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Abstract. With the rise of multi-core platforms even more complex
software systems can be implemented. Designers are facing various new
challenges during the development of efficient, predictable, and correct
applications for such platforms. To efficiently map software applications
to these architectures, the impact of platform decisions with respect to
the hardware and the software infrastructure (OS, scheduling policies,
priorities, mapping) has to be explored in early design phases.
Especially shared resource accesses are critical in that regard. The ef-
ficient mapping of tasks to processor cores and their local scheduling
are increasingly difficult on multi-core architectures. In this work we
present an integration of shared resources into a SystemC-based simula-
tion framework, which enables early functional simulation and provides a
refinement flow towards an implementation, covering an increasing level
of platform details. We propose shared resource extensions towards multi-
core platform models and discuss which aspects of the system behaviour
can be captured.

Keywords: Multi-core, Resource Sharing, Platform Exploration, Sys-
temC, Real-time, Simulation.

1 Introduction

In high-performance, desktop, and graphics processing multi- and many-core
platforms are already state-of-the-art. A rise of multi-core platforms for embed-
ded systems is not only conceivable, but is actually happening. On one hand,
it enables the implementation of more functionality in software, thus exploiting
the advantages of software flexibility and higher productivity. But on the other
hand, this can turn into a nightmare when the new flexibility and multi-core
design space needs to be limited to meet functional and non-functional system
properties like real-time constraints, power consumption and cost.

To help developers during this phase of the design space exploration, efficient
modelling of different architecture alternatives has to be supported by the cho-
sen design flow. Apart from considering the underlying hardware platform, this
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includes the early analysis of software and (real-time) operating system (RTOS)
effects on the system’s overall performance. This is important especially if mul-
tiple tasks are sharing a single processor core. Real-time properties have to be
analysed and explored by choosing e.g. the scheduling policies and protocols as
well as task priorities to fulfil the given set of requirements like deadlines or other
application specific constraints. Furthermore, the partitioning of the application
in tasks and the mapping of these tasks to the cores is complex and influences
the scheduling and therefore the system performance.

An important aspect from the application’s point of view is the mecha-
nism used for inter-task communication and synchronisation. Communication
via global shared memory with explicit locks for mutual exclusion impairs lo-
cality and increases coupling between tasks. Especially in the real-time domain,
shared resource accesses are critical, even more so on multi-core architectures. To
efficiently cope with such shared (e.g. communication) resources, task dependen-
cies have to be considered during the mapping and scheduling phase. Depending
on the target platform, dedicated hardware support for such communication
primitives could be beneficial.

The contribution of this paper is the extension of OSSS for modelling software
on multi-core platforms. We discuss the influence of shared resources on the
execution behaviour of task sets. Since we provide a framework for early design
space exploration, we do not yet capture all properties of the final platform.
Instead we present a basic set of representable properties like the scheduling of
parallel tasks on a multi-core execution unit, task switching, and blocking on
shared resources.

In Section 3, we introduce the SystemC-based OSSS Design Methodology,
with a specially focus on the modelling of embedded software for multi-cores.
Based on these abstract RTOS modelling capabilities of the OSSS methodol-
ogy, Section 4 covers the extension of OSSS by additional features required for
supporting the distributed, scheduling approach with shared resources. In Sec-
tion 5 we present our first simulation results of the extended OSSS framework
for multi-core scheduling with shared resources.

Before Section 6 concludes the paper with a summary and an outlook for
future research directions, we discuss the capabilities of the presented approach
with respect to modelling, real-time analysis, early simulation and the further
refinement flow towards an implementation.

2 Related Work

Recently published work shows the importance of new programming and ab-
straction paradigms for multi- and many-core systems [12]. To fully exploit the
possibilities of the upcoming thousand-core chips [21], workloads of the future are
already discussed [18]. To encounter these trends high-level, component-based
methodology and design environment for multiprocessor SoC architectures have
been proposed [15].
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Many different approaches to modelling embedded software in the context of
SystemC have been proposed.

