
Rialto 2.0: A Language for Heterogeneous
Computations

Johan Lilius1, Andreas Dahlin1,2, and Lionel Morel3

1 Center for Reliable Software Technology, Åbo Akademi University, Finland
2 Turku Centre for Computer Science, Finland

{jolilius,andalin}@abo.fi
3 Université de Lyon, France
lionel.morel@insa-lyon.fr

Abstract. Modern embedded systems are often heterogeneous in that
their design requires several description paradigms, based on different
models of computation and concurrency (MoCCs). In this paper we
present Rialto, a formal language intended at expressing computations in
several MoCCs. The distinguishing features of Rialto and its implemen-
tation are 1) A formal semantics: the language is formalized using SOS
(structured operational semantics) rules; 2) Encapsulation of models of
computation into policies: we thus distinguish between the syntactic ele-
ments of the language (parallelism, interrupts) and its semantics; 3) effi-
cient implementation algorithms. Policies are expressed in the language
itself, which allows for more expressive power and a sounder semantics.

1 Introduction

A model of computation (MoC) is a domain specific, often intuitive, under-
standing of how the computations in that domain are done: it encompasses the
designer’s notion of physical processes, or as Edward A. Lee [1] puts it, the ”laws
of physics” that govern component interactions. Many different computational
models exist: Hardware is often seen as having a synchronous model of computa-
tion in the sense that everything is governed by a global clock, while software has
an asynchronous MoC. A system that is described using several MoCs is called
heterogeneous, and the computations it makes are heterogeneous computations.

We are interested in understanding what the combination of models of com-
putation means. The need for combining several models of computation arises
often when modelling embedded systems. Our specific interest is in understand-
ing the combination of models of computation from an operational perspective.
Figure 1 shows an example of a system modeled in two different models of
computation: One of the states in a state machine is refined by a Synchronous
dataflow (SDF) graph. While in state wait, the program can take a transition
to state process and start processing events using the algorithm in the SDF di-
agram. However several questions need to be answered before this description
can be implemented. For example: what happens if a second e1 arrives while the
system is in state process?

4 Johan Lilius, Andreas Dahlin, and Lionel Morel

Fig. 1. A state machine, with one state refined by an SDF graph

In practice one does not program in a model of computation but in a pro-
gramming language and we have therefore taken a slightly broader definition
and view a model of computation as consisting of both a language and a cor-
responding semantics. The goal of our research can now be stated as twofold:
1. The development of a unified operational mathematical model of models of
computation, and 2. the development of a textual language, in which it will
be possible to program these kinds of models using a standard set of syntactic
elements to represent entities in the different models of computation.

The second goal is motivated by the fact that many of the languages we have
looked at (e.g. UML state machines [2], Esterel [3] and Harel’s Statecharts [4]),
use the same syntactic concepts but with different semantics. What we would
like to do is pinpoint the semantic differences to certain syntactic concepts.
For example the notion of parallelism exists in all three languages above, but
there is certainly a difference in the semantics of parallelism between UML state
machines and Esterel. On the other hand all languages also have a notion of
interrupt (the trap-construct in Esterel and hierarchical transitions in both
variants of Statecharts) that have very similar semantics.

To address this issue, we propose a language for expressing computations in
several models of computation. The distinguishing features of Rialto and its im-
plementation are: 1. A formal semantics: The language is formalized using SOS
rules, 2. Encapsulation of models of computation into policies: This technique
makes it possible to distinguish between the syntactic elements of the language
(like parallelism, interrupts) and its semantics (step, interleaving, rtc, etc.) and
3. Efficient implementation algorithms: A Rialto program can be flattened [5].
This means that there exists a path to an efficient implementation.

The paper is structured in the following way. In section 2, we describe syntax
and motivate the choice of syntactic entities. In section 3 we briefly outline the
operational semantics, and the scheduling semantics of the language. Finally in
the last sections, we present some examples and give a conclusion.

