Efficient Mutation-Analysis Coverage for Constrained
Random Verification

Tao Xi€', Wolfgang Muellet, Florian Letomb&

1 University of Paderborn /C-LAB, Fiirstenallee 11,
33098 Paderborn, Germany
{tao, wolfgang}@c-lab.de
2 SpringSoft, 340 rue de I'Eygala
38430 Moirans, France
florian_letombe@springsoft.com

Abstract. Constrained random simulation based verification (CR¥comes
an important means of verifying the functional eatness of the increasingly
complex hardware designs. Effective coverage metiiclacks for assessing
the adequacy of these processes. In contrast &r acttverage metrics, the
syntax-based Mutation Analysis (MA) definesystematic correlatiobetween
the coverage results and the test's ability to abdesign errors. However, it
always suffers from extremely high computation ctistthis paper we present
an efficient integration of mutation analysis iRV flows, not only as a
coverage gauge for simulation adequacy but alsstep further, to direct a
dynamic adjustment of the test probability disttibo. We consider the distinct
cost model of this MA-based random simulation fland try to optimize the
coverage process. From the probabilistic analy$ishe simulation cost, a
heuristics for steering the test generation isvéeri The automated flow is
implemented by the SystemC Verification Library aby Certitudé" for
mutation analysis. Results from the experiment with IEEE floating point
arithmetic design show the efficiency of our apgioa

Keywords: Verification Coverage, Constrained Random Verificatidutation
Analysis.

1 Introduction

Simulation has still a dominant role in the vea@fion of the functional correctness of
electronic and embedded systems. Today, designmeneasingly complex, on the
one hand, driven by the need to fill the Moore’svLdriven capacity of integrated
circuits and, on the other hand, thanks to our repgemotion of the design capability.
Model-based, system-level methodologies and motensive IP reuse are adopted.
However, our verification ability lags behind. B$3], many current development
projects have already a verification team sized @ve to the design team.

To accommodate this growing complexity of desigaadom simulation is applied
to ease the labor cost of writing directed testtaec It generates test input
automatically and, therefore, reinforces the sdhtipb of simulation-based
approaches. Constraints and biases on the inputaidacan be imposed additionally

on the randomness to overcome its shortage andisgd¢he design more extensively.
By the nature of focusing on the boundary, the traimseed random simulation based
verification (CRV) processes need particularly #edative metric, or a suite of them,
to assess their adequacy. On the whole, the effess and reliability of such an
adequacy guard should be judged by its abilityet@ck potential design errors.

Code coverage likstatement coverager branch coverages the most intuitive
metrics and long being used for both softwarengsiind hardware design simulation.
It is also supported by most Hardware Descripti@anduages (HDLs) simulation
tools. However, though a necessary step, high amerage solely reflects the
completion progress very limitedly. THenctional coveragemechanism [20, 21]
provided by the recently popular hardware verifmatanguages lik&ystemVerilog
requires the explicit definition of variable valtenges to hit, which is then recorded
during simulation. A major drawback is the enforesnof verification engineers to
thoroughly understand the design and extra efforddfine the coverage points or
applying libraries as subjectivemetric.

Originally proposed for software testing, Mutatidnalysis (MA) is a fault-based
test data selection technique. A so-caltegtationis asingle syntactichange to the
original program source code under test, such @agieg anadd arithmetic operator
with aminus as an artificially injected bug. Such a prograntant is said to bkilled
by a test when it under the test produces a difteoeitput from that of the original
program. When applied to generate or assess auaigeset of tests, MA creates a
bunch of mutants from the original program, eachabgingle, different mutation.
Then the percentage of the mutants killed by tiséirtg process is measured as the
adequacy of the coverage.

The possible syntactic changes,nastation operatorsobviously depend only on the
description language of the objects. As testing isquirement with many computer-
aided artifacts, subsequent research work extendsation analysis to other
languages. Particularly, HDLs share similar syasawith programming languages
and have alike execution means as software. Asidusirial EDA tool, Certitudd'
[7,14] from SpringSoftimplements the mutation analysis mechanism onl&ge@and
VHDL. Mutation operators specifically for HDLs adefined like:

sign <= opa(63) xor opb(63) ;
A sign <= opa(63) xnor opb(63)

whereA is by convention used to indicate the only mutatatement.