Abstract RTOS models, like the one presented for SpecC in [5] are suited for
early comparison of different scheduling and priority alternatives. The timing
accuracy and therefore the simulation performance of this approach is limited
by the fixed minimal resolution of discrete time advances. Just recently, an ex-
tension deploying techniques with respect to preemptive scheduling models very
similar to the ones presented in this work has been presented in [19]. The “Re-
sult Oriented Modelling” collects and consumes consecutive timing annotations
while still handling preemptions accurately similar to our “lazy synchronisation”
scheme presented in [8].

Several approaches based on abstract task graphs [11,14,20] have been pro-
posed as well. In this case, a pure functional SystemC model is mapped onto
an architecture model including an abstract RTOS. The mapping requires an
abstract task graph of the model, where estimated execution times can be anno-
tated on a per-task basis only, ignoring control-flow dependent durations. This
reduces the achievable accuracy.

A single-source approach for the generation of embedded SW from SystemC-
based descriptions has been proposed in [3,10,17]. The performance analysis of
the resulting model with respect to an underlying RTOS model can be evalu-
ated with the PERFidiX library, that augments the generated source via opera-
tor overloading with estimated execution times. Due to the fine-grained timing
annotations, the model achieves a good accuracy but relatively weak simula-
tion performance. This interesting approach aims in the same direction as our
proposed software execution time annotation.

An early proposal of a generic RTOS model based on SystemC has been pub-
lished in [13]. The presented abstract RTOS model achieves time-accurate task
preemption via SystemC events and models time consumption via a delay()
method. Additionally, the RTOS overhead can be modelled as well. Two differ-
ent task scheduling schemes are studied: The first one uses a dedicated thread
for the scheduler, while the second one is based on cooperative procedure calls,
avoiding this overhead. Although in this approach explicit inter-task communi-
cation resources are required (message queue, . .. ), the simulation time advances
simultaneously as the tasks consume their delays.

In [9], an RTOS modelling tool is presented. Its main purpose is to accurately
model an existing RTOS on top of SystemC. A system designer cannot directly
use it. In this approach, the next RTOS “event” (like interrupt, scheduling event,
etc.) is predicted during run-time. This improves simulation speed, but requires
deeper knowledge of the underlying system.

In [23], the main focus lies on precise interrupt scheduling. For this purpose,
a separate scheduler is introduced to handle incoming interrupt requests. Timing
annotations and synchronisation within user tasks is handled by a replacement
of the SystemC wait (). In [22] an annotation method for time estimation that
supports flexible simulation and validation of real-time-constraints for task mi-
gration between different target processors has been presented.
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Fig. 1. Overview of the OSSS Methodology for modelling parallel Software.

In this work, we propose an extension of [7], which includes some proper-
ties of the above mentioned approaches, especially concerning a simple runtime
and RTOS model. Furthermore, our model allows a separation of application,
architecture and mapping. The proposed application model allows a flexible in-
tegration of shared resources for user-defined communication mechanisms via
Shared Objects and the handling of timing (back) annotations. Our proposed
extension on the architecture model includes a configurable multitasking simu-
lation based on SystemC that allows preemptive distributed scheduling. Tasks
and Shared Objects can be grouped together and mapped to different cores, each
of them having its own local runtime. Through simulation the effects of the cho-
sen mapping and system configuration on the functional behaviour of the task
sets can be observed.

3 The OSSS Methodology for Modelling Parallel SW

OSSS defines separate layers of abstraction for improving refinement support
during the design process. The design entry point in OSSS is called the Appli-
cation Layer. By manually applying a mapping of the system’s components, the
design can be refined from Application Layer to the Virtual Target Architecture
Layer, which can be synthesised to a specified target platform in a separate step
by the synthesis tool Fossy [4].

The abstraction mechanisms of OSSS allow the exploration of different imple-
mentation platforms. The separation of application and platform allows different
mappings and the underlying SystemC-based simulation kernel supports model
execution and monitoring.

On the Application Layer the system is modelled as a set of parallel, com-
municating processes, representing software tasks (see Listing 1.1). A shared
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resource in OSSS is called Shared Object, which equips a user-defined class with
specific synchronisation facilities. Shared Objects are inspired by the Protected
Objects known from Ada [1]. Synchronisation is performed by arbitrating con-
current accesses and a special feature called Guarded Methods, that can be used
to block the execution of a method until an user-defined condition evaluates to
true.