1.1 Related Work

The work of Lee et al. [6, 7] is a comprehensive study of different models of
computation. The authors propose a formal classification framework that makes
it possible to compare and express differences between models of computation.
The framework is denotational and has no operational content, which means that
it is possible to describe models of computation, including timed and partial
order based models that we cannot model in our framework. The reason for
this is that both timed and partial order based models are models that describe

Rialto 2.0: A Language for Heterogeneous Computations 5

program ::= program name decbody nullstmt ::= null
begin body end; body ::= ((label :)? (S |expr);)*

decbody ::= (vardec | owndec | policdec)* gotostmt ::= goto label
vardec ::= (label :)? var name: Type; atomicstmt ::= [body]
policydec ::= policy name decbody returnstmt ::= return label

begin body end; suspendstmt ::= suspend label
ifstmt ::= if boolexpr then body resumestmt ::= resume label

else body endif assignstmt ::= i := expr
parstmt ::= par body || body endpar trapstmt ::= trap boolexpr do S
statestmt::= state policy name; decbody body endtrap

begin body endstate

Fig. 2. The Rialto grammar (S represents any statement)

constraints on possible implementations. Although we can model dataflow in our
language, we have to decide on a specific operational semantics for the dataflow.
This semantics will be one of several that preserve the partial-ordering between
operations described by the dataflow specification. On the other hand Girault et
al. [8] present ideas for combining graphically modelled MoCs, e.g. they combine
SDF graphs with finite state machines. Their idea is similar to ours in that they
use state hierarchy to delineate MoCs.

We would also like to point out that in [6], Lee independently proposes an
approach that is conceptually essentially the same as ours, i.e. he suggests that
a language, or a set of languages, with a given abstract syntax, can be used
to model very different things depending on the semantics and the model of
computation connected to the syntax. More recently, Benveniste et al. have pro-
vided interesting insights on dealing with heterogeneity through so-called Tag
Systems [9,10]. Their approach, which is also based on a denotational description
of the possible traces of a system, provides a mathematical setting well suited for
proving properties on the correctness of particular design methods. Our work,
on the other hand, proposes a language for programming heterogeneous systems,
letting the user designing both the hierarchical structure of the program and the
scheduling policies that rule each sub-system. From a language point of view,
Rialto is also close to Ptolemy [11]. Essentially, our states are Ptolemy’s actors
while our policies can be seen as formal descriptions of Ptolemy’s directors. Cen-
tral differences are that Rialto has a formal semantics and code generation, while
Ptolemy is a modelling and simulation tool.

2 Syntax of the Language

In this section we define the syntax of Rialto 2.0, discuss the choice of syntactic
elements and provide an example. Our language is a small language, originally
designed to describe UML statecharts. Basic syntax is given in Figure 2. Each
statement in a program has a unique label, given by a designer or the compiler.

The basic concept in our language is the notion of a state. State is seldom
explicit in programming languages like VHDL or ESTEREL but many modelling

6 Johan Lilius, Andreas Dahlin, and Lionel Morel

languages like UML, Harel’s Statecharts or Petri nets make state explicit. Rialto
states can be concurrent as well as hierarchical, sequential computations inside
states can be expressed in a connected action language. Syntactically a state is
represented by a state - endstate block.

An interrupt is an event of high priority that should be reacted upon imme-
diately, or almost immediately. In our language, a trap - endtrap block is used to
monitor interrupts. Interrupts correspond to trap in ESTEREL and hierarchical
transitions going upwards in the state hierarchy in UML and Harel’s State-
charts. Coroutines are independent threads of control that can be suspended
and resumed. In programming languages, threads and processes are common
abstraction mechanisms for coroutines. In modelling languages coroutines play a
crucial role, e.g. history states in UML and Harel’s Statecharts label the thread
of control in a state as a coroutine, because the state is suspended when a hier-
archical transition takes the control out of the state. In Rialto 2.0, concurrency
is indicated using the par statement. The parallelism is interpreted differently
depending on the execution policy for the current scope.