Design errors, at various levels of descriptioms, essentially any of its deviation
from the specification. Different from other fatlased methods like [10,11,12] for
test data selection, MA definessgstematic correlatioetween the coverage results
and the test's ability to reveal design errors.sTis done in two steps. First, a
coverage point is defined directly as if a testasgs a potential mistake by the
designer. Second, MA hypothesizes and experinmgrgatablishes aoupling-effect
[1,4], which states that a set of tests capabl&ilbhg those mutants with simple
faults injected will also be effective at exposivitper more complex errors. As such,
MA serves as a reliable guard for testing or veaifion processes ensuring the
detection of design errors.

However, though with extensive study, mutation gsial suffers from extremely
high computation cost, which becomes the main ehgh for any MA application.
Considering a hardware design withines under the simulation which is guarded by
a mutation analysis witty mutation operators, we will have a mutant set with
approximately a sizéM = L) as the coverage metrid. as a constant and assuming the
simulation cost linear to the design size, caléoitadbf one test case against the metric
will have a cost t@ (L = L) and the overall coverage evaluation a cost(io« L?) for
T test cases. This is a high computation requiremwtit increasingly complex
designs. With a CRV flow, the situation is even sersincer will be enlarged as
randomness is used to reach the adequacy. Thisefficiency issue should be
addressed. Therefore, in this work, we experimeith the use of MA coverage for
CRV, consider the accurate cost model of suchw, fiod try to develop an efficient
algorithm to tackle the coverage cost problem.

2 Related Work

MA is a fault-based verification technique. Analogly, the fault models at gate-
level, e.g. the stuck-at, is used to guide thecsiele of product test data for exposing
defects that may be introduced during the manufagfuprocesses. Manufacturing
defects can be viewed as the deviation of a prodircuit from the designed
structure. Automatic test pattern generation (ATR(Gprithms like PODEM (Path-
Oriented Decision Making) and FAN (FAN-out-orientegst generation algorithm)
generate test vectors targeting the gate-level raddaults. Although theoretically,
when hardware designs are concerned, we can alnaysate higher level faults to
gate-level and apply an ATPG there to generate viestors that correspondingly
expose the high-level faults. This mapping impdsgh complexity and inefficiency,
especially with complex designs. Successful appibo of ATPGs relies oBesign-
for-Testability techniques [8], with which ATPG algorithms can waes a small
portion of the circuit as their input, and outpffeetive tests for thetructural testing
In contrast, simulation vector generation for fumcal verification, similar to
functional testingconcerns the overall functionality of the desighey are supposed
to take the whole design as the algorithm input.

Fault models for automatic test generation at hidgneels, such as the behavioral
level or RTL, has also been considered in [9,1d4,ifistance. [9] also mentions the
use of MA for hardware designs. The designs aresfeamed to FORTRAN
programs and then fed as the standard input infovae mutation analysis tool
Mothra [2]. Faults analysis and tests generatianthen the task of Mothra [2,5].
However, neither the language translation is effiti nor does the Mothra system
handle complex objects. [11] first transforms thdgioal and faulty VHDL
descriptions to Binary Decision Diagram (BDD) basespresentations, with a
different BDD for each output bit. Then each pdithese bits is compared to extract
the symbolic test vector. Here, scalability is thain challenge.

Other coverage metrics have been used to direclorartest generation. Code
coverage, more specifically branch coverage is idensd in [15]. A Genetic
Algorithm, with the branch coverage degree fisn@essmeasurement, is developed to

guide simulation sequences generation and evaluaiesome VHDL design. The
method in [17] begins with a test planning and ¢beerage is defined as the amount
of pre-planned verification tasks that have beemukited, e.g., specific transactions
from a CPU unit. Then an evolving Bayesian Netwisriconstructed to model the
correlation between test generation directives thiedcoverage. [16] employs a so-
called tag-coverage A tag is defined as some symbolic disturbance to a bkria
value assignment and is said to be covered ifdiggirbance is propagated to any
observation point in the simulation. A Markov Chalerived from the hardware
design is built and tuned according to this tagecage. Probability distribution of the
random input is then optimized by the chain.

