
Evolutionary-Computation Based Risk Assessment of
Aircraft Landing Sequencing Algorithms

Wenjing Zhao1, Jiangjun Tang1, Sameer Alam1, Axel Bender2, Hussein A. Abbass

1

1 UNSW@ADFA, Canberra, Australia.
w.zhao@student.adfa.edu.au, j.tang@student.adfa.edu.au, h.abbass@adfa.edu.au

2DSTO, Edinburgh, Australia.
axel.bender@dsto.defence.gov.au

Abstract. Usually, Evolutionary Computation (EC) is used for optimisation
and machine learning tasks. Recently, a novel use of EC has been proposed –
Multiobjective Evolutionary Based Risk Assessment (MEBRA). MEBRA
characterises the problem space associated with good and inferior performance
of computational algorithms. Problem instances are represented (“scenario
Representation”) and evolved (“scenario Generation”) in order to evaluate
algorithms (“scenario Evaluation”). The objective functions aim at maximising
or minimising the success rate of an algorithm. In the “scenario Mining” step,
MEBRA identifies the patterns common in problem instances when an
algorithm performs best in order to understand when to use it, and in instances
when it performs worst in order to understand when not to use it.
 So far, MEBRA has only been applied to a limited number of problems. Here
we demonstrate its viability to efficiently detect hot spots in an algorithm's
problem space. In particular, we apply the basic MEBRA rationale in the area
of Air Traffic Management (ATM). We examine two widely used algorithms
for Aircraft Landing Sequencing: First Come First Served (FCFS) and
Constrained Position Shifting (CPS). Through the use of three different
problem (“scenario”) representations, we identify those patterns in ATM
problems that signal instances when CPS performs better than FCFS, and those
when it performs worse. We show that scenario representation affects the
quality of MEBRA outputs. In particular, we find that the variable-length
chromosome representation of aircraft scheduling sequence scenarios converges
fast and finds all relevant risk patterns associated with the use of FCFS and
CPS.

Keywords: Algorithms’ Behavior, Aircraft Sequencing, Evolutionary
Computation.

1 Introduction

Existing demands on the air traffic system routinely exceed the capacity of airports.
This leads to air-traffic imposed ground and airborne delays of aircraft. For the
majority of U.S. and European airports such delays are estimated to be over 15
minutes per aircraft [4] costing airlines billions of dollars per year [10]. Thus airports

mailto:w.zhao@student.adfa.edu.au�
mailto:j.tang@student.adfa.edu.au�
mailto:h.abbass@adfa.edu.au�
mailto:axel.bender@dsto.defence.gov.au�

are proving to be serious bottlenecks in handling rising air traffic densities. Since
constructing new airports or additional runways is not a near-term solution,
researchers investigate various approaches as how to make the most efficient use of
the available runways given safety constraints. Amongst these approaches is the
effective scheduling of aircraft landings, which can significantly improve runway
throughput capacity as well as safety and efficiency of airports.

It has been shown in the literature that the problem of finding optimal landing
sequences – when the constraints of spacing between arrivals depend on the aircraft
type as is the case in real-world applications – is NP-hard [6]. Thus it is unlikely that
efficient optimisation algorithms exist [6]. Even if there was an accurate schedule
optimiser, it would probably lack the speed to respond quickly to operational demands
in the high-paced work environment of air traffic controllers (ATC). In the real world,
therefore, fast and frugal heuristics are more useful than sophisticated but slow
algorithms.
 The most commonly used heuristics-based algorithm that generates efficient
aircraft landing sequences is First Come First Served (FCFS). The basis of this
method is the Estimated Time of Arrival (ETA) of aircraft at the runway and the
minimum time separation between aircraft [7]. In FCFS, the aircraft land in order of
their scheduled arrival times. ATC add suitable separation times to ensure appropriate
spacing between aircraft. FCFS is straightforward and favoured by airlines for its
fairness and by ATC for its simplicity that puts little demands on ATC workloads.
However, its drawback is that it may lead to reduced runway throughput due to
unnecessary spacing requirements [8].
 Another common approach is Constrained Position Shifting (CPS) [2] in which an
aircraft can be moved forward or backward in the FCFS schedule by a specified
maximum number of positions. This approach provides ATC with additional
flexibility and helps pilots to better predict landing times and positions [8]. However,
it also increases the controller’s workload in terms of increased ATC-Pilot
communication and controller directives.
 Both FCFS and CPS thus have their advantages and disadvantages, which express
themselves in variations of algorithmic performance depending on problem situation
and context of use. Considering the large amount of money lost because of runway
congestions, it makes economical sense to investigate in which aircraft landing
sequence scenarios (ALSS) CPS performs better (or worse) than FCFS. Such an
investigation will enable airports to identify and understand the risks, both negative
and positive, when choosing one scheduling heuristic over another.
 In this paper, we make use of the recently introduced Multiobjective Evolutionary
Based Risk Assessment (MEBRA) framework [1] to identify positive and negative
risks associated with the application of a particular algorithm. Rather than optimising
an algorithm, MEBRA explores and evaluates the risk profiles of algorithms. These
risk profiles are signatures in the problem space and associated with the performance
of a computational algorithm. In its risk assessment, MEBRA employs scenario
representation, scenario generation, scenario evaluation and scenario mining. Here the
term “scenario” refers to a problem instance in which the computational algorithm
under investigation is applied.
 So far though, MEBRA has only been applied to a limited number of problems.
Here we demonstrate its viability by applying it to the Air Traffic Management (ATM)