A novelty in our language is that we make atomicity explicit. Atomicity
defines what the smallest observable state change is. At the one extreme, in
traditional programming languages, atomicity is not a part of the language it-
self, but is loosely defined by multiprogramming concepts like semaphores and
monitors. At the other extreme, in synchronous languages like Esterel, atomicity
encompasses the whole program, so that the internal workings of the program
are not observable. In the middle-field between these extremes other proposals
exist, e.g. the GALS (Globally Asynchronous, Locally Synchronous) semantics
proposed in POLIS [12]. In GALS atomicity is confined to single state machines,
while communication between state machines can be observed. In our approach
we have introduced atomicity as an explicit syntactic entity, the atomic brackets
[]. It abides to the normal rules of scoping and is thus less general than the first
approach mentioned above, but using this approach we can model its interaction
with other constructs at the needed level of atomicity.

The communication policy states how different modules of the system com-
municate with each other. For the moment we have taken a rather simple ap-
proach which allows us to still model many more complex approaches. We call
the main communication media in our language channels. A channel can e.g.
represent the global event queue in a UML statechart, a link in an SDF graph
etc. In state diagrams, an event is an occurrence that may trigger a state transi-
tion. In UML statecharts, there is an implicit global event queue; whereas, in our
language several channels can be declared and the scope of a channel declaration
is the state block. The notation in our language for checking for the presence of
an event on a queue is q1.e1, where q1 is the queue and e1 is an event.

Data handling is not our primary concern at the moment, as we are more
interested in control-dominated programming; however, the language has a few
primitive types like integers and floats. Complex types and functions are only
declared in Rialto, while their implementation is deferred to the target language.
This is the same approach as in ESTEREL.

Rialto 2.0: A Language for Heterogeneous Computations 7

Fig. 3. A hierarchical state machine with two policies

2.1 Example

Figure 3 gives a graphical and textual representation of a simple Rialto program.
This program encodes a hierarchical state machine composed of two machines
sp1 and sp2 that are put in parallel with the || statement. The latter is itself
decomposed into two state machines put in parallel, sp2 par l and sp2 par r.
To each state in the program is associated a scheduling policy which defines
how execution is organized within the state. The default, step and interleaving
policies as well as other policies are also defined in Rialto. They are discussed in
section 4.

In the initial state, the state machine will be in the states s2, s4 and s6.
Execution starts with the evaluation of the top-most policy shared by these three
states, i.e. the policy step associated to s. This policy is defined (see section 4)
to execute each orthogonal state. In this case both states sp1 and sp2 should be
executed during the step. Our initial states are organized into partitions {s2}
and {s4, s6}. The execution of s2 in the first part of the step is straightforward
and it will result in a transition to the state s3. The next part of the step is to let
the policy associated with {s4, s6}, namely the interleaving policy, decide
the execution of these states. The interleaving policy is defined to randomly
execute one of the orthogonal regions of the state it is scheduling. This means
that either s4 or s6 is executed, but never both during the same step. In the
scenario where s4 is executed the result of the interleaving would lead sp2 into
the state {s5, s6}, while the other scenario (execution of s6) would move sp2

into {s4, s7}. The step is completed by collecting the new state of the system.
The instance of the step policy, which is scheduling s, is responsible to collect
the new observable state of the system. This state is either {s3, s5, s6} or
{s3, s4, s7}. The next step will also be initiated by the policy of s, since the
new state of the system also has s as its parent state.

8 Johan Lilius, Andreas Dahlin, and Lionel Morel

3 Semantics

The semantics of Rialto 2.0 is split into three parts. First we define the static
structure of a Rialto program. This is a graph that encodes the hierarchical
and sequential relationships of statements in the program. Then we define the
dynamic state of a Rialto program. Finally we explain the operational rules that
are used to interpret a Rialto program.

