
Efficient Mutation-Analysis Coverage for Constrained
Random Verification

Tao Xie1, Wolfgang Mueller1, Florian Letombe2

1 University of Paderborn /C-LAB, Fürstenallee 11,

33098 Paderborn, Germany
{tao, wolfgang}@c-lab.de

2 SpringSoft, 340 rue de l'Eygala
38430 Moirans, France

florian_letombe@springsoft.com

Abstract. Constrained random simulation based verification (CRV) becomes
an important means of verifying the functional correctness of the increasingly
complex hardware designs. Effective coverage metric still lacks for assessing
the adequacy of these processes. In contrast to other coverage metrics, the
syntax-based Mutation Analysis (MA) defines a systematic correlation between
the coverage results and the test’s ability to reveal design errors. However, it
always suffers from extremely high computation cost. In this paper we present
an efficient integration of mutation analysis into CRV flows, not only as a
coverage gauge for simulation adequacy but also, a step further, to direct a
dynamic adjustment of the test probability distribution. We consider the distinct
cost model of this MA-based random simulation flow and try to optimize the
coverage process. From the probabilistic analysis of the simulation cost, a
heuristics for steering the test generation is derived. The automated flow is
implemented by the SystemC Verification Library and by CertitudeTM for
mutation analysis. Results from the experiment with an IEEE floating point
arithmetic design show the efficiency of our approach.

Keywords: Verification Coverage, Constrained Random Verification, Mutation
Analysis.

1 Introduction

Simulation has still a dominant role in the verification of the functional correctness of
electronic and embedded systems. Today, designs are increasingly complex, on the
one hand, driven by the need to fill the Moore’s Law driven capacity of integrated
circuits and, on the other hand, thanks to our eager promotion of the design capability.
Model-based, system-level methodologies and more extensive IP reuse are adopted.
However, our verification ability lags behind. By [13], many current development
projects have already a verification team sized over 2:1 to the design team.

To accommodate this growing complexity of designs, random simulation is applied
to ease the labor cost of writing directed test vectors. It generates test input
automatically and, therefore, reinforces the scalability of simulation-based
approaches. Constraints and biases on the inputs domain can be imposed additionally

on the randomness to overcome its shortage and exercise the design more extensively.
By the nature of focusing on the boundary, the constrained random simulation based
verification (CRV) processes need particularly an effective metric, or a suite of them,
to assess their adequacy. On the whole, the effectiveness and reliability of such an
adequacy guard should be judged by its ability to detect potential design errors.

Code coverage like statement coverage or branch coverage is the most intuitive
metrics and long being used for both software testing and hardware design simulation.
It is also supported by most Hardware Description Languages (HDLs) simulation
tools. However, though a necessary step, high code coverage solely reflects the
completion progress very limitedly. The functional coverage mechanism [20, 21]
provided by the recently popular hardware verification languages like SystemVerilog
requires the explicit definition of variable value ranges to hit, which is then recorded
during simulation. A major drawback is the enforcement of verification engineers to
thoroughly understand the design and extra effort to define the coverage points or
applying libraries as a subjective metric.

Originally proposed for software testing, Mutation Analysis (MA) is a fault-based
test data selection technique. A so-called mutation is a single syntactic change to the
original program source code under test, such as replacing an add arithmetic operator
with a minus, as an artificially injected bug. Such a program mutant is said to be killed
by a test when it under the test produces a different output from that of the original
program. When applied to generate or assess an adequate set of tests, MA creates a
bunch of mutants from the original program, each by a single, different mutation.
Then the percentage of the mutants killed by the testing process is measured as the
adequacy of the coverage.
The possible syntactic changes, as mutation operators, obviously depend only on the
description language of the objects. As testing is a requirement with many computer-
aided artifacts, subsequent research work extends mutation analysis to other
languages. Particularly, HDLs share similar syntaxes with programming languages
and have alike execution means as software. As an industrial EDA tool, CertitudeTM
[7,14] from SpringSoft implements the mutation analysis mechanism on Verilog and
VHDL. Mutation operators specifically for HDLs are defined like:

sign <= opa(63) xor opb(63) ;

