
Model Checking the Ant Colony Optimisation

Lucio Mauro Duarte1 , Luciana Foss2, Flávio Rech Wagner
1
, Tales Heimfarth3

1 Institute of Informatics, Federal University of Rio Grande do Sul – Brazil

2 Institute of Physics and Mathematics, DINFO, Federal University of Pelotas – Brazil
3 Dep. of Computer Science, Federal University of Lavras - Brazil

{lmduarte,flavio}@inf.ufrgs.br, luciana.foss@ufpel.edu.br, tales@dcc.ufla.br

Abstract. We present a model for the travelling salesman problem (TSP)

solved using the ant colony optimisation (ACO), a bio-inspired mechanism that

helps speed up the search for a solution and that can be applied to many other

problems. The natural complexity of the TSP combined with the self-

organisation and emergent behaviours that result from the application of the

ACO make model-checking this system a hard task. We discuss our approach

for modelling the ACO in a well-known probabilistic model checker and

describe results of verifications carried out using our model and a couple of

probabilistic temporal properties. These results demonstrate not only the

effectiveness of the ACO applied to the TSP, but also that our modelling

approach for the ACO produces the expected behaviour. It also indicates that

the same modelling could be used in other scenarios.

Keywords: ant colony optimisation, self-organisation, emergent behaviour,

probabilistic model checking.

1 Introduction

Biologically inspired algorithms (or simply bio-inspired algorithms) [1] are methods

that use mechanisms that resemble behaviours observed in nature, such as food

search, evolution and insect swarming. These mechanisms define solving strategies

that make applications more robust, flexible and scalable. They have been

successfully applied to several problems, such as sensor networks [2][3].

All bio-inspired algorithms present a decentralised control and are composed by

several, simple components that act autonomously and interact with each other. The

overall behaviour of the system is a result of the interactions between its components

and their autonomous decisions, based on environment conditions. Therefore, bio-

inspired algorithms combine self-organisation and emergence. Self-organisation [4]

describes the ability of a system to dynamically modify its internal structure in an

autonomous manner. Hence, components automatically adapt to changes without any

external intervention. Emergence [5] means that the system's behaviour, rather than

being simply the sum of the behaviours of its components, emerges from local

interactions between these components. Systems that contain self-organisation and

emergence are called self-organising emergent systems (SOES) and are considered

one of the most promising answers to the development of massive distributed systems

with decentralised control [6]. However, no appropriate support is provided by current

software engineering techniques for the development of such systems.

The main problem in developing an SOES is the dynamic changes in its structure,

which makes it difficult to analyse the system using traditional approaches, which

require predicting all possible behaviours. Furthermore, even though components of

the system and their interactions are quite simple, the great number of possibilities of

interactions increases the system's overall complexity.

In this paper we investigate how to provide some guarantee that a system involving

a bio-inspired algorithm – thus characterising an SOES - exhibits the expected

behaviour. Though simulation is the usual technique for the analysis of these systems,

we present an approach based on probabilistic model checking [7], which is a

technique that extends the traditional model checking [8] by allowing property

specification and model analysis to consider probabilities and timing information. The

reason for this choice is the need of checking not only qualitative properties (i.e.,

properties that evaluate as either “true” or “false”) but mainly quantitative properties

regarding issues such as reliability, performance and resource usage. Moreover,

modelling bio-inspired mechanisms requires different abstractions to describe the

dynamics of the system and possible changes in its structure over time.

We describe a modelling strategy for a bio-inspired algorithm based on the

mechanism of pheromones. We advocate that, since bio-inspired algorithms are

naturally self-organising mechanisms, if there is a well-defined way of model-

checking them, then SOESs in general could be more easily modelled and verified.