3.1 The Static Structure of a Rialto Program

A Rialto program consists of a set of hierarchical state-machines. Each state-
ment enclosed in a state-block has a label that acts as an “instruction address”.
Because of the hierarchical structure we can define a tree structure on these la-
bels, which reflects the hierarchy of the program. There is a sequential order on
some of the statements; reflected in the fact that leafs of a node in the tree may
be ordered using a next relation. A program is defined as a tuple <L, ↓,⇀,P>,
where:

– L is the set of labels of the program. Labels are strings (L ⊂ Strings);
– ↓ is a tree on L;
– ⇀ is a partial function on L that defines the next relation between labels;
– P is the function Label→ Stmt, that maps each label to a statement.

3.2 Dynamic State of a Rialto Program

The state of a Rialto program is a stack of state configurations. By default, the
top element of the stack is always selected for execution. A state configuration is
defined by SC = L∗×L∗, the set of pairs of lists of labels, representing state con-
figurations. We have ∀sc ∈ SC.sc=(active, suspended) where: sc.active ⊆ L des-
ignates the set of active labels in the state configuration, while sc.suspended ⊆ L
designates the set of suspended labels in the state configuration.

A state configuration is used to represent the dynamic state of a Rialto
program, i.e. it basically contains the list of “sub-processes” that are either
subject to execution (the active set) or that should not be executed because they
have been suspended (the suspended set). Thus, suspend and resume actions of
co-routines can easily be modelled by moving labels between the active and
suspended sets.

A policy instance represents the dynamic state of execution of a particular
scheduling policy associated to a particular state. It is defined as a tuple P = L
× L × Env. We have ∀p ∈ P. p = (callLabel, currentLabel, ownV ars) where:

– p.callLabel ∈ L designates the label of the instance of the policy currently
used (the label where the policy is “called”).

– p.currentlabel ∈ L designates the label in the policy: the place in the policy
where this instance of the policy is currently at.

– p.ownV ars ∈ Env designates the variable environments corresponding to
this particular instance of the policy. Encodes the state of the policy.

Rialto 2.0: A Language for Heterogeneous Computations 9

We will use one such stack to organize the dynamic execution of a Rialto
program. This stack is used to memorize execution context, in particular, when
switching between user (program) and supervisor (policy) modes. Stack elements
are tuples made of a Cell. C = SC×C×P is the set of cells. We have: ∀c ∈ C.c =
(sc, prevProgCtx, policyDesc) where:

– c.sc ∈ SC the current state configuration that gives information about sus-
pended and active labels in the currently executing context,

– c.policyDesc ∈ P designates the current policy instance that is “leading”
the execution of the current state configuration,

– c.prevProgCtx ∈ C designates the previous program context

We define Stacks of state configurations. Stack(SC) denotes the type “stack
of SC elements”. We denote top(st).active as st.active, while top(st).suspended
is denoted st.suspended. The stack SC can be seen as an interleaving of the
program and the policy execution stacks. As we have chosen to write policies in
Rialto, it is natural to use the same stack structure to represent their state. This
corresponds to the normal operating system states user and supervisor. But this
means that we need special functions to distinguish between these two states.

Finally we can define the runtime state of the program RStack : Stack ×
Env×L denotes the type “Rialto program stack”. We have ∀ rstack ∈ RStack =
(st, env, pc) where st designates the program’s stack, env designates the variable
environment for the program and pc (program counter) is a pointer to the cur-
rently executed statement. This stack is at the heart of the semantics of the
language. It is also available in the language itself. Indeed, it serves both for
dealing with the basic language mechanisms (see section 3.3), and in the de-
scription of the scheduling policies.

3.3 Semantics of Statements

In this section we will discuss the operational rules for executing a Rialto pro-
gram. We will assume the existence of the Rialto dynamic structures
r = (st, env, pc) as introduced earlier. Every statement has the same struc-
ture. The program counter points to a statement in the program array. The rule
is selected by matching on this statement. There may be other conditions that
have to be true. If the premise holds, then the rule is “executed”. Finally the
program counter is set to ⊥ to force the control to the “enter policy” rule.