∆ sign <= opa(63) xnor opb(63) ;

where ∆ is by convention used to indicate the only mutated statement.
Design errors, at various levels of descriptions, are essentially any of its deviation

from the specification. Different from other fault-based methods like [10,11,12] for
test data selection, MA defines a systematic correlation between the coverage results
and the test’s ability to reveal design errors. This is done in two steps. First, a
coverage point is defined directly as if a test exposes a potential mistake by the
designer. Second, MA hypothesizes and experimentally establishes a coupling-effect
[1,4], which states that a set of tests capable of killing those mutants with simple
faults injected will also be effective at exposing other more complex errors. As such,
MA serves as a reliable guard for testing or verification processes ensuring the
detection of design errors.

However, though with extensive study, mutation analysis suffers from extremely
high computation cost, which becomes the main challenge for any MA application.
Considering a hardware design with � lines under the simulation which is guarded by
a mutation analysis with � mutation operators, we will have a mutant set with
approximately a size �� ∗ �� as the coverage metric. � as a constant and assuming the
simulation cost linear to the design size, calculation of one test case against the metric
will have a cost to ��� ∗ �� and the overall coverage evaluation a cost to ��� ∗ �	� for
� test cases. This is a high computation requirement with increasingly complex
designs. With a CRV flow, the situation is even worse, since � will be enlarged as
randomness is used to reach the adequacy. This cost efficiency issue should be
addressed. Therefore, in this work, we experiment with the use of MA coverage for
CRV, consider the accurate cost model of such a flow, and try to develop an efficient
algorithm to tackle the coverage cost problem.

2 Related Work

MA is a fault-based verification technique. Analogously, the fault models at gate-
level, e.g. the stuck-at, is used to guide the selection of product test data for exposing
defects that may be introduced during the manufacturing processes. Manufacturing
defects can be viewed as the deviation of a product circuit from the designed
structure. Automatic test pattern generation (ATPG) algorithms like PODEM (Path-
Oriented Decision Making) and FAN (FAN-out-oriented test generation algorithm)
generate test vectors targeting the gate-level modeled faults. Although theoretically,
when hardware designs are concerned, we can always translate higher level faults to
gate-level and apply an ATPG there to generate test vectors that correspondingly
expose the high-level faults. This mapping imposes high complexity and inefficiency,
especially with complex designs. Successful application of ATPGs relies on Design-
for-Testability techniques [8], with which ATPG algorithms can assume a small
portion of the circuit as their input, and output effective tests for the structural testing.
In contrast, simulation vector generation for functional verification, similar to
functional testing, concerns the overall functionality of the design. They are supposed
to take the whole design as the algorithm input.

Fault models for automatic test generation at higher levels, such as the behavioral
level or RTL, has also been considered in [9,11], for instance. [9] also mentions the
use of MA for hardware designs. The designs are transformed to FORTRAN
programs and then fed as the standard input into software mutation analysis tool
Mothra [2]. Faults analysis and tests generation are then the task of Mothra [2,5].
However, neither the language translation is efficient, nor does the Mothra system
handle complex objects. [11] first transforms the original and faulty VHDL
descriptions to Binary Decision Diagram (BDD) based representations, with a
different BDD for each output bit. Then each pair of these bits is compared to extract
the symbolic test vector. Here, scalability is the main challenge.

Other coverage metrics have been used to direct random test generation. Code
coverage, more specifically branch coverage is considered in [15]. A Genetic
Algorithm, with the branch coverage degree as a fitness measurement, is developed to

guide simulation sequences generation and evaluated on some VHDL design. The
method in [17] begins with a test planning and the coverage is defined as the amount
of pre-planned verification tasks that have been simulated, e.g., specific transactions
from a CPU unit. Then an evolving Bayesian Network is constructed to model the
correlation between test generation directives and the coverage. [16] employs a so-
called tag-coverage. A tag is defined as some symbolic disturbance to a variable
value assignment and is said to be covered if this disturbance is propagated to any
observation point in the simulation. A Markov Chain derived from the hardware
design is built and tuned according to this tag-coverage. Probability distribution of the
random input is then optimized by the chain.