To evaluate our idea, we have developed an example involving the travelling

salesman problem (TSP) [9] using the ant colony optimisation (ACO) [10] to drive

the solution for the problem in a small scenario. Hence, our main goals with this study

were: to propose a way of modelling the bio-inspired algorithm, to apply it to a model

of the TSP and to show, through the verification of some properties, the correctness of

the modelling, which means that the mechanism indeed eventually leads the system to

exhibit the expected behaviour. We demonstrate how we have modelled the TSP and

the ACO as a discrete-time Markov chain (DTMC) in the Probabilistic Symbolic

Model Checker (PRISM) [11] and present a couple of properties specified using

probabilistic computational tree logic (PCTL) [12] that we have checked. The results

indicate that the pheromone mechanism successfully eventually leads to a behaviour

that complies with requirements for solving the problem, thus demonstrating the

correct modelling of the bio-inspired algorithm.

The remaining of this paper is organised as follows: Section 2 presents background

information on the subject of this work; Section 3 describes how we have modelled

and verified the TSP-ACO experiment and the results obtained; Section 4 presents a

discussion about some related work; and Section 5 contains the conclusions.

2 Background

This section presents the basic ideas related to the problem and to the bio-inspired

algorithm. It also briefly describes concepts related to probabilistic model checking.

2.1 The ACO Applied to the TSP

The travelling salesman problem (TSP) [9] is a classic and well-studied problem in

Theoretical Computer Science that can be used to formalise a number of real-world

problems. It consists in finding the shortest Hamiltonian circuit in a fully-connected

graph G=(N,E), where N represents a set of n cities and E describes the set of routes

between pairs of cities. Each route (i,j) in E is assigned a cost cost(i,j), describing the

distance between cities i and j. Thus, the total cost of a certain tour t=(c0,c1,...,cn,c0) is

given by the sum in (1), which represents the sum of the costs of every route included

in the tour. Therefore, the shortest path1 would be the one with the lowest total cost.

.n) mod 1)+(icost(i,
1

0

∑
−

=

n

i

 (1)

One way proposed to help solve the TSP is by the ant colony optimisation (ACO)

[10], which is an algorithm that simulates the behaviour of ants looking for food

sources. They mark the paths they take by leaving a trail of pheromone, which is a

natural hormone. When choosing paths, ants take into account the pheromone

concentration, which indicates paths more often taken by other ants. Thus, paths

leading to food sources close to the nest tend to concentrate higher levels of

pheromone and become more attractive to other ants. After some time, the pheromone

slowly evaporates, ensuring that paths that do not lead to good food sources (i.e., are

not frequently used) will become less attractive over time. Therefore, the pheromone

mechanism provides all the information ants need to choose paths and achieve the

necessary organisation without external intervention. This means that the behaviour of

the whole colony emerges from the interactions through pheromone.

2.2 Probabilistic Model Checking

As in any other SOES, the complexity of the ACO lies not on the behaviour of each

component (ant) alone, but on the difficulty of predicting the behaviours that can

emerge from local interactions. In order to provide guarantees of some sort about the

emergence of a specific behaviour, we can identify two possible approaches:

simulation or formal verification. Simulations of an abstract system model can be

used to drive design choices until the required quality properties are obtained.

However, system analysis based on simulation does not provide sound guarantees for

the engineering of complex systems such as ACO because it is based only on

approximations. In contrast to simulation, formal verification techniques, such as

model checking [8], can provide precise results about the system real behaviour, at the

cost of requiring more accurate abstractions.

Probabilistic model checking [7] is a model checking technique more tailored for

the analysis of SOESs, as it provides means of dealing with systems that exhibit

probabilistic or stochastic behaviour. It mainly differs from traditional model

checking in that it involves additional information on probabilities or timing of

1 We use the term tour to represent the traversal of the graph and the term path to describe a

sequence of cities visited during a tour.

transitions between states. Properties can involve calculations of the probability of

certain events occurring during the execution of the system.

There are several commonly used model representations for probabilistic and

stochastic systems, most of them based on Markov chains. In Markov chains,

transitions between states depend on some probability distribution, where only the

current state of the system influences the probability of the next transitions. A

particular type of Markov chain is a discrete-time Markov chain (DTMC), which is

represented by a transition system that defines the probability of moving from one

state to another by applying discrete-time steps. The temporal logics probabilistic

computation tree logic (PCTL) [12] is used to specify properties of a DTMC. PCTL

extends the temporal logic CTL [13] with discrete time and probabilities.