P[Pc] = “stmt′′ “otherconditions′′

“stmtstatechange′′ Pc =⊥

The null statement (0) deletes the current label from the active set and adds
the successor. The if statement (1) is also very easily defined. We have two
branches, the true and the false branch. The par statement (2) is a compound
statement. The assumption is that all compound statements have their sub-
statements as children in the label-tree. So the effect is to delete the label of the
par-statement and to add all its children to the active set.

10 Johan Lilius, Andreas Dahlin, and Lionel Morel

0 Pl[Pc] = “null′′ ∧ Pc 6=⊥
st.active = st.active\{Pc} ∪ next(Pc) ∧ Pc =⊥ 6

P[Pc]= trap b do stmt ∧Pc 6=⊥ ∧eval(b, Var)
st.active=st.active\{Pc}∪label(stmt)∧Pc=⊥

1 P[Pc] = if b then stmt1 else stmt2 endif
∧pc 6=⊥ ∧eval(b, Var)

st.active = st.active\{Pc} ∪ label(stmt1) ∧ pc =⊥
7

P[Pc] = varname ::= expr;
Var[varname]=eval(expr, Var)∧Pc=⊥

P[Pc] = if b then stmt1 else stmt2 endif
∧pc 6=⊥ ∧ 6= eval(b, Var)

st.active = st.active\{Pc} ∪ label(stmt2) ∧ pc=⊥
8

P[Pc] = state ∧ Pc 6=⊥
st.active=st.active\{Pc}∪next(Pc)∧Pc=⊥

2

P[Pc] = par stmt(‖ stmt)∗ endpar ∧ Pc 6=⊥
st.active = st.active\{Pc} ∪ child(Pc) ∧ Pc =⊥ 9

P[Pc] = program ∧ Pc 6=⊥
st.active=st.active\{Pc}∪next(Pc) ∧ Pc=⊥

3 P[Pc]= suspend l ∧ ∃l′ ∈ subtree(l) : l′ ∈ active(st)
∧Pc 6=⊥

st.suspended=st.suspended∪{st.active∩subtree(l)}
st.active=st.active\{Pc, subtree(l)}∧Pc=⊥

10 Pc =⊥
Pc = lub(st.active).policyDesc
push(st, newC({Pc}, Pc, top(st)))

4 P[Pc] = resume l ∧ l ∈ active(st) ∧ Pc 6=⊥
st.suspended = st.suspended\{subtree(l)}
st.active = st.active\{Pc}

∪{st.suspended ∩ subtree(l)} ∧ Pc =⊥

11

Pc 6=⊥ ∧P[pc] = return l
Pc = env[l] ∧ pop(st)

5 P[Pc] = goto {l1, . . . , ln} ∧ Pc 6=⊥
st.active=st.active\{Pc}∪subtree(lub(path

(Pc, lub(Pc, l1, .., ln))))∪{l1, . . . , ln} ∧ Pc=⊥

12 Pc =⊥ ∧top(st) = ϕ
pop(st)

Fig. 4. The statement (0-9) and policy rules (10-12).

The suspend (3) statement deletes a label from the active set and moves
it into the set of suspended labels, effectively suspending the executing of the
corresponding thread. There are two ways this statement can be defined. The
first and the more simple one is to assume that for the statement to make sense,
the label l must be active. On the other hand, when writing a scheduling policy
for an operating system, it might make sense to be able to suspend a task without
knowing which statement it was executing at the time. For this reason we choose
a definition for suspend that actually suspends the subtree below it. However
if this subtree is not active then the command is a “nop”. resume (4) is the
companion to suspend. It moves a label from the suspended set into the active
set thus resuming the thread. As with the suspend statement we have to take
care that the whole subtree is resumed.

A goto (5) statement should jump control from the current location to the
location pointed to by the label l. For this we need to calculate the least upper
bound between the goto statements label and l. Then we delete all children
of lub(l, Pc) that are on the path to Pc from the active set and add all the
children that are on the path to l. The trap (6) statement is a statement that
monitors a certain condition. Anytime it is executed it checks the condition.
If the condition holds the do part is executed, else nothing is done. In both
cases the trap statement is reactivated. Note that for the trap statement to be
effective, it should be executed at each step. However, no such execution is built
into the Rialto language. Instead this has to be taken care of by the policy.