As a result, they are especially useful for modelling inter-process communi-
cation. User-defined Interface Method Calls (IMC), a concept well known from
SystemC channels, performs communication between software tasks and Shared
Objects. On the Application Layer this communication concept abstracts from
the details of the underlying communication primitives, such as the actual imple-
mentation of channel across core and hardware /software boundaries. An in-depth
description of the Shared Object concept, including several design examples, is
part of the OSSS documentation [6].

class my_software_task : public osss_software_task {
public:
my_software_task() : osss_software_task() { /x ...x/}

virtual void main() {
while( some_condition ) // the following block has to be finished within 1ms
OSSS_RET( sc_time( 1, SC_MS ) )
{
0SSS_EET( sc_time( 20, SC_US ) ) {
// computation, that consumes 20ps
}
for( int i=0; i<max_i; ++i ) // estimate a data-dependent loop
0SSS_EET( sc_time( 100, SC_US ) ) {
// loop body
}
if ( my_condition ) {
// communication only outside of EET blocks
result = my_port_to_shared->my_method();
}
} // end of RET block and loop
}
};

Listing 1.1. Example of a software task eith estimated and required execution time
annotations.

A proper modelling of software requires the consideration of its timing be-
haviour. In OSSS, the Estimated Execution Time (EET) of a code block can
be annotated within Software Tasks and Shared Objects using the 0SSS_EET ()
block annotation. In addition to the EETs, OSSS enables the designer to specify
local deadlines for a specific code block. The Required Execution Time (RET)
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is specified by the 0SSS_RET() block annotation, which observes the duration
of the marked code block. If required, RETs can be nested at arbitrary depth.
The consistency of nested RETs is checked during the simulation as well as a
violation of the RETSs. If such a timing constraint is violated during the simu-
lation, it is reported. Unmet RETs may arise from (additional) delays caused
by blocking guard conditions, or simply unexpectedly long estimated execution
times (e.g. max_i > 9 in Listing 1.1).

4  Multi-core Scheduling with Shared Resources

In this paper, we focus on the abstract modelling capabilities of OSSS for embed-
ded software, especially targeting multi-core platforms. Here, the OSSS model
is not meant to directly represent existing real-time operating system (RTOS)
primitives. Instead, the Software Tasks in OSSS are meant to run on top of a
rather generic (but lightweight) run-time system (see Fig. 1), where the synchro-
nisation and inter-task communication is modelled with Shared Objects.

In a refinement step the Application Layer model is mapped to the Virtual
Target Architecture. Each task is then mapped to a specific core, each of which
provides a distinct run-time, to improve locality and reduce the coupling between
different cores, as shown in Fig. 1. Tasks have may have statically or dynamically
assigned priorities, according to a given scheduling policy for each core, an initial
startup time, optional periods and deadlines.

During simulation, the tasks can be in different states as shown in Fig. 2.
We distinguish between the full parallel Application Model and the core mapped
Virtual Target Architecture Model task state machines. In the Application Model
a task can either be running, waiting or blocked. The distinction between
blocked and waiting has been introduced to ease the detection of deadlocks.
A task in the waiting state will enter the running state after a given amount
of time (duration), whereas a blocked task can only be de-blocked, once the
access to a shared resource is granted. In the running state, a task might access
a Shared Object through IMC. This either leads to the acquisition of its critical
section (use state) or a suspension in the blocked state. In this state the task
tries to reacquire the shared resource until it gets access.

The execution times of certain code blocks can be annotated flexibly, to
introduce control-flow dependent time consumption, as shown in Listing 1.1.

In the Virtual Target Architecture Model Software Tasks and Shared Objects
are grouped and mapped onto runtimes of the cores. During the simulation, the
OSSS software runtime abstraction handles the time-sharing of a single processor
core by several Software Tasks, which are bound to this OS instance. Therefore,
a ready state has been introduced. A scheduler for handling the time-sharing is
attached to the set of mapped tasks. Several frequently used scheduling policies
are already provided by the simulation library, like static priorities (preemptive
and cooperative), or earliest-deadline first. Additionally, arbitrary user-defined
scheduling policies can be added. The RTOS overhead of context switches (assign
& deassign times) and execution times of scheduling decisions can be annotated
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Fig. 2. Task states and transitions (terminate edges omitted)

as well. With this set of basic elements, the behaviour of the real RTOS on the
target platform can be modelled.