One of the most used tools regarding probabilistic model checking is the

Probabilistic Symbolic Model Checker (PRISM) [11]. Amongst some other features,

it supports the specification of PCTL properties and the creation of DTMCs described

using a simple, state-based language. It also provides an environment for checking the

properties against the models using either simulation or verification.

3 Verification of the TSP with ACO

This section presents the results of our modelling of the ACO and how this

mechanism was introduced in the TSP model to help find a solution using self-

organisation and emergence. We also discuss how we specified properties based on

these requirements and verified that they hold in the model.

3.1 Modelling

We modelled the problem using the PRISM language [11] to describe the symmetric

version of the TSP (where routes have the same cost on both ways). The graph was

composed by 4 cities, which is the minimum number of vertices necessary to

introduce some complexity to the problem. To simplify the modelling, we fixed city

number 1 as the initial city and modelled the solution with only one ant. This way,

rather than having multiple ants travelling in parallel, there was only one ant

repeatedly traversing the graph. Therefore, each tour of this sole ant represents the

behaviour of a different ant, thus simulating the behaviour of several ants. This

abstraction reduces the complexity of the problem but does not affect the analysis

results as the effect of the pheromone mechanism works exactly in the same way.

Although we followed the original ACO algorithm [10], calculating the

probabilities of paths based on both costs and desirability (amount of pheromone), we

used different formulas to simplify the modelling. Our desirability component, called

preference, refers to the amount of pheromone associated to each route between two

cities, which ranges from 1 (MIN_PREF) to 10 (MAX_PREF). All routes are

initialised with MIN_PREF and, after a tour, pheromone is deposited only on edges

that are part of the path taken, causing preferences to be updated. The local updated

preference value after a tour is calculated as presented in (2).

.))_),_(_min(' PREFMAXdisttotfactorincpp ijij += (2)

In the formula, pij denotes the preference of route (i,j) and tot_dist is the sum of the

costs of all routes comprising the most recent tour. Function inc_factor determines by

how much the preference of a route will be increased depending on the total cost of

the complete path. It assigns an increase value to paths according to their length group

(short, mid-length or long). The group which a path belongs to is determined by the

assignment of a cost to each route, which defines a scenario for the TSP.

The local update of routes causes a global update of probabilities. The probability

of taking a certain route (i,j) is given by (3), where N_CITIES defines the number of

cities involved, and visited_cities is the set of cities already visited in the current tour.

{ } .__,...,1..
_

1

citiesvisitedCITIESNkts

p

p
prob

CITIESN

k

ik

ij
ij −∈=

∑
=

(3)

Considering a scenario with 4 cities, the probability of taking, for instance, route

(1,2) when starting the tour in city 1 is given by (4).

.
141312

12
12

ppp

p
prob

++
= (4)

Note that the formula guarantees that the probabilities of all possible routes from a

city add up to 1. The code below presents the PRISM model of the TSP-ACO:

1 dtmc
2 const int N_CITIES = 4; const int MIN_PREF = 1;
3 const int MAX_PREF = 10;
4 const int D12 = 1; const int D23 = 8; const int D34 = 2;
5 const int D14 = 4; const int D13 = 4; const int D24 = 3;
6 const int MAX_DIST=(D12+D23+D34+D14+D13+D24); const double EVAP_RATE;
7 const int N_CYCLES;
8 global cont : [0..N_CYCLES] init 0;
9 global p12 : [MIN_PREF..MAX_PREF] init MIN_PREF;
10 global p13 : [MIN_PREF..MAX_PREF] init MIN_PREF;
11 global p14 : [MIN_PREF..MAX_PREF] init MIN_PREF;
12 global p23 : [MIN_PREF..MAX_PREF] init MIN_PREF;
13 global p24 : [MIN_PREF..MAX_PREF] init MIN_PREF;
14 global p34 : [MIN_PREF..MAX_PREF] init MIN_PREF;
15 formula prob12 = (p12/(p14+p13+p12));
16 formula prob13 = (p13/(p14+p13+p12));
17 formula prob14 = (p14/(p14+p13+p12));
18 formula prob123 = (p23/(p23+p24)); formula prob124 = (p24/(p23+p24));
19 formula prob132 = (p23/(p23+p34)); formula prob134 = (p34/(p23+p34));
20 formula prob142 = (p24/(p24+p34)); formula prob143 = (p34/(p24+p34));
21 formula inc_factor = (tot_dist<15) ? 7 : ((tot_dist=15) ? 4 : 1);