We consider the distinct cost model of a MA-basadom simulation flow and
try to optimize the coverage by dynamically adjugtthe probability distribution of
the random test generation.

3 Mutation-analysis Directed Constrained Random Simulation

Our CRYV flow is built with three components. Firdte SystemC Verification Library
(SCV) [18] presents a standard constrained-randmsingeneration (CRTG) facility,
with a handy interface for defining input consttaiassociated with weighted ranges.
Second, the ModelSilf simulator is employed due to its ability to sirtalanixed
SystemC/VHDL/Verilog designs. Third, as a key dimgpfactor, the Certitud®
defines a comprehensive model of design errors idBbland Verilog for mutation
analysis.

Originally, the identification of mutants is defohdy observation and comparison
at the boundary of the object under test. Anotloeiceptweak mutationis developed
in [3] by allowing this observation at any internegé points between the mutation
point and the design output, e.g. immediately aftexr execution of the mutated
expression, or statement. In contrast, the classléawith the mutant identification
at the output, can be denotedsadng mutation analysidn Certitudé", the option
for distinguishing mutants’ behaviors ranges froinectly after the mutation line, to
any subcomponent ports, and to the top design oyprts. Further, Certitud¥
applies another so-callesthema-based mutatiaechnique [6], which encodes all
independent mutants into a single design copy. Qatign of mutants becomes a
one-time job and, at the same time, the statemasedweak mutation analysis for all
mutants, i.e. whether a mutant produces a locatfgrdnt behavior, requires only
single simulation of this instrumented design by in-time compariseith the
execution of the original statemént.

1 Certitude introduces a layer calledhctional qualification[19], which gives the test bench a
good credit when its monitor is vigilant enough dtays a failure when a mutant does
produce a distinguishable behaviour at the observabint.

3.1 TheSimulation Flow and Its Cost

-

Constrained Random Mutation-analysis
Simulation

Weak MA Strong MA
v (one simulation run| |(one simulation per

CRTG for all live mutants) activated mutant)
- test
test case—%ﬁ&fﬁ—» distribution
adjustment

DUV - —Instrumention- — + Mutants
closure
monitor

Y

Figure 1. The CRV loop and closure directed by the coveragaudhtion analysis.

Figure 1 depicts the general design flow. The thra@ld arrows represent simulations
and behavior monitoring, either on the original D{™esign Under Verification) or
the mutants. We start with some initial test caists for the DUV and a CRTG. At
the beginning and any time the DUV is changed thsigh files are copied and
instrumented by the mutation operators. This p®&edeterminate and the product is
the mutants. We should also note that some mutamainfunctionally unchanged,
which always produce the same output as in theénaligorogram. These so-called
equivalent mutantsare eliminated from the mutants box. Each time GRTG
generates a test case and the monitor flags atpake DUV simulation result, this
test case is sent to be assessed by the mutatdysin

In this work, we usestrong mutation analysis results as the final cage
measurementHowever, putting a weak mutation phase at thaetfsaves simulation
effort definitely and significantly, as herewith vealy need to simulate thecally
already exposedmutants, though each one against the test caseprésously
described, this requires ondyieextra simulation under Certitutte

Killed mutants are removed from the mutants boxe Bhcumulated results from
mutation analysis are used for a runtime calcutatibsome reasonable adjustment to
the test distribution, and if any, to be fed backilie CRTG. At the same time, a
certain percentage of dead mutants is used to healoop and end the flow. This
does not apply a 100% killing of mutants, which carely be the case for complex
designs. Without loss of generality, we considerehthe cost model for an 100%
mutant-killing coverage.