To improve the real-time capabilities, Guarded Methods that can lead to arbi-
trary blocking times due to data-dependent conditions, are ignored. Instead, only
the guaranteed mutual exclusive access to Shared Objects is used for synchro-
nisation and communication between the tasks. Each method of such a Shared
Object can then be considered as a critical section, which is executed atomi-
cally. Intra-core communication, i.e. communication between tasks mapped to
the same core, can be handled as usual. Here, the accesses are ordered according
to the local scheduling policy.

Moreover, the Virtual Target Architecture Model allows incorporating the
effects of a shared memory that is connected to the cores via a shared com-
munication medium. In an implementation on a target architecture the access
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protocol data, as well as the user data of a Shared Object are mapped to a specific
location in a shared memory. Therefore, all states of the Shared Object include a
certain overhead of shared medium acquisition, usage and release. These times
could also be annotated to the proposed simulation model, but are not in the
focus of this paper. We also do not cover effects of instruction and data fetches
over the shared communication medium, assuming that each core has its local
data and instruction memory.

5 Experiments

The main purpose of the modelling of abstract software multitasking in early
design phases is the exploration of the impact of platform choices on the system’s
correctness and performance. In the context of multi-core architectures, accesses
to shared resources (modelled as Shared Objects) have to be considered carefully.
Distributed access from different cores and runtimes to the same resource has
to be orchestrated. Different strategies are possible and lead to quite different
behaviours during run-time. An early simulation of these cross-dependencies
helps during the development of the application.

In Fig. 3, several combinations of local and distributed access policies are
compared for the application and mapping example shown in Fig. 1: Six tasks
are mapped on two cores, accessing three Shared Objects.

In Fig. 3(a), the Application Layer model of the system is depicted. In this
initial model, no local scheduling policy is enforced, which leads to independently
running tasks. The only blocking times occur in case of conflicting accesses to
Shared Objects. This model already exhibits the execution times (and periods
within critical regions inside the Shared Objects), according to the task arrival
times, the EETs and the access patterns of tasks to resources.

Next, static priorities are assigned to the tasks (To > T1 > T, T5 > Ty > T5)
and the tasks are mapped to different cores, following Fig. 1. The scheduling
policy is always assumed to be priority-based, either with or without support
for local priority inheritance. Inter-core accesses to shared resources are resolved
based on the set of pending requests (see Section 3). In the example, it is assumed
that tasks on Core 0 have a higher priority, than those running on Core 1.

In the various scenarios, different access strategies with respect to the shared
resources are compared, according to their impact on the overall system schedul-
ing. For local resource accesses, i.e. resources that are accessed from tasks within
the same core, task preemption is allowed in Fig. 3(b)—(d), and suppressed in
Fig. 3(e)—(f). In case, a shared resource is currently locked by another core, the
calling task can either try to do busy-waiting until the resource is available again
(Spinning, in (b), (c), (e)), or stop its execution to let other tasks execute on the
current core (Suspend, in (d), (f)). It is then assumed, that the runtime is able
to resume the task, as soon as the blocked resource is available again.

For the given task set and mapping, the different execution traces that can be
obtained by the OSSS Multi-Core Software simulation in the different scenarios
are shown. Tasks are assigned to their cores according to the local priority based
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Fig. 3. Different scheduling scenarios with shared resources.

scheduling policy. Different run-time artefacts can be observed (in addition to
potential RET violations, which are not shown here).

If a task that is currently accessing a shared resource can be preempted by
the runtime system due to the arrival of a higher-priority task (or its availability
due to resource grants), so called “priority inversion” can occur. In Fig. 3(b), this
can be observed on both cores, when tasks 75, and T get access to their cores,
although higher-priority tasks Ty, and T3 are waiting for the Shared Objects Sy,
and Sy, respectively. This leads to longer blocking times for these high-priority
tasks.