We consider the distinct cost model of a MA-based random simulation flow and
try to optimize the coverage by dynamically adjusting the probability distribution of
the random test generation.

3 Mutation-analysis Directed Constrained Random Simulation

Our CRV flow is built with three components. First, the SystemC Verification Library
(SCV) [18] presents a standard constrained-random test generation (CRTG) facility,
with a handy interface for defining input constraints associated with weighted ranges.
Second, the ModelSimTM simulator is employed due to its ability to simulate mixed
SystemC/VHDL/Verilog designs. Third, as a key enabling factor, the CertitudeTM
defines a comprehensive model of design errors on VHDL and Verilog for mutation
analysis.

Originally, the identification of mutants is defined by observation and comparison
at the boundary of the object under test. Another concept weak mutation is developed
in [3] by allowing this observation at any intermediate points between the mutation
point and the design output, e.g. immediately after the execution of the mutated
expression, or statement. In contrast, the classical MA with the mutant identification
at the output, can be denoted as strong mutation analysis. In CertitudeTM, the option
for distinguishing mutants’ behaviors ranges from directly after the mutation line, to
any subcomponent ports, and to the top design output ports. Further, CertitudeTM
applies another so-called schema-based mutation technique [6], which encodes all
independent mutants into a single design copy. Compilation of mutants becomes a
one-time job and, at the same time, the statement-based weak mutation analysis for all
mutants, i.e. whether a mutant produces a locally different behavior, requires only a
single simulation of this instrumented design by in-time comparison with the
execution of the original statement.1

1 Certitude introduces a layer called functional qualification [19], which gives the test bench a

good credit when its monitor is vigilant enough and flags a failure when a mutant does
produce a distinguishable behaviour at the observation point.

3.1 The Simulation Flow and Its Cost

Figure 1 depicts the general design flow. The three bold arrows represent simulations
and behavior monitoring, either on the original DUV (Design Under Verification) or
the mutants. We start with some initial test constraints for the DUV and a CRTG. At
the beginning and any time the DUV is changed the design files are copied and
instrumented by the mutation operators. This process is determinate and the product is
the mutants. We should also note that some mutants remain functionally unchanged,
which always produce the same output as in the original program. These so-called
equivalent mutants are eliminated from the mutants box. Each time the CRTG
generates a test case and the monitor flags a pass to the DUV simulation result, this
test case is sent to be assessed by the mutation analysis.

In this work, we use strong mutation analysis results as the final coverage
measurement. However, putting a weak mutation phase at the front saves simulation
effort definitely and significantly, as herewith we only need to simulate the locally
already exposed mutants, though each one against the test case. As previously
described, this requires only one extra simulation under CertitudeTM.

Killed mutants are removed from the mutants box. The accumulated results from
mutation analysis are used for a runtime calculation of some reasonable adjustment to
the test distribution, and if any, to be fed back to the CRTG. At the same time, a
certain percentage of dead mutants is used to break the loop and end the flow. This
does not apply a 100% killing of mutants, which can rarely be the case for complex
designs. Without loss of generality, we consider here the cost model for an 100%
mutant-killing coverage.

Although constraint solving, source code instrumentation for creating mutants, and
equivalent mutants identification all consume computation resources, most time of the
flow will be spent on simulation. Basically this is due to the nature of mutation
analysis of feeding each test case to individual mutants for simulation. Since the
single simulation cost scales linearly with the design size, the complexity of the

Figure 1. The CRV loop and closure directed by the coverage of mutation analysis.

proposed flow is decided by the number of simulation runs. In the following, we
make a detailed analysis on the required simulations. Consider
 the design in the
flow under verification and ��
� = ��
, �	, … , ��� as the set of non-equivalent
mutants generated. At any time in the CRV loop we have a probability distribution �
over the input variable value domain ��
�. With ��� the random variable for the
weak mutation analysis outcome on �� and ��� for the strong analysis, for any � we
can define ���,� ≝ Pr���� = 1� and ���,� ≝ Pr���� = 1�.