Although constraint solving, source code instruragah for creating mutants, and
equivalent mutants identification all consume cotapjan resources, most time of the
flow will be spent on simulation. Basically this ¢hie to the nature of mutation
analysis of feeding each test case to individuatams for simulation. Since the
single simulation cost scales linearly with the igessize, the complexity of the

proposed flow is decided by the number of simutatians. In the following, we
make a detailed analysis on the required simulati@onsiderD the design in the
flow under verification andv(D) = {M,, M,, ..., My} as the set of non-equivalent
mutants generated. At any time in the CRV loop weeha probability distributiop
over the input variable value domaitD). With MW, the random variable for the
weak mutation analysis outcome b andMS; for the strong analysis, for agywe
can definepw,, ; = Pr(MW; = 1) and ps,,; & Pr(MS; = 1).

Then the simulation runs a¥; in the strong mutation phase can be represented by
a random numbek; as the times ofMW; = 1) happening until the first success of
(MS; = 1). Noting that forvi (MS; = 1) € (MW; = 1), we can derive by geometric
distribution the expected value ¥f as

1
E (X)) =
o (X0) Pr(MS; = 1|MW; = 1)
1
- ps(p,i
pW(p,i
_ pW(p,i
ps(p,i

denoted byCost,, ; strong- Further, as the weak MA phase costs one simaldtioall
remained mutantsiost, y.qx as the total weak mutation runs, i.e., the flowplo
count until the last live mutants being killed, cde simply estimated by
maxi(l/ps(p,i). Therefore, we calculatéost,, as the total simulation effort needed to
kill all mutants under distributiop, expectedly, as

Cost, = Costy, year + Z Costy i strong
1<isN

= max (1/psw-) + P €Y

1<isN S .
52w Plei

| other words, a high activation rate of mutantshwow propagation probability
leads to high simulation costs. For instance, assyia set of 100 design mutants and
under a certain test distributign each ofpw,, ; having a same value of 0.01, and all
ps,,; a value of 0.005, we can calculate thésst, as a cost estimation of 400
simulation runs. For another, with all pw,,,; having a value 0.5 angs,,, ; 0.01,

though the mutants have a higher probability teekposedthey give more costs with
a total of 5100 simulation runs, expectedly.

As another example, under selective mutation opesahn RTL FFT design
module with 29811 lines derives already(D) of 26758 non-equivalent
mutantsCost, becomes extremely high with growing design sizeSymbolic
methods traditionally used for mutation-based tgsteration [5, 2] assume at most
time (MW; = 1) - (MS; = 1), i.e., a mutant when activated then propagatehdo
output. This is not the case if we apply mutatioalgsis to the simulation of large

designs. This cost problem can be addressed art],we present a heuristics as our
first effort towards an efficient mutant-killing eerage for the CRV flow.

3.2 Dynamic Distribution Adjustment for M or e Efficient Coverage

We note that Equation (1) can be simply applied subset oM (D). At some point
during the CRV flow in Figure 1M (D) is reduced by dead mutants and only those
hard-to-kill under the current test distributiore deft. Then if we adjusp, a newly
estimated computation cost is defined in the samen@r. This adjustment should be
based on the cost estimation in Equation (1), stoagach more quickly a high
mutant-killing coverageFor this, a heuristics as described in Figure @iveloped.

The algorithm for the heuristics assumes that #®& fnput domain can be
segmented into some discrete ranges. Then, basidalltilizes the past analysis
information to estimate the effectiveness of thomeges and re-distributes the
probability. Mutation analysis result®<;<y ms; (tc)/Y1<i<y mw; (tc) as given in
Line 3 are used to represent theps;/pw; under the current distribution. The
effectiveness is then measured relatively to ae/aiﬂective_ps/pm through Lines 6 to
11 and used to flag a range as effective by adititeganeffective_distritarray, if its
Nins/ My SUrpasseseffective_P*/py. If no mutant is killed, we add it to an
ineffective_distribarray. Initially effective P/, is assigned a parameter value
initial_ef fective_P* /. This relative measure always relaxes in Line 48v@ mutants
decrease and the remaining ones become harddk. to ki

This establishes aacro relation between the test input domain and the aler
mutant-killing. Our hypothesis is that if an inpainge is assessed to be effective at
killing mutants, we expect it to be further capabfekilling mutants and adjust the
test distribution towards it. Otherwise, the dlufition is steered away. Lines 13 to 17
are for this purpose. After this adjustment thaysrare emptied.