The assignment statement is defined in rule (7). The expression is evaluated
in the environment and the resulting value is assigned to the variable. The state
declaration (8) is used to delineate a hierarchical state. The nature of a state
is such that the program will stay in the state until it is exited from the state

Rialto 2.0: A Language for Heterogeneous Computations 11

explicitly, through a goto statement or by other means. Thus the execution of
a state statement just adds the label of the first statement in the state block
to the active set, while the endstate statement restarts the state block. Finally
a program statement is used to start the execution of the program.

Policy Protocol In Figure 4 the policy rules are shown. A policy controls what
a step in the execution of the program consists of. It has three possible states:

1. the initialisation, at which point the contents of the step is calculated and
the first label is selected,

2. the execution state, in which the policy selects the next label from a set of
labels calculated in the initialisation state and

3. the exit state, in which the policy manipulates the stack and returns.

We define the entry to a policy (10) as follows. A policy execution can only
start if the value of the program counter is the special label ⊥. Every rule that
wants to trigger the execution of a policy must set the program counter to this
special value at the end of its execution. Then we pick the top element from the
state configuration stack, and find the least upper bound of this set. The label
is then one whose policy we will start executing. Notice that it is not enough to
select a label and then pick its policy. The state may be spread out in several
hierarchical states with different policies, thus we need to pick the policy of
the lowest upper bound in this hierarchy to get at the right policy. We assign
the address of this policy to the program counter. Finally we add a new state
configuration with only the current value of the program counter. In effect this
will confine the execution to the statements of the policy.

Exiting a policy (11) is done by executing a return statement. The policy
return protocol requires that the policy always returns one label, which is the
next label to be executed. This label, stored in variable l, is retrieved from
memory by the rule. The top of the stack is now the last label of the policy,
which means that the stack must be manipulated so that this label is replaced
with the next label. Finally we restore the previous state context.

The last rule (12) presented in Figure 4 is necessary for dealing with the
special case when every active label in the current state configuration has been
executed. Then we need to pop the state configuration stack to get new labels
to execute. If the stack is empty the program terminates.

Some policies require “non-destructive” evaluation of statements. This situa-
tion arises e.g. in the RTC-step of UML-state-machines [2], where the RTC-step
first collects all “enabled” transitions, i.e. those transitions that can be exe-
cuted, because their action is on the input queue. Then this set is pruned by
deleting transitions whose guard is not true, or who are disabled by some other
transition higher up in the hierarchy. For this we define a function enabled :
Label ×Var → Bool that returns true if the statement attached to the label
can be executed. Given the set of statements as defined above, all statements
are by definition enabled all the time, except the if statement. For the latter,
we define: enabled(if b then stmt1 else stmt2 endif) = eval(b, Var). An
assumption here is that evaluation does not have any side-effects.

12 Johan Lilius, Andreas Dahlin, and Lionel Morel

policy default
own indefault: Boolean; var l: Label;
begin

l := sc.prevProgCtx.getLabelFromActiveSet ();
if indefault == true then

indefault := false; sc.bottom (). getActiveSet ().add(l);
if sc.size() > 2 then sc.popFromPrevProgCtx (); else endif;
return __;

else indefault := true && !sc.inPolicyMode (); return l; endif;
end;

Fig. 5. The default policy

4 Policies and Examples of Models of Computation

Using Rialto, the programmer is free to program the scheduling policies,
i.e. models of computations. We now illustrate the description of such policies
through several examples. Due to space reasons listings of all the policies cannot
be presented, but they are available in [13]. The default policy (Figure 5) is
used for completely sequential executions. As the name suggests, the policy is
used as the default choice of policy for states. Scheduling decisions cannot be
made by this policy, implying that it should only be used in situations where
only one label is in the active labels set for the topmost stack element, i.e. when
the next statement that can be executed is unique.