Then the simulation runs on �� in the strong mutation phase can be represented by
a random number �� as the times of ���� = 1� happening until the first success of
���� = 1�. Noting that for ∀� ���� = 1� ⊆ ���� = 1�, we can derive by geometric
distribution the expected value of �� as

 !����� = 1
Pr���� = 1|��� = 1�

 = 1
���,�
���,�

 = ���,�
���,�

denoted by #$�%�,�,&'()*+. Further, as the weak MA phase costs one simulation for all
remained mutants, #$�%�,,-./ as the total weak mutation runs, i.e., the flow loop
count until the last live mutants being killed, can be simply estimated by
max�31 ���,�⁄ 5. Therefore, we calculate #$�%� as the total simulation effort needed to
kill all mutants under distribution �, expectedly, as

 #$�%� = #$�%�,,-./ + 7 #$�%�,�,&'()*+

8�8�

 = max
898:31 ���,�⁄ 5 + 7 ���,�
���,�
898:

 �1�

I other words, a high activation rate of mutants with low propagation probability
leads to high simulation costs. For instance, assuming a set of 100 design mutants and
under a certain test distribution �
 each of ���;,� having a same value of 0.01, and all
�� �;,� a value of 0.005, we can calculate then #$�%�;as a cost estimation of 400
simulation runs. For another �	 with all ���<,� having a value 0.5 and ���<,� 0.01,
though the mutants have a higher probability to be exposed, they give more costs with
a total of 5100 simulation runs, expectedly.

As another example, under selective mutation operators an RTL FFT design
module with 29811 lines derives already ��
� of 26758 non-equivalent
mutants. #$�%� becomes extremely high with growing design sizes. Symbolic
methods traditionally used for mutation-based test generation [5, 2] assume at most
time ���� = 1� → ���� = 1�, i.e., a mutant when activated then propagates to the
output. This is not the case if we apply mutation analysis to the simulation of large

designs. This cost problem can be addressed and, next, we present a heuristics as our
first effort towards an efficient mutant-killing coverage for the CRV flow.

3.2 Dynamic Distribution Adjustment for More Efficient Coverage

We note that Equation (1) can be simply applied to a subset of ��
�. At some point
during the CRV flow in Figure 1, ��
� is reduced by dead mutants and only those
hard-to-kill under the current test distribution are left. Then if we adjust �, a newly
estimated computation cost is defined in the same manner. This adjustment should be
based on the cost estimation in Equation (1), so as to reach more quickly a high
mutant-killing coverage. For this, a heuristics as described in Figure 2 is developed.

The algorithm for the heuristics assumes that the test input domain can be
segmented into some discrete ranges. Then, basically, it utilizes the past analysis
information to estimate the effectiveness of those ranges and re-distributes the
probability. Mutation analysis results ∑ ?��
8�8� �%@� ∑ ?��
8�8� �%@�⁄ as given in
Line 3 are used to represent the ∑ ��� ���⁄ under the current distribution. The
effectiveness is then measured relatively to a value ABBA@%�CA_ �� �?E through Lines 6 to
11 and used to flag a range as effective by adding it to an effective_distrib array, if its
FG& FG,⁄ surpasses ABBA@%�CA_ �� �?E . If no mutant is killed, we add it to an
ineffective_distrib array. Initially ABBA@%�CA_ �� �?E is assigned a parameter value
�F�%�HI_ABBA@%�CA_ �� �?E . This relative measure always relaxes in Line 19 as live mutants
decrease and the remaining ones become harder to kill.

This establishes a macro relation between the test input domain and the overall
mutant-killing. Our hypothesis is that if an input range is assessed to be effective at
killing mutants, we expect it to be further capable of killing mutants and adjust the
test distribution towards it. Otherwise, the distribution is steered away. Lines 13 to 17
are for this purpose. After this adjustment the arrays are emptied.

Furthermore, a threshold parameter HJKL�%?AF%_%ℎNA�ℎ$IJ is defined to trigger
an adjustment procedure in Line 12, when the loop iteration killing none of the
mutants, recorded by a variable ?HNO, reaches this amount. We have not considered
an optimal setting for this parameter. It could be set initially to a value of 1 and also
loosens while the remaining mutants become more stubborn.