Furthermore, a threshold parameteljustment_threshold is defined to trigger
an adjustment procedure in Line 12, when the Idepafion kiling none of the
mutants, recorded by a variabteark, reaches this amount. We have not considered
an optimal setting for this parameter. It couldskee initially to a value of 1 and also
loosens while the remaining mutants become mot&stu.

Since at this level 100 percent killing of the mitacould be infeasible under
some time restriction, the whole flow should algdwontrolled by asimulationcost
budgetwhich terminates at a reasonably hogintain ratio of killed mutants.

The presence of starting_heuristic parameter is the last to notice. The dynamic
distribution adjustment is not necessary at theinmégg phase of the CRV flow,
when many of the easy-to-kill mutants are stilvali This trigger is controlled by
parametestarting_heuristic.

Heuristics #for the distribution adjustment box in Figure 1.

Parameters: starting_heuristic, initial_good_P*/pm, adjustment_threshold

#Assume the input value domain can be segmentedetsof ranges
I(D) : {I I, .., Iy| U; I; = I}. For each mutanM;, mw;, ms; : I - {0,1}
as
the weak and strong mutation analysis result, retspely.

(1) ef fective_ pS/pm = initial_ef fective_ pS/pm

(2)mark :=0

3) (tC € I, Ny = Xa<isy MW; (EC), s := Xy <isy MS; (tc))

as received from CRTG and mutation analysis
(4) Enter the following loop if the previous toteppening of ever(in,; = 0)
already reachesarting_heuristic.
(5) Loop until the killed mutants reach a certain ratiodafined,
or the verification cost budget is reached

(6) If (nms/nmw = effective_ pS/pm)

@) Add paii(k, n,,s) into an arrayffective_distrib

(8) Elsaif (n,s =0)

9) Addk into another arraynef fective_distrib

(20) Increaserark by 1

(11) End if

(12) If (mark = adjustment_threshold)

(13) If effective_distrib is not empty, set test distribution as:

(14) For eaclk’, n,,s) in ef fective_distrib, set

Pr(l,) :=nps/(sum of all n,ineffective_distrib)
(15) Else, set the distribution as
(16) Uniformly distributed ofu I,/ |k" & inef fective_distrib)
(17) Endif

(18) Empty arraysf fective_distrib, inef fective_distrib, setmark := 0
(29) LOWGI‘effective_pS/pm = effective_ps/pm /2

(20) End if

(21) End loop

Figure 2. Heuristics for mutant-killing by utilizing past dwgsis information.

4 Results

We have chosen a VHDL implementation of the IEEBaby double-precision
floating point arithmetic unit fronopencores.orgor our experiments in our MA-
directed CRV flow. Figure 3 shows the architectoifréhat example.

. ——output—
—operation-m-
P . add —underflows
rounding
" mode —overflow-
op1 sub . ot
- = rounding - exception - inexact—-
0p2— mul —invalid—
—exceptions
——lk—| i
——rst— div
—enablew| —readys

Figure 3. The floating point arithmetic under CRV.

The test domain of the DUV is composed of its majpput ports including the
arithmetic operator, rounding mode, and two opesafid execute the heuristics, this
domain is segmented by the number classificatiothef operandsnorm, infinity,
denorma) etc. For strong mutation analysis, the mutartirdisiishing point is set at
the output ports of the core including the arithmewtput and exception signals.
Further, though not the focus of this experimensoftware implementation of the
floating point standard is used in the simulatienaa oracle, to compare and assess
the correctness of the DUV output.