problem domain. We study performance and identify risks associated with the use of
FCFS and CPS in ALSS. Our paper further investigates how scenario representation
impacts on algorithm evaluation. We examine three different representations: Fixed
Length Chromosome, Variable Length Chromosome, and a Probabilistic Model.
 At the start of our application of MEBRA to ATM, random ALSS are generated
and encoded in the chromosome representation. Then complex landing sequence
scenarios are evolved over many generations by applying genetic operators and using
a fitness function that correlates with risk. This imposes selection pressure on the
population of scenarios. ALSS that are deemed “fitter individuals” have increased
likelihood to survive into the next generation. In the final “scenario Mining” step of
MEBRA, the scenario population at the end of evolution is used to identify common
characteristics, or “signatures”, of aircraft landing sequences that contribute to
schedule delays. This aids in understanding those factors that result in technical risks
in the generation of landing sequences when using scheduling heuristics such as
FCFS or CPS.
 The rest of this paper is organised as follows. In Section 2, we describe the aircraft
landing sequencing problem along with details of the FCFS and CPS algorithms. Next,
we present the MEBRA framework (Section 3) and how it applies to the risk
assessment of aircraft landing sequencing algorithms (Section 4). We illustrate the
approach in a simple example and describe our results in Section 5. Conclusions are
drawn in the final section.

2 Aircraft Landing Sequencing

The U.S Federal Aviation Administration (FAA) has established minimum spacing
requirements between landing aircraft to prevent the turbulence from wake vortices
[5]. If an aircraft interacts with the wake vortex of the aircraft landing in front of it, it
could lose control. To prevent this risk, a minimum time separation between aircraft is
mandated. This separation depends on both the size of the leading aircraft and that of
the trailing aircraft. The FAA divides aircraft into three weight classes, based on the
maximum take-off weight capability. These classes are:

1. Heavy Aircraft are capable of having a maximum takeoff weight of 255,000
lbs or more.

2. Large Aircraft can have more than 41,000 lbs and up to 255,000 lbs
maximum takeoff weight.

3. Small Aircraft are incapable of carrying more than 41,000 lbs takeoff weight.

A matrix of the minimum time separations mandated by the FAA is shown in

Table 1.

2.1 First Come First Served

FCFS is a prominent scheduling algorithm in Sequencing Theory [9]. It is the most
straightforward method to sequence aircraft arrivals in an airport. Much of present
technology has some relationship with it or is even based on it [6].

Table 1. Minimum time separation (in seconds) between landings as mandated by the FAA.