The interleaving policy is a loose, non-deterministic execution model. For
example, UML Interactions (found in communication diagrams) can be sched-
uled by the interleaving policy. Each time it is activated, it selects randomly one
label among the current active labels. In Figure 6, a code listing for this policy is
provided. The policy is structured according to the policy protocol in the parts:
interleaving init, interleaving exec and interleaving exit. The first part of the pol-
icy contains the necessary variable declarations and decides which part of the
policy should be executed, depending on the state of the particular instance of
the policy (see Figure 6a). If the policy is already in the execution step we proceed
to the interleaving exit part presented in Figure 6c, but if the policy is activated
in the beginning of an execution step the policy enters the initialisation state. In
this state, all activated labels are collected (calculateStep(currentPc)) and a
random active label is chosen for execution. The policy will now proceed to the
execution state interleaving exec (Figure 6b), in which necessary modifications
of stack configurations are done and the label to be executed is put on top of the
stack. The execution state is always completed by a return statement; either the
label to execute is returned, implying that the program counter will be set to
the returned label or the ⊥ is returned, which indicates that another policy still
must be invoked to decide on which statement is to be executed. In Figure 6c,
the new state of the system is collected in the exit part of the policy. The new
system state is made observable to the system by modifying the stack to reflect
the new system state. Finally, the execution step is completed by returning ⊥.

The step policy is used when we want to allow the computation to proceed
in steps. A statement is executed in each concurrent thread at each step. The step

Rialto 2.0: A Language for Heterogeneous Computations 13

policy interleaving
own instep : Boolean;
own stackSize: Integer;
own lbl : Label;
var lfound : Boolean;
var step:FifoQueueOfLabel
var l : Label;
var runLbl : Label;
var set : SetOfLabel;
var rLbls : SetOfLabel;
var scf : StateConfig;
var lblStr : String;

begin
if instep then

goto interleaving_exit;
else

goto interleaving_init;
endif;

interleaving_init:
instep := true;
rLbls :=sc.prevProgCtx
.getActiveSet ();

runLbl :=sc.prevProgCtx
.getAnyActiveSetLbl ();

step := calculateStep(PC);
sc.prevProgCtx
.getActiveSet (). clear ();

lbl := step.poll ();
sc.prevProgCtx
.getActiveSet ().add(lbl)

step.poll ();

a) initialization

interleaving_exec:
if step.empty() == false then
lblStr := step.poll();
if lblStr == __ then
if lfound == true then
scf.getActiveSet().add(set);
sc.pushAbovePrevProgCtx(scf)
scf.clear();
rLbls.remove(set);
lfound := false;

else
set.clear();
goto interleaving_exec;

endif;
else
l := lblStr;
set.add(l);
lfound := (lfound==false
&& l==runLbl)||lfound==true;

goto interleaving_exec;
endif;

else endif;

scf.getActiveSet().add(rLbls);
sc.pushToBottom(scf);
stackSize := sc.size();

if lbl == runLblthen
return runLbl;

else
return __;

endif;

b) execution

interleaving_exit:
instep := false;
scf:=
sc.popFromPrevProgCtx();

scf.getActiveSet()
.remove(lbl);

set := scf.getActiveSet();
sc.bottom().getActiveSet()
.add(set);

if stackSize-sc.size()==1
then
sc.popFromPrevProgCtx();

else endif;

if sc.size() > 2 then
scf :=sc.popFromBottom();
set:=scf.getActiveSet();
sc.bottom().getActiveSet()
.add(set);

else endif;

return __;
end;

c) exit

Fig. 6. Interleaving policy structured according to the three policy states

policy is suitable to use in situations where real parallelism should be allowed,
regardless of the chosen MoC. The policy can be seen, to some extent, as a
replacement for the interleaving policy.