Since at this level 100 percent killing of the mutants could be infeasible under
some time restriction, the whole flow should also be controlled by a simulation cost
budget which terminates at a reasonably high certain ratio of killed mutants.

The presence of a �%HN%�FP_ℎALN��%�@ parameter is the last to notice. The dynamic
distribution adjustment is not necessary at the beginning phase of the CRV flow,
when many of the easy-to-kill mutants are still alive. This trigger is controlled by
parameter �%HN%�FP_ℎALN��%�@.

Heuristics #for the distribution adjustment box in Figure 1.

Parameters: �%HN%�FP_ℎALN��%�@, �F�%�HI_P$$J_ �� �?E , HJKL�%?AF%_%ℎNA�ℎ$IJ

#Assume the input value domain can be segmented as a set of ranges
��
� ∶ R�
,�	, … , �ST ⋃ ��� = �V. For each mutant ��, ?�� , ?�� ∶ � → �0,1�
as
the weak and strong mutation analysis result, respectively.

(1) ABBA@%�CA_ �� �?E ∶= �F�%�HI_ABBA@%�CA_ �� �?E
(2) ?HNO ∶= 0
(3) 3%@ ∈ �/ , FG, ∶= ∑ ?��
8�8� �%@�, FG& ∶= ∑ ?��
8�8� �%@�5
 as received from CRTG and mutation analysis
(4) Enter the following loop if the previous total happening of event �nZ[= 0)
 already reaches �%HN%�FP_ℎALN��%�@.
(5) Loop until the killed mutants reach a certain ratio predefined,

 or the verification cost budget is reached
(6) If 3FG& FG,⁄ ≥ ABBA@%�CA_ �� �?E 5

(7) Add pair �O, FG&� into an array ABBA@%�CA_J��%N�]
(8) Elseif �FG& = 0�
(9) Add O into another array �FABBA@%�CA_J��%N�]
(10) Increase ?HNO by 1
(11) End if
(12) If �?HNO ≥ HJKL�%?AF%_%ℎNA�ℎ$IJ�
(13) If ABBA@%�CA_J��%N�] is not empty, set test distribution as:
(14) For each �O^, FG&^ � in ABBA@%�CA_J��%N�], set
 Pr��/a� ∶= FG&^ ��L? $B HII ⁄ FG& �F ABBA@%�CA_J��%N�] �
(15) Else, set the distribution as

(16) Uniformly distributed on �∪ �/a |O^ ∉ �FABBA@%�CA_J��%N�] �

(17) End if
(18) Empty arrays ABBA@%�CA_J��%N�], �FABBA@%�CA_J��%N�], set ?HNO ∶= 0

(19) Lower ABBA@%�CA_ �� �?E ∶= ABBA@%�CA_ �� �? E 2⁄

(20) End if
(21) End loop

4 Results

We have chosen a VHDL implementation of the IEEE binary double-precision
floating point arithmetic unit from opencores.org for our experiments in our MA-
directed CRV flow. Figure 3 shows the architecture of that example.

Figure 2. Heuristics for mutant-killing by utilizing past analysis information.

The test domain of the DUV is composed of its major input ports including the
arithmetic operator, rounding mode, and two operands. To execute the heuristics, this
domain is segmented by the number classification of the operands, norm, infinity,
denormal, etc. For strong mutation analysis, the mutant-distinguishing point is set at
the output ports of the core including the arithmetic output and exception signals.
Further, though not the focus of this experiment, a software implementation of the
floating point standard is used in the simulation as an oracle, to compare and assess
the correctness of the DUV output.

