

10: for (j = 0;j < pCount; j+ +)

11: testConfig = addPage(newBestConfigsli], j)

12: runtime, power, vulnerability = simulate(testConfig.pageMap)
13: if (runtime < con fig0.runtime x W

14: if (vulnerability < newBestCon figs|0].vulnerability)

16: newBestCon figs.insert(testCon fig, runtime, power,vulnerability)
17: newBestConfigs.sort()

18: endIf

19: endIf

20: endFor

21:  endFor

22:  for (i = newBestConfigs.length();i > eWidth;i — —)

23: newBestCon figs.deleteli — 1]

24:  endFor

25:  if (newBestCon figs|0].vulnerability < bestCon figs|0].vulnerability)
26: bestConfigs = newBestConfigs

27:  else break;

28:  endIf

29: endFor

Fig. 4 DPExplore: an exploration algorithm for data partitioning

Note that our exploration technique is a profile-based approach, which works
well if the page mapping of application codes and input data does not change. Our
proposal, DPExplore, is very effective for such applications.
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5 Experiments

5.1 Setup

! Data Partitioning Framework
Application | |
: Page Page |
[ Y Esti Vulnerabilities |
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Data
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Runtime N
Vulnerability Platform
Energy Mapping

Fig. 5 DPExplore Page Partitioning Framework for PPC Architectures

To demonstrate the effectiveness of DPExplore in exploring and discovering the
partition with minimal vulnerability at minimal power and runtime' penalty, we
have built an extensive simulation framework. The application is first compiled to
generate an executable. The application is then profiled, and the Page Vulnerability
Estimator calculates the vulnerability of each page accessed by the application. The
pages are then sorted according to their vulnerabilities, and then Data Partitioning
Heuristics partitions and maps the pages to the two caches in the PPC architecture.
Through the simulations, Data Partitioning Heuristics finds out the page mapping
with minimal vulnerability under the runtime constraint. Finally, the executable and
the page mapping are provided to the platform, which runs the application and gen-
erates outputs such as runtime, energy consumption, and vulnerability.

The platform is modeled using sim-outorder simulator from the SimpleScalar
toolchain [5]. The simulation parameters have been setup so as to model an HP
iPAQ h4600 [10] like processor memory system. We model a PPC architecture con-
sisting of a 4 KB of unprotected cache and a 256 bytes of protected cache with line
size of 32 bytes, 4 way set-associativity, and FIFO cache replacement policy. This
model protects one small cache with an ECC-based technique such as a Hamming
Code [25]. The overheads of power and delay for ECC protected caches are esti-
mated and synthesized using the CACTI [27] and the Synopsys Design Compiler
[31] as in [13]. And also SimpleScalar sim-outorder simulator has been modified to
include the vulnerability computation. The memory subsystem includes the caches,
external buses, and 2 off-chip SDRAM:s. To estimate the memory subsystem energy
consumption, we use the power models presented in [29].

The HP iPAQ is a wireless handheld device, and MiBench is the set of bench-
marks that are representative of applications that run on wireless handheld de-
vices [8]. MiBench suite is therefore the right set of benchmarks that are supposed
to run on the iPAQ, and we choose them. However, we pick only those benchmarks
in which the runtime difference between the cases when all data is mapped to the

! Here runtime and performance are used interchangeably and represent the number of cycles for
execution of an application
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4 KB unprotected cache, and when all data to the 256 bytes protected cache in the
PPC is more than 5%. This is to avoid benchmarks for which only the small pro-
tected cache is enough. Note that although some of the benchmarks in MiBench
are multimedia applications (for which an obvious data partitioning exists), we use
DPExplore to partition the data of all applications in the selected benchmark suite.

We compare the effectiveness of our approach DPExplore with two traditional
exploration techniques,

Monte Carlo (MC) In MC, several page partitions are randomly generated and
tested by simulation for their effectiveness in power, runtime and vulnerability.

Genetic Algorithm (GA) For GA, initially, we form a randomly generated se-
quence, representing a page mapping. At each successive generation, the superior
sequences in terms of vulnerability are selected as the evolutionary page mappings
through the simulations. In order to generate the next sequence, we implemented
two GA operations such as mutation and crossover. For the mutation operation, a
pseudo-random number tells whether each page mapping in a sequence is modified
or not. For the crossover operation, one point is selected in the current sequence and
the bits are swapped on page mappings to generate the next sequence.