Figure 4 gives a summary of the experimental resilhe design with a total
number of 2492 lines-of-code derives 2257 mutamtéch have the mutation points
scattered over all the major sub-components. SBeh are detected by the tool as
equivalent mutants. We then executed the flow gufé 1 with two setups, one fixed
with a uniform input distribution, anothealso starting with a uniform distribution
but self-tuning directed by the heuristics. Eactugaes executed twice for 200 loop
iterations, i.e., 200 test cases as shown in thedito provide more evident data. The

adjustment threshold parameter of the heuristisgtito 1, ana]nitial_good_ps/pm

set to 0.01. Our studies also compared the sinouldime with and without memory
utilization and found no significant difference. Tonduct the two experiments with
uniform distribution, it took us 89460 and 1016&hwdation runs for about 85 and 96
hours, respectively, which killed 1301 and 1289 antg. The other two experiments
with the heuristics took 78460 and 78849 simulatifor around 75 and 77 hours with
a mutant killing coverage of 1679 and 1668, respelst The original test bench
delivered with the arithmetic core, simulatingthk operations, rounding modes, and
corner cases, is also exercised with the mutatiatyais. It killed 1440 mutants.

In summary, experiments gave a clear improvementhbyheuristics against the
single uniform distribution, in terms of a highetal mutant-killing coverage and less
simulation effort. This means that our heuristiggngicantly advances the current
state of mutation-based verification automatiorthdligh the deterministic test bench
exposes a certain amount of mutants more rapidlg,the advantage of the CRV to
avoid the manual, labour intensive writing and ioying of test cases.

2000

1800

1600

1400

1200

1000

Kkilled mutants (KM)

I I I
0 50 100 150 200

test-cases, also loop-iterations

KM - uniform distribution - exper.1 KM - with heuristic - exper.1 —#— KM - orignal TB —=—
KM - uniform distribution - exper.2 —s<— KM - with heuristic - exper.2 —e—

Figure 4. Experimental results.

5 Conclusion

We primarily considered the cost model when apglymutation analysis as the
coverage metric to measure the completeness of & @&v. Basically, the
simulation effort isO(T * L?), whereT stands for the number of test cases Aride
size of the design. representing the design complexity grows rapidiyg with the
Moore’s Law driven capacity of integrated circuits.CRV, T is further enlarged as
the amount of test cases required to reach an adgdsibased on random generation.
More accurately, with some probability analys@sax; 1/ps; +>;pw;/ps;) is
found to be the expected simulation runs. Basethisna heuristics is developed that
collects the past analysis information to estimie effectiveness of test domain
ranges and re-distributes the probability.

The CRYV flow equipped with the dynamic distributiadjustment heuristics has
been implemented and experimented with Certitidend a VHDL floating point
arithmetic unit. The results are encouraging arasthe efficiency improvement in
terms ofreaching more rapidly a higher mutant-killing coage With more, yet
automated simulation effort, it also surpassesnta@ual test bench that is carefully
composed by the author of the arithmetic core.

In future work, we will investigate different artdcture and their impact on the
heuristics with a focus on control-oriented cirsuiikke microprocessors. Since the
verification flow is based on simulation, it alstakes well to large designs.

In contrast to other fault-based test generatiopr@gches, MA systematically
correlates the mutant-killing and the test’'s calitgbdf revealing design errors. This
can be key technology for solving the verificatibottleneck today. The work
presented in this paper is established on the maation between the test input
domain and the overall mutant killing. It promotasverage efficiency but specific,
even-harder-to-expose mutants may remain. Hererefutork will also consider the
automatic, deterministic test generation for expgsin individual mutant. Existing
solutions rely on symbolic execution and constraoiing with the assumption that
mutant behaviors propagate to the output if actidafhis is a limitation when the
algorithms face complex SW/HW/system designs. Mefécient, light-weight
solutions have to be developed to enable a praaaloyment. Nevertheless, the
MA directed CRV will remain a necessary step toaobta first mutant killing
coverage, since it sieves out the easy-to-kill migtawhich the deterministic test
generation algorithms can hardly do.

Acknowledgements. The work described herein is funded by the FP7 CRCD
project (FP7-ICT-3217069), the BMBF ITEA2 project ERDE (VERDE
(01S09012H), and the DFG SonderforschungsbereidB 6F4 (Self-Optimizing
Systems for Mechanical Engineering).

References

[1] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Hints ©est Data Selection: Help for the
Practicing ProgrammelEEE ComputerVolume 11, Issue 4, April 1978.

[2] R.A. DeMillo and A. J. Offutt. Constraint-Based Autdinalest Data GeneratiotEEE
Transactions on Software Engineeringplume 17, Issue 9, September 1991.