22 module traveller
23 loc : [1..N_CITIES+1] init 1;
24 path : [0..6] init 0;
25 tot_dist : [0..MAX_DIST] init 0;
26 [] loc=1 & path=0 -> prob12 : (loc'=2) +
27 prob13 : (loc'=3) +
28 prob14 : (loc'=4);
29 [] loc=2 & path=0 ->
30 prob123 : (loc'=3) &
31 (path'=1) &

32 (tot_dist'=D12+D23+D34+D14) +
33 prob124 : (loc'=4) &
34 (path'=2) &
35 (tot_dist'=D12+D24+D34+D13);
36 [] loc=3 & path=0 ->
37 prob132 : (loc'=2) &
38 (path'=3) &
39 (tot_dist'=D13+D23+D34+D14) +
40 prob134 : (loc'=4) &
41 (path'=4) &
42 (tot_dist'=D13+D34+D24+D12);
43 [] loc=4 & path=0 ->
44 prob142 : (loc'=2) &
45 (path'=5) &
46 (tot_dist'=D14+D24+D23+D13) +
47 prob143 : (loc'=3) &
48 (path'=6) &
49 (tot_dist'=D14+D34+D23+D12);
50 [] (loc=2|loc=3|loc=4) & path!=0 -> 1.0 : (loc'=5);
51 [] loc=5 & path=1 -> 1.0 :
52 (path'=0) &
53 (p12'=min(p12+inc_factor,MAX_PREF)) &
54 (p23'=min(p23+inc_factor,MAX_PREF)) &
55 (p34'=min(p34+inc_factor,MAX_PREF)) &
56 (p14'=min(p14+inc_factor,MAX_PREF)) &
57 (tot_dist'=0);
58 [] loc=5 & path=2 -> 1.0 :
59 (path'=0) &
60 (p12'=min(p12+inc_factor,MAX_PREF)) &
61 (p24'=min(p24+inc_factor,MAX_PREF)) &
62 (p34'=min(p34+inc_factor,MAX_PREF)) &
63 (p13'=min(p13+inc_factor,MAX_PREF)) &
64 (tot_dist'=0);
65 [] loc=5 & path=3 -> 1.0 :
66 (path'=0) &
67 (p13'=min(p13+inc_factor,MAX_PREF)) &
68 (p23'=min(p23+inc_factor,MAX_PREF)) &
69 (p24'=min(p24+inc_factor,MAX_PREF)) &
70 (p14'=min(p14+inc_factor,MAX_PREF)) &
71 (tot_dist'=0);
72 [] loc=5 & path=4 -> 1.0 :
73 (path'=0) &
74 (p13'=min(p13+inc_factor,MAX_PREF)) &
75 (p34'=min(p34+inc_factor,MAX_PREF)) &
76 (p24'=min(p24+inc_factor,MAX_PREF)) &
77 (p12'=min(p12+inc_factor,MAX_PREF)) &
78 (tot_dist'=0);
79 [] loc=5 & path=5 -> 1.0 :
80 (path'=0) &
81 (p14'=min(p14+inc_factor,MAX_PREF)) &
82 (p24'=min(p24+inc_factor,MAX_PREF)) &
83 (p23'=min(p23+inc_factor,MAX_PREF)) &
84 (p13'=min(p13+inc_factor,MAX_PREF)) &
85 (tot_dist'=0);
86 [] loc=5 & path=6 -> 1.0 :
87 (path'=0) &
88 (p14'=min(p14+inc_factor,MAX_PREF)) &
89 (p34'=min(p34+inc_factor,MAX_PREF)) &
90 (p23'=min(p23+inc_factor,MAX_PREF)) &
91 (p12'=min(p12+inc_factor,MAX_PREF)) &
92 (tot_dist'=0);
93 [] loc=5 & path=0 & cont<N_CYCLES -> 1.0 :
94 (p12'=(max(p12-ceil(EVAP_RATE*p12),MIN_PREF))) &
95 (p23'=(max(p23-ceil(EVAP_RATE*p23),MIN_PREF))) &
96 (p34'=(max(p34-ceil(EVAP_RATE*p34),MIN_PREF))) &
97 (p14'=(max(p14-ceil(EVAP_RATE*p14),MIN_PREF))) &
98 (p13'=(max(p13-ceil(EVAP_RATE*p13),MIN_PREF))) &
99 (p24'=(max(p24-ceil(EVAP_RATE*p24),MIN_PREF))) &