5.2 Results

5.2.1 Effectiveness of DPExplore

1250 Vulnerability Reduction under 5% Runtime Penally’i 147 Energy and Runtime Overheads
o .
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Fig. 6 Evaluation under 5% Performance Penalty: DPExplore significantly reduces the vulnera-
bility at minimal runtime and power overheads

To demonstrate the effectiveness of DPExplore, we find the page partition with
the least vulnerability under 5% performance penalty and exploration width 2.
Fig. 6(a) plots the vulnerability ratio. Vulnerability Ratio indicates the ratio of the
vulnerability of the base case to that discovered by DPExplore. Similarly, Runtime
Ratio and Energy Ratio of the least vulnerability page partition obtained by DPEx-
plore are presented in Fig. 6(b). Thus, each ratio greater than 1 implies the reduction
of each metric. We observe 47X reduction in vulnerability on average, along with
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only 0.5% degradation in runtime, and 15% increase in the total energy consump-
tion of the memory subsystem. Compared to the case when all data is mapped to
the protected 4 KB cache, i.e., the completely protected cache, the runtime and the
energy consumption of the page partition with DPExplore are improved by 36% and
9%, respectively. Thus, even very small runtime degradation allows DPExplore to
find page mappings that can significantly reduce the vulnerability.

5.2.2 Comparison with Other Explorations
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Fig. 7 Exploration by MC, GA and DPExplore: DPExplore effectively explores the design space

We detail the results of exploration using MC, GA, and DPExplore over the susan
corners benchmark, when DPExplore is configured for 5% runtime penalty, and
exploration width 2. Fig. 7(a) plots the vulnerability as the exploration progresses
for MC, GA, and DPExplore. The plot shows that while MC is ineffective, GA
improves vulnerability by about 20x, but DPExplore consistently finds better page
mappings and is eventually able to reduce vulnerability by about 30x.

Fig. 7(b) and Fig. 7(c) plot the runtime, energy consumption, and vulnerability
of the page partitions searched by MC, GA, and DPExplore. Note that the y-axis
in these graphs — the vulnerability scale — is logarithmic. The most important ob-
servation that we make from these graphs is that DPExplore searches much more
useful page mappings (low vulnerability with low runtime and energy overheads),
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as compared to MC and GA. We allow each exploration technique to evaluate 1,900
page mappings. Thus, in total there are 5,700 page mappings. Out of them only
83 are Pareto-optimal. A page mapping is Pareto-optimal, if it is no worse than
any other configuration in all the three dimensions, i.e., runtime, vulnerability and
energy. Out of these 83 Pareto-optimal page mappings, 68 were first drawn from
DPExplore searches (82%), 12 came from GA (14%), and only 3 were discovered
by MC (4%). This Pareto-optimal observation demonstrates the effectiveness of our
algorithm as compared to MC and GA. The main reason for the effectiveness of
DPExplore as compared to MC and GA explorations is that MC and GA ignore the
effects of partitioning on the runtime and energy consumption.

Finally, we compare the speed of the various exploration algorithms. Fig. 7(d)
plots the speed of exploration, i.e., inverse of the number of page partitions explored
to achieve a required vulnerability reduction. The plot shows that MC is quite inef-
fective. Among GA and DPExplore, GA is a faster approach when low reduction in
vulnerability is required, but it is unable to achieve high reductions in vulnerability.
This is where, our approach is really effective.

6 Summary

Owing to the incessant technology scaling, soft errors, especially in caches, are be-
coming a critical design concern for system reliability. Partially Protected Cache
(PPC) architecture has been proposed as an effective architectural means of improv-
ing system reliability without much power and performance penalty. However, the
challenge is in partitioning pages among the two caches in a PPC. While page par-
titioning schemes have been proposed for multimedia applications, there is no page
partitioning scheme for general applications. The page partitioning space is huge,
and existing random techniques are unable to identify and explore the page parti-
tions that lead to low vulnerability. In this paper, we develop DPExplore, a page
partitioning algorithm at design time that effectively and efficiently finds page par-
titions resulting in 47 times reduction in vulnerability, i.e., in failure rate, at only
0.5% performance and 15% energy penalty on average. The main contribution of
DPExplore is that it increases the applicability of PPC architectures and establishes
PPC as the solution of choice to improve reliability of cache-based architectures.

Our future work includes intelligent schemes to improve the data partitioning in
PPCs for the varying input data at runtime, and partitioning techniques for instruc-
tion PPC caches.
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