Figure 4 gives a summary of the experimental results. The design with a total
number of 2492 lines-of-code derives 2257 mutants, which have the mutation points
scattered over all the major sub-components. 58 of them are detected by the tool as
equivalent mutants. We then executed the flow in Figure 1 with two setups, one fixed
with a uniform input distribution, another also starting with a uniform distribution
but self-tuning directed by the heuristics. Each setup is executed twice for 200 loop
iterations, i.e., 200 test cases as shown in the figure to provide more evident data. The

adjustment threshold parameter of the heuristics is set to 1, and �F�%�HI_P$$J_ �� �?E
set to 0.01. Our studies also compared the simulation time with and without memory
utilization and found no significant difference. To conduct the two experiments with
uniform distribution, it took us 89460 and 101681 simulation runs for about 85 and 96
hours, respectively, which killed 1301 and 1289 mutants. The other two experiments
with the heuristics took 78460 and 78849 simulations for around 75 and 77 hours with
a mutant killing coverage of 1679 and 1668, respectively. The original test bench
delivered with the arithmetic core, simulating all the operations, rounding modes, and
corner cases, is also exercised with the mutation analysis. It killed 1440 mutants.

In summary, experiments gave a clear improvement by the heuristics against the
single uniform distribution, in terms of a higher total mutant-killing coverage and less
simulation effort. This means that our heuristics significantly advances the current
state of mutation-based verification automation. Although the deterministic test bench
exposes a certain amount of mutants more rapidly, it is the advantage of the CRV to
avoid the manual, labour intensive writing and improving of test cases.

Figure 3. The floating point arithmetic under CRV.

5 Conclusion

We primarily considered the cost model when applying mutation analysis as the
coverage metric to measure the completeness of a CRV flow. Basically, the
simulation effort is ��� ∗ �	�, where � stands for the number of test cases and � the
size of the design. � representing the design complexity grows rapidly along with the
Moore’s Law driven capacity of integrated circuits. In CRV, � is further enlarged as
the amount of test cases required to reach an adequacy is based on random generation.
More accurately, with some probability analyses �max� 1 ���⁄ + ∑ ��� ���⁄� � is
found to be the expected simulation runs. Based on this, a heuristics is developed that
collects the past analysis information to estimate the effectiveness of test domain
ranges and re-distributes the probability.

The CRV flow equipped with the dynamic distribution adjustment heuristics has
been implemented and experimented with CertitudeTM and a VHDL floating point
arithmetic unit. The results are encouraging and show the efficiency improvement in
terms of reaching more rapidly a higher mutant-killing coverage. With more, yet
automated simulation effort, it also surpasses the manual test bench that is carefully
composed by the author of the arithmetic core.

In future work, we will investigate different architecture and their impact on the
heuristics with a focus on control-oriented circuits like microprocessors. Since the
verification flow is based on simulation, it also scales well to large designs.

Figure 4. Experimental results.

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 50 100 150 200

ki
lle

d
m

ut
an

ts
 (

K
M

)

test-cases, also loop-iterations

KM - uniform distribution - exper.1
KM - uniform distribution - exper.2

KM - with heuristic - exper.1
KM - with heuristic - exper.2

KM - orignal TB

In contrast to other fault-based test generation approaches, MA systematically
correlates the mutant-killing and the test’s capability of revealing design errors. This
can be key technology for solving the verification bottleneck today. The work
presented in this paper is established on the macro relation between the test input
domain and the overall mutant killing. It promotes coverage efficiency but specific,
even-harder-to-expose mutants may remain. Here, future work will also consider the
automatic, deterministic test generation for exposing an individual mutant. Existing
solutions rely on symbolic execution and constraint solving with the assumption that
mutant behaviors propagate to the output if activated. This is a limitation when the
algorithms face complex SW/HW/system designs. More efficient, light-weight
solutions have to be developed to enable a practical deployment. Nevertheless, the
MA directed CRV will remain a necessary step to obtain a first mutant killing
coverage, since it sieves out the easy-to-kill mutants, which the deterministic test
generation algorithms can hardly do.

Acknowledgements. The work described herein is funded by the FP7 COCONUT
project (FP7-ICT-3217069), the BMBF ITEA2 project VERDE (VERDE
(01S09012H), and the DFG Sonderforschungsbereich SFB 614 (Self-Optimizing
Systems for Mechanical Engineering).

References

[1] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Hints on Test Data Selection: Help for the
Practicing Programmer. IEEE Computer, Volume 11, Issue 4, April 1978.

[2] R.A. DeMillo and A. J. Offutt. Constraint-Based Automatic Test Data Generation. IEEE
Transactions on Software Engineering, Volume 17, Issue 9, September 1991.