The SDF policy implements a policy for handling static dataflow. Although
SDF is an abbreviation for synchronous dataflow, its underlying model is not
synchronous so it can rather be described as an untimed MoC [5]. Synchronous
dataflow is a special case of dataflow that requires scheduling decisions for the
system can be taken already at compile time.

5 Conclusion and Future Work

We have presented Rialto, a uniform framework dedicated to the design of het-
erogeneous systems, based on the notion of model of computation. A MoCCs
can be encoded in Rialto by writing a dedicated policy. Programs are structured
using a state-based, which state being interpreted with respect to a policy that is
associated to it. We have outlined several scheduling policies that are described
more precisely in [13]. The latter also introduces JRialto, which is an interpreter
for Rialto. Policies have been encoded and tested using JRialto.

This work can be continued in several ways. The first improvement that we
are planning is to develop better abstractions for the stack manipulation. As
can be seen in Figure 6 quite a lot of the code is actually housekeeping code for

14 Johan Lilius, Andreas Dahlin, and Lionel Morel

the stack. Better abstractions will make the writing of polices simpler and less
error-prone. The main reason for the complexity is the interleaving of the policy
and program contexts on the stack. A second planned extension of the work is to
implement the Rialto 2.0 semantics in HOL or some other proof assistant, to be
able to prove properties of programs. Finally we will need to compare Rialto with
other formalisms, among those presented in section 1.1. In particular, we would
like to propose Rialto as an operational implementation of the Tag Systems [10].

References

1. Lee, E.A.: Embedded software. In Zelkowitz, M., ed.: Advances in Computers.
Volume 56. Academic Press, London (2002)

2. Lilius, J., Paltor, I.P.: Formalising UML state machines for model checking. In: Pro-
ceedings of UML’99. Volume 1723 of Lecture Notes in Computer Science., Berlin,
Springer Verlag (1999) 430–445

3. Berry, G., Gonthier, G.: The Esterel synchronous programming language: Design,
semantics, implementation. Science of Computer Programming 19(2) (1992)

4. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8 (1987) 231–274

5. Dag Björklund: A Kernel Language for Unified Code Synthesis. PhD thesis, Åbo
Akademi University (2005)

6. Lee, E.A., Sangiovanni-Vincentelli, A.: A framework for comparing models of
computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 17(12) (1997) 1217–1229

7. Liu, X.: Semantic Foundation of the Tagged Signal Model. PhD thesis, EECS
Department, University of California, Berkeley (2005)

8. Girault, A., Lee, B., Lee, E.A.: Hierarchical finite state machines with multiple
concurrency models. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 18(6) (june 1999)

9. Benveniste, A., Caillaud, B., Carloni, L., Sangiovanni-Vincentelli, A.: Heteroge-
neous reactive systems modeling: Capturing causality and the correctness of loosely
time-triggered architectures (ltta). In: Proc of the Fourth Intl. Conference on Em-
bedded Software, EMSOFT. LNCS (2004)

10. Benveniste, A., Caillaud, B., Carloni, L.P., Caspi, P., Sangiovanni-Vincentelli, A.L.:
Composing heterogeneous reactive systems. ACM Transactions on Embedded
Computing Systems (TECS) (2007)

11. Eker, J., Janneck, J.W., Lee, E.A., Liu, J., Liu, X., Ludvig, J., Neuendorffer,
S., Sachs, S., Xiong, Y.: Taming heterogeneity — the ptolemy approach. In:
Proceedings of the IEEE. (2003) 127–144

12. Balarin, F., Giusto, P., Jurecska, A., Passerone, C., Sentovich, E., Tabbara,
B., Chiodo, M., Hsieh, H., Lavagno, L., Sangiovanni-Vincentelli, A.L., Suzuki,
K.: Hardware-Software Co-Design of Embedded Systems, The POLIS Approach.
Kluwer Academic Publishers (1997)

13. Dahlin, A.: JRialto, an implementation of the heterogeneous Rialto modelling
language. Master’s thesis, Åbo Akademi University (2007, http://www.abo.fi/

~andalin/mastersthesis.pdf)