100 (loc'=1) & (cont'=cont+1);
101 [] loc=5 & path=0 & cont=N_CYCLES -> 1.0 : true;
102 endmodule

A model in PRISM is described as a set of constants and global variables, a set of

formulas and a set of modules. Each module describes a component of the system and

consists of a set of local variables and a list of guarded transition commands. Each of

these commands is described in the form [l]g -> p: <cmds>, where l is an optional

label ([] for empty), g is a guard, which describes the condition on which the

transition may occur, p is the probability of that transition occurring if enabled (guard

is true) and <cmds> determines the effect of the transition. This effect is described in

terms of changes in values of variables, which might modify values of formulas.

In our model, each constant Dij determines the distance (or cost) between cities i

and j. Constants EVAP_RATE and N_CYCLES are used during analysis to set the rate

at which the pheromone on routes evaporates and the number of cycles to be

executed, respectively. Variable cont controls the number of cycles executed, whereas

each variable pij defines the preference of route (i,j). Lines 15-20 describe the

application of the formula in (3) to calculate the probability of travelling between

cities. In the scenario proposed (lines 4-5), the distances defined for each route in the

graph create 3 groups of path lengths: the longest paths have a total distance of 19,

mid-length paths have a cost of 15, and the shortest paths have a total distance of 10.

Therefore, we simplified the calculation by testing, according to the total distance of a

path, which group this path belongs to2. The shortest paths receive an increase of 7,

mid-length paths of 4, and the longest paths of only 1.

Module traveller describes the behaviour of the artificial ant moving from city to

city. Variable loc determines the city the ant is currently in. Though N_CITIES limits

the number of cities, we use an extra “city” to apply the necessary updates, as we will

explain soon. Variable tot_dist determines the total distance travelled during the tour.

Variable path determines which of the possible paths has been taken during the

current tour, according to the following identification, where the sequences of

numbers represent sequences of visited cities: Path 1 = 1-2-3-4-1, Path 2 = 1-2-4-3-1,

Path 3 = 1-3-2-4-1, Path 4 = 1-3-4-2-1, Path 5 = 1-4-2-3-1, and Path 6 = 1-4-3-2-1.

Considering these possible paths and the distances of each route, paths 2 and 4 are the

shortest, 1 and 6 are the mid-length, and 3 and 5 are the longest ones.

From city 1 (line 26), there are three possible routes to take. Because all

preferences are initialised with the minimum preference, at the beginning, the

probabilities are the same for all possible routes. Depending on the next location,

which is determined probabilistically, the choices for the next route are different, so

that we comply with the requirement that all cities should be visited only once during

a tour. For instance, consider that a transition to city 2 has been selected. Then lines

29-35 describe the behaviour at this location. If we had reached city 2 from city 1,

then there would still be two cities to visit (3 and 4). Because there are only four cities

involved, once the third city is chosen, we can already identify which path was taken.

For example, if city 3 is selected, we know for a fact that the next city is necessarily

city 4 and that, from there, we will move back to city 1 to complete the tour. Hence,

2 Command <cond> ? val1 : val2 represents a selection operation where value val1 is returned

in case the boolean expression cond is evaluated as true and val2 is returned, otherwise.

the path taken was 1-2-3-4-1, which is Path 1 (line 31). Since we know the path, we

can determine the total distance travelled (line 32).

We defined a special location (city number 5), which is used to apply the necessary

updates. The idea is that reaching location 5 represents that a tour is completed.

Depending on the path taken, the preferences of the routes involved are updated

according to (2) (lines 51-92). Variables path and tot_dist are reset to signal that the

preference update has been executed, which allows the evaporation update to happen.