In the context of a single core, priority inheritance [2] is known to be a solu-
tion for such scenarios. With priority inheritance, the low-priority tasks holding
resources required by high-priority tasks get an elevated priority, which reduces
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their lock times. In the context of multi-cores, a local priority inheritance im-
plementation may lead to even worse scenarios, as shown in Fig. 3(c). First of
all, the response time of Ty is reduced, since T can continue until the release of
So, once Ty requests Sy. But the resource Ss has been locked by the arrival of
Ty on Core 0, before T3 could obtain Ss on Core 1. Core 1 is subsequently busy
waiting on Sy, which is held by the preempted task T; on Core 0. Overall, the
response time of the latest task is now significantly worse.

An approach towards better CPU utilisation in the context of shared re-
sources might be the suspension of tasks, blocked by conflicting inter-core ac-
cesses, as shown in Fig. 3(d). The overly long spinning time of T3 and even the
preemption of the access to Sy by T3 is avoided in this example.

Instead of suspending inter-core blocked tasks, an orthogonal approach to
reduce blocking times between cores is to suppress the preemption of local,
lower-priority tasks, that are currently accessing a shared resource. The results
of this access strategy are shown in Fig. 3(e),(f). Both traces lead to very good
overall response times with nearly no blocking times. The high-priority tasks are
of course started with an additional delay, depending on the currently ongoing
resource accesses. But since resource occupation should be kept short anyhow,
this might be a feasible strategy. The spinning time on So, that can be observed
in Fig. 3(e) is quite short. Since in case of the suspension strategy, runtime
overhead costs are excluded for simplicity, the slightly better result in Fig. 3(f)
might be misleading. A refined model should consider these overheads as well.

6 Conclusion and Future Work

In this paper, we have presented the current modelling capabilities for embed-
ded software of the OSSS hardware/software design methodology, especially fo-
cussing on multi-core platforms.

OSSS features a layered approach with a separation between an abstract
Application Layer which can later be mapped to a Virtual Architecture Layer.
This separation enables flexible exploration of different (software) architecture
variants already at early phases in the design process, e.g considering scheduling
policies, priorities, resource access strategies, etc.

After a general overview of the current OSSS Software Modelling approach in
Section 3, some of the required extensions to the existing methodology towards
abstract, but more accurate multi-core system models have been discussed in
Section 4. For a set of distributed multi-tasking systems, the OSSS approach is
an expressive and suitable modelling approach for applications running on top of
such platforms. Due to the explicitly visible resource sharing, expressed by using
Shared Objects, the resulting synchronisation and communication overheads and
conflicts can be observed already in early simulation models.

In Section 5, a simple Application Layer model has been mapped to a multi-
core platform. Since distributed resource accesses are critical for the overall sys-
tem behaviour, several different access strategies, both regarding local scheduling
decisions (priority inheritance, atomic/nonpreemptable resource accesses) as well



Resource-Aware Scheduling for Multi-Core Architectures 191

as the handling of remotely blocked resources (Spinning, Suspension) have been
compared. It can be seen, that even for small and allegedly simple cases, the
resulting system behaviour is hard to predict. Therefore, early simulation of the
different alternatives is a valuable analysis tool for a designer.

Regarding an implementation on a real multi-core platform, the proposed ac-
cess strategies require different platform primitives, depending on the intended
implementation approach. As proposed in Section 4, an implementation purely
in terms of a shared memory region with a software implementation of the ac-
cess protocol is possible. For the support of an suspend-based access strategy,
platform support for the reactivation of suspended tasks on a certain core is
required, e.g. via sending an interrupt from the core, that releases a given re-
source to all cores, waiting for said resource. An initial implementation based on
a Linux implementation of the OSSS runtime will be published separately.

In the context of real-time applications, it is even more difficult to give guar-
antees, when considering shared resources as well. We intend to further extend
the presented resource access protocols to improve the static analysability of
OSSS system models. This includes a restricted task/object model, e.g. by omit-
ting user-defined guard conditions, which can lead to arbitrary, data-dependent
blocking times. Future work is to study real-time scheduling approaches for
multi-cores as discussed in [16]. These scheduling aspects can be integrated into
the OSSS methodology.

Summarising can be said, that OSSS already provides a good starting point
for modelling, exploring, refining, and implementing applications on emerging
multi-core platforms. Further extensions are possible and promising to improve
these capabilities even more.
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