[3] W.E. Howden. Weak Mutation Testing and Completené3est SetslEEE Transactions
on Software Engineering/olume 8, Issue 4, July 1982..

[4] A.J. Offutt. The coupling effect: fact or fictioMCM SIGSOFT Software Engineering
Notes Volume 14, Issue 8, December 1989.

[5] A.J. Offutt and E. J. Seaman. Using Symbolic Executo Aid Automatic Test Data
Generation. Inproceedings of the fifth Annual Conference on Coempétssurance
COMPASS'90, Gaithersburg, MD, USA, June 1990.

[6] R.H. Untch, A. J. Offutt and M. J. Harrold. Mutatiédmalysis Using Mutant Schemata.
ACM SIGSOFT Software Engineering Notéslume 18, Issue 3, July 1993.

[71 M. Hampton and S. Petithomme. Leveraging a Commiekéigation Analysis Tool For
Research. Iproceedings of the Testing: Academic and Industianference Practice
and Research Techniques- MUTATIOMICPART-MUTATION'07, September 2007.

[8] S. Sengupta. Defect-based Tests: A Key EnableStamcessful Migration to Structural
Test.Intel Technology Journall999.

[9] G. Al Hayek and C. Robach. From Specification Valmato Hardware Testing: A
Unified Method. InProceedings of the IEEE International Test Confeecon Test and
Design Validity ITC'96, Washington, DC, USA, October 1996.

[10] S. Ghosh and T.J. Chakraborty. On Behavior Faultéding for Digital DesignsJournal
of Electronic Testing: Theory and ApplicatioMolume 2, Issue 2, June 1991.

[11] F. Ferrandi, F. Fummi and D. Sciuto. Implicit T&Seneration for Behavioral VHDL
Models. In Proceedings of the 1998 IEEE International Test €wmarfce ITC'98,
Washington, DC, USA, October 1998.

[12] A. Fin and F. Fummi. A VHDL Error Simulator for Fetiopnal Test Generation. In
Proceedings of the 2000 conference on Design, Aattomand Test in Eurap DATE'00,
Paris, France, March 2000.

[13] International Technology Roadmap for Semiconductdi®RkS). ITRS 2009 Edition.
http://www.itrs.net/Links/ 2009ITRS/Home2009.htm.

[14] SpringSoft. Functional Qualification Tool Certitud¥. http://www.springsoft.com/
products/functional-qualification/certitude.

[15] F. Corno, M. Sonza Reorda, G. Squillero, A. Manzoneé A. Pincetti. Automatic Test
Bench Generation for Validation of RT-Level Desdops: An Industrial Experience. In
Proceedings of the 2000 conference on Design, Aatiomand Test in Europ®ATE'00,
Paris, France, March, 2000.

[16] S. Tasiran, F. Fallah, D. Chinnery, S. Weber and K€utzer. Coverage-Directed
Generation of Biased Random Inputs for Functionaldésion of Sequential Circuits. In
Proceedings of the International Workshop on Lagid Synthesjslune, 2001.

[17] S. Fine and A. Ziv. Coverage directed test genarafiw functional verification using
bayesian networks. IRroceedings of the 40th annual Design Automationféence
DAC'03, Anaheim, CA, USA, 2003.

[18] Open SystemC Initiative Verification Working GroufystemC Verification Library
Standard http://www.systemc.org/downloads/standards, relda8p2, 2006.

[19] N. Bombieri, F. Fummi, G. Pravadelli, M. Hampton,dak. Letombe. Functional
Qualification of TLM Verification. InProc. of the 2009 ACM/IEEE Design, Automation
and Test in Europe. DATE’09, Nice, France, April 200

[20] O. Lachish, E. Marcus, S. Ur and A. Ziv. Hole Arsasyfor Functional Coverage Data. In
Proceedings of the 39th Conference on Design Automatages 807-812, Jun 2002.

[21] S. Asaf, E. Marcus and A. Ziv. Defining coveragews to improve functional coverage
analysis. InProceedings of the 41st Conference on Design Automatages 41-44, Jun
2004.