Using the defined evaporation rate, preferences are updated once again according to

the formulas presented in lines 94-99. The evaporation occurs at the end of every tour

until cont reaches the predetermined number of cycles, when the model enters a sink

state (line 101). This finite behaviour is necessary to avoid state-space explosion and

to allow the execution of a bounded model checking process.

3.2 Property Specification

For the TSP, considering an origin Orig and a destination Dest, such that Orig ≠ Dest,

two main requirements can be defined:

1. If an ant a1 starts a tour at time t1, with probability p1 of finding the shortest

path, and an ant a2 takes off at time t2, with a probability p2 of finding the

shortest path, such that t1 < t2, then p1 ≤ p2;

2. The majority of ants travelling through the graph will eventually follow the

shortest path from Orig to Dest.

 Based on these requirements, we have specified properties in PCTL devised to

verify whether the behaviour described in the model fulfils the requirements. These

properties are presented below, where “stopped” is a label that represents the formula

(cont=T & loc=5), which defines the end of cycle T, where T is an undefined constant

used during verification. Label “R12” represents the formula ((p12>p14) &

(p12>p23)), “R13” the formula ((p13>p14) & (p13>p23)), “R24” the formula

((p24>p14) & (p24>p23)), and “R34” the formula ((p34>p14) & (p34>p23)). Label

“shortest_paths” represents formula ((path=2)|(path=4)).

P1: P=? [F (“stopped” & “R12” & “R13” & “R24” & “R34”)]

P2: P=? [F (“stopped” & “shortest_paths”)]

Property P1 is based on requirement 1 and refers to the probability of the

preferences of routes that compose the shortest paths being higher than those of other

routes when cycle T ends. This property checks whether the pheromone update and

pheromone evaporation processes guarantee that edges that compose the shortest

paths will receive higher concentrations of pheromone, thus having higher probability

of being taken. Property P2, based on requirement 2, asks the probability of taking

one of the shortest paths when cycle T ends. Hence, this property can be used to

identify how this probability varies from one cycle to the next.

3.3 Verification

Equipped with the model presented in Sec. 3.1 and having the properties described in

Sec. 3.2, we were able to carry out experiments using the PRISM tool. Our first

experiment was to compare different evaporation rates and analyse how they affect

the results of our properties. The objectives were to evaluate the effect of the

evaporation rate to guarantee the preference for the shortest paths (2 and 4) and to

determine the minimum value of the evaporation rate that guarantees the requirements

are fulfilled. For this analysis, we used a model with 20 cycles, which was enough to

detect a pattern of increase or decrease of probabilities3, and T ranging from 0 to 20.

Table 1 presents the results for each property for evaporation rates ranging from 0 to

0.8 (we ignore values 0.9 and 1, as they have the same results as those of value 0.8).

Analysing the results, we can see that value 0 (i.e., preference does not decay with

time) results in property P1 having almost 100% probability. This is because no route

has its preference decreased as cycles go by, which means all routes of the scenario

will reach saturation irrespective of being in the shortest paths or not. The effect of

having an evaporation rate can be seen in the results of value 0.1, where already there

was a clear tendency to select the shortest paths. With value 0.2 we achieved the

probability that the majority of tours involve the shortest paths, but it was with value

0.3 that a consistent majority was achieved. With value 0.4 we reached the highest

probability of taking the shortest paths. With values from 0.5 to 0.8, it is possible to

see that the probability of the shortest paths decreased as the evaporation rate

increased, resulting from an effect similar to that of not having pheromone decay.

Considering the results, we decided to adopt value 0.3 because our main objective

was that routes belonging to the shortest paths had higher preference than other

routes, so that ants would tend to take those routes. Hence, we needed to take into

account the value of property P1, and its highest value, considering values 0.3, 0.4

and 0.5 (those where P2 is above 51%), was obtained with 0.3.

Adopting value 0.3 as the evaporation rate, we produced a model with 20 cycles

and verified the results for property P2 at each cycle. The goal was to obtain evidence

that indeed the probability of taking the shortest paths tended to grow after each cycle.