[3] W.E. Howden. Weak Mutation Testing and Completeness of Test Sets. IEEE Transactions
on Software Engineering, Volume 8, Issue 4, July 1982..

[4] A.J. Offutt. The coupling effect: fact or fiction. ACM SIGSOFT Software Engineering
Notes, Volume 14, Issue 8, December 1989.

[5] A.J. Offutt and E. J. Seaman. Using Symbolic Execution to Aid Automatic Test Data
Generation. In proceedings of the fifth Annual Conference on Computer Assurance.
COMPASS'90, Gaithersburg, MD, USA, June 1990.

[6] R.H. Untch, A. J. Offutt and M. J. Harrold. Mutation Analysis Using Mutant Schemata.
ACM SIGSOFT Software Engineering Notes, Volume 18, Issue 3, July 1993.

[7] M. Hampton and S. Petithomme. Leveraging a Commercial Mutation Analysis Tool For
Research. In proceedings of the Testing: Academic and Industrial Conference Practice
and Research Techniques- MUTATION. TAICPART-MUTATION'07, September 2007.

[8] S. Sengupta. Defect-based Tests: A Key Enabler for Successful Migration to Structural
Test. Intel Technology Journal, 1999.

[9] G. Al Hayek and C. Robach. From Specification Validation to Hardware Testing: A
Unified Method. In Proceedings of the IEEE International Test Conference on Test and
Design Validity. ITC'96, Washington, DC, USA, October 1996.

[10] S. Ghosh and T.J. Chakraborty. On Behavior Fault Modeling for Digital Designs. Journal
of Electronic Testing: Theory and Applications, Volume 2, Issue 2, June 1991.

[11] F. Ferrandi, F. Fummi and D. Sciuto. Implicit Test Generation for Behavioral VHDL
Models. In Proceedings of the 1998 IEEE International Test Conference. ITC'98,
Washington, DC, USA, October 1998.

[12] A. Fin and F. Fummi. A VHDL Error Simulator for Functional Test Generation. In
Proceedings of the 2000 conference on Design, Automation and Test in Europe. DATE'00,
Paris, France, March 2000.

[13] International Technology Roadmap for Semiconductors (ITRS). ITRS 2009 Edition.
http://www.itrs.net/Links/ 2009ITRS/Home2009.htm.

[14] SpringSoft. Functional Qualification Tool CertitudeTM. http://www.springsoft.com/
products/functional-qualification/certitude.

[15] F. Corno, M. Sonza Reorda, G. Squillero, A. Manzone and A. Pincetti. Automatic Test
Bench Generation for Validation of RT-Level Descriptions: An Industrial Experience. In
Proceedings of the 2000 conference on Design, Automation and Test in Europe. DATE'00,
Paris, France, March, 2000.

[16] S. Tasiran, F. Fallah, D. Chinnery, S. Weber and K. Keutzer. Coverage-Directed
Generation of Biased Random Inputs for Functional Validation of Sequential Circuits. In
Proceedings of the International Workshop on Logic and Synthesis, June, 2001.

[17] S. Fine and A. Ziv. Coverage directed test generation for functional verification using
bayesian networks. In Proceedings of the 40th annual Design Automation Conference.
DAC'03, Anaheim, CA, USA, 2003.

[18] Open SystemC Initiative Verification Working Group. SystemC Verification Library
Standard. http://www.systemc.org/downloads/standards, release 1.0p2, 2006.

[19] N. Bombieri, F. Fummi, G. Pravadelli, M. Hampton, and F. Letombe. Functional
Qualification of TLM Verification. In Proc. of the 2009 ACM/IEEE Design, Automation
and Test in Europe. DATE’09, Nice, France, April 2009.

[20] O. Lachish, E. Marcus, S. Ur and A. Ziv. Hole Analysis for Functional Coverage Data. In
Proceedings of the 39th Conference on Design Automation, pages 807-812, Jun 2002.

[21] S. Asaf, E. Marcus and A. Ziv. Defining coverage views to improve functional coverage
analysis. In Proceedings of the 41st Conference on Design Automation, pages 41–44, Jun
2004.