The results are displayed on the graph of Fig. 1.

Table 1. Property results for different evaporation rates.

Ev. 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P1 0.993 0.807 0.841 0.793 0.713 0.484 0.346 0 0

P2 0.346 0.480 0.501 0.548 0.562 0.558 0.481 0.417 0.333

The graph clearly shows the expected behaviour, as the probability of the shortest

paths increase continually. Hence, the behaviour described in the model leads to the

global behaviour expected, where the majority of ants choose the shortest paths.

3 In a simulation of property P2 considering 1000 cycles, the model reached a firm majority

(≅ 55%) after 20 cycles and remained around this value from that point on.

Fig. 1. Analysis of property P2 with evaporation rate 0.3 and 20 cycles.

3.4 Analysis and Discussion

Our experiments showed that the model successfully fulfills the requirements of the

system, considering the specification provided. We obtained numerical, accurate

evidence that the majority of ants (or travellers) tended to take the shortest paths.

Furthermore, we obtained results that indicate the effective action of the pheromones

on paths by comparing different evaporation rates.

Though we worked with only four cities, we believe that the modelling could be

easily extended to a higher number of cities. The limitation, however, capacity of the

machine, as the number of states increases considerably just with the addition of

another city. It seems that better abstractions should be defined so as to avoid state-

space explosion and allow the verification of larger models. Nevertheless, we are

confident that the effectiveness of the ACO modelling is not limited to four cities.

Considering our requirements, requirement 1 can be checked by verifying the

result of property P1, since it is possible to obtain the probability of higher

concentrations being deposited on routes composing the shortest paths along a certain

number of cycles (by varying the value of T). Requirement 2 can be verified using

property P2, analysing whether the result reaches a value higher than 50% and tends

to not go below this value during the subsequent cycles.

4 Related Work

Considering the modelling of bio-inspired mechanisms, there are a few approaches

worth mentioning. In [14], the authors present bio-inspired techniques for self-

organisation and self-governance for autonomic networks. Simulation is used to

analyse properties like traffic- and node-load and the amount of bandwidth in each

route in the network (self-management of resources). In [15], the authors propose

self-organising mechanisms based on properties of cellular systems to model

hardware systems that can grow, self-replicate and self-repair. Hardware simulation is

performed to show how the artificial organisms evolve.

Formalisms like Brane Calculus [16] and P Systems [17] are inspired by the

structure and dynamics of biological membranes and used to model biological

processes. There are some approaches proposing the application of model checking to

these formalisms, but they are still quite restrictive.

With respect to using ACO to solve the TSP, some approaches have been

proposed, such as [10], [18], [19] and [20]. In all these approaches, simulation is used

to check the solution to compare it with those of other approaches. Though simulation

is in general faster than model checking, it provides only approximate results. Model

checking, on the other hand, provides a solid confidence on the results, which is

particularly important when dealing with behaviours that cannot be easily predicted

beforehand and may violate critical properties. As far as we are aware of, there is no

work on applying model checking to verify properties of the TSP-ACO.

5 Conclusions

We presented a probabilistic modelling of the ACO, a bio-inspired mechanism,

applied to the TSP. The ACO attributes a self-organising characteristic to the system

as it adjusts the probabilities of paths automatically and autonomously, deriving

emergent behaviours. Results of experiments show that our model, when checked

against a couple of quantitative properties, indeed presents the expected behaviour.

This behaviour corresponds to guaranteeing that most of the times the shortest paths

are probabilistically taken. We analysed the effect of the pheromone evaporation rate

on the variations of path probabilities and determined the most appropriate value for

this rate. We also presented a comparison of path probabilities during multiple cycles

of execution, representing multiple ants travelling from city to city to complete tours.

We explored the use of model checking because it can provide a higher degree of

confidence when compared with other techniques, such as simulation, where results

are only approximate. However, we had to apply some simplifications during the

modelling phase so as to avoid state-space explosion. These restrictions did not affect

the results of our experiments, but might be an issue in other applications. As

problems grow more complex, creating abstractions precise enough to guarantee a

good level of confidence and yet sufficiently coarse to prevent intractability becomes

an even harder task. We still need more experience in applying this modelling

approach, considering other scenarios, so that we can better understand the real limits

of modelling characteristics as self-organisation and emergent behaviours.

Though our scenario was quite simple, it was enough to demonstrate that the

application of the pheromone mechanism leads the system to the expected behaviour.

From this result, we intend to study how to apply the same mechanism to other known

problems where it can be useful (e.g., routing in sensor networks). We aim to define a

modelling pattern for this mechanism to facilitate its use.

We also plan to study how other bio-inspired mechanisms could be modelled and

used for the verification of quantitative properties, such as modelling ideas used in

swarm intelligence. As bio-inspired mechanisms are essentially self-organising

mechanisms, it seems that having a modelling approach for these mechanisms could

be a step towards providing support for the verification of self-organising emergent

systems in general.

Acknowledgments. This work was supported by grant MCT/CNPq/CT-INFO

551031/2007-7.

References

1. Olariu, S., Zomaya, A.: Handbook of Bioinspired Algorithms and Applications. Oxford

University Press (2007)

2. Heimfarth, T., Danne, K., Rammig, F.: An OS for Mobile Ad hoc Networks Using Ant

Based Hueristic to Distribute Mobile Services. ICAS-ICNS, 77 (2005)

3. Janacik, P., Heimfarth, T., Rammig, F.: Emergent Topology Control Based on Division of

Labour in Ants. AINA'06 1, 733-740 (2006)

4. Camazine, S., Deneubourg, J., Franks, N., et al.: Self-Organization in Biological Systems.

Princeton University Press (2001)

5. Lewes, G.: Problems of Life and Mind. Kessinger Publishing (2004)

6. De Wolf, T., Holvoet, T.: Emergence Versus Self-Organisation: Different Concepts But

Promising When Combined Engineering. Self Org. Sys.: Method. and Applications 3464,

Springer-Verlag, 1-15 (2005)

7. Vardi, M.: Automatic Verification of Probabilistic Concurrent Finite State Programs. 26th

Annual Symp. on Found. of Comp. Sci., 327-338 (1985)

8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)

9. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem:

A Computational Study. Princeton University Press (2006)

10. Dorigo, M., Gambardella, L.: Ant Colony System: A Cooperative Learning Approach to

the Traveling Salesman Problem. IEEE Trans. on Evol. Comp. 1, 53-66 (1997)

11. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Symbolic Model

Checker. TOOLS'02, LNCS 2324, 200-204 (2002)

12. Hansson, H., Jonsson, B.: A Logic for Reasoning About Time and Reliability. Formal

Aspects of Computing 6, 512-535 (1994)

13. Ben-Ari, M., Manna, Z., Pnueli, A.: The Temporal Logic of Branching Time. Acta

Informatica 20, 207-226 (1983)

14. Balasubramaniam, S., Botvich, D., Donnelly, et al.: Biologically Inspired Self-Governance

and Self-Organisation for Autonomic Networks. 1st Intl Conf. on Bio-Inspired Mod. of

Net., Inform. and Comp. Sys., 1-30 (2006)

15. Stauffer, A., Mange, D., Rossier, J., Vannel, F.: Bio-inspired Self-Organizing Cellular

Systems. BioSystems 94, 164-169 (2008)

16. Cardelli, L.: Brane Calculi. Int. Conf. on Computational Methods in Systems Biology,

LNCS 3082, 257-278 (2004)

17. Păun, G.: Computing with Membranes. Journal of Computing and System Sciences 61(1),

108-143 (2000)

18. Shang, G., Lei, Z., Fengting, Z., et al.: Solving Traveling Salesman Problem by Ant Colony

Optimization Algorithm with Association Rule. 3rd Int. Conf. on Natural Computation,

693-698 (2007)

19. Li, Y., Gong, S.: Dynamic Ant Colony Optimization for TSP. Int. J. Adv. Manuf. Technol.

22, 528-533 (2003)

20. Ugur, A., Aydin, D.: An Interactive Simulation and Analysis Software for Solving TSP

using Ant Colony Optimization Algorithms. Adv. in Eng. Soft. 40, 341-349 (2009)