 Leading Aircraft

 Trailing Aircraft
 Heavy Large Small

 Heavy 96 157 196
 Large 60 69 131
 Small 60 69 82

FCFS determines the aircraft landing sequence according to the order of its estimated
time of arrival (ETA) at the runway. ETA is computed by the control center at the
time an incoming aircraft crosses the transition airspace boundary. If the difference
between the ETA of two successive aircraft violates the minimum separation time
constraints, then the Scheduled Time of Arrival (STA) of the trailing aircraft is
adjusted accordingly. The following numerical example illustrates this adjustment.
 Given seven aircraft, A, B, C, D, E, F, G, each belonging to one of the three weight
classes H (heavy), L (large) or S (small). FCFS orders these aircraft according to their
ETA, see third row of Table 2. It then adds time to an ETA, when the separation time
between two aircraft is smaller than the allowable minima shown in Table 1. For
instance, the ETA of the small aircraft C is only 60 sec later than the ETA of the
preceding large aircraft B. Thus 71 sec are added to the ETA of C to achieve a
separation of 131 sec as required by the FAA (Table 1). In the example, the STA of
all aircraft following C are now determined by adding the minimum separation time
to the STA of the leading aircraft because all STA calculated this way happen to be
later than the ETAs. The makespan (i.e. the difference between final STA and first
STA) in this example is 18m59s - 07m51s = 668 sec.
 FCFS scheduling establishes the landing sequence based on predicted landing times.
It therefore is easy to implement and does not put significant pressure onto ATC
workloads. However, it ignores information which can be used to increase runway
throughput capacity.

 Table 2. FCFS scheduling example

Aircraft A B C D E F G
Category L L S H L S H
ETA 07m51s 10m00s 11m00s 12m00s 13m00s 14m00s 15m00s
AC Order A:1 B:2 C:3 D:4 E:5 F:6 G:7
STA 07m51s 10m00s 12m11s 13m11s 15m48s 17m59s 18m59s

2.2 Constrained Position Shifting

CPS, first proposed by Dear [3], stipulates that the ETA-based schedule can be
changed slightly and that an aircraft may be moved up by a small number of positions.

Neumann and Erzberger [8] investigated an enumerative technique for computing the
sequence which minimises the makespan, subject to a single position shift (1-CPS)
constraint. In the example of Table 2, for instance, the swap of aircraft D and E would
result in a reduction of makespan by 23 sec: the STAs of E, D, F and G would be
13m20s, 14m20s, 17m36s and 18m36s, respectively. This is the basic motivation for
CPS methods.
 Finding the optimal ordering of a set of aircraft through CPS can be seen as a
search for the lowest-cost path through a tree of possible aircraft orderings, where the
cost is the sum of the time separations required between each pair of aircraft. For the
CPS problem, an initial sequence of aircraft is given, along with the list of minimum
separation constraints (e.g. Table 1) and the maximum possible time-shifts for each
aircraft. In the final sequence shown in Table 3, each aircraft is constrained to lie
within one shift from its initial position, and no aircraft must have a time of arrival
earlier than permitted by the maximum allowable time shift.

 Table 3. CPS scheduling example

Aircraft A B C D E F G
Category L L S H L S H
ETA 07m51s 10m00s 11m00s 12m00s 13m00s 14m00s 15m00s
AC Order A:1 B:2 C:3 E:4 D:5 F:6 G:7
STA 07m51s 10m00s 12m11s 13m20s 14m20s 17m63s 18m36s

3 MEBRA – Multiobjective Evolutionary Based Risk Assessment

The objective of this paper is to demonstrate how evolutionary computation (EC)
methods can be used to assess the performance of aircraft landing sequencing
algorithms. The approach we take is a simplified version of the Multiobjective
Evolutionary Based Risk Assessment (MEBRA) framework that is designed for the
purpose of exploring and evaluating computational algorithms under risk [1]. In
aircraft landing sequencing problems, risks associated with computational algorithms
include production of suboptimal scheduling sequences, i.e. unnecessarily large
makespans; computational complexity that results in algorithms taking too long and
becoming unresponsive to operational demands; and unnecessary increases of ATC
workloads. The occurrence of these risks depends on the specifics of the problem at
hand; for instance in an ALSS that requires a large number of aircraft to be scheduled
in a very short period of time ATC are more likely to get overloaded than in an ALSS
when only a few aircraft need to be sequenced. MEBRA of algorithmic performance
is thus concerned with searches on the problem space, also known as the “scenario
space”, rather than the solution space.

MEBRA comprises four building blocks: Scenario Representation, Scenario
Generation, Scenario Evaluation, and Scenario Mining. MEBRA’s Scenario
Representation can be as simple as sampling a parameter space that captures
quantitative aspects of a problem, or as complex as narratives that try to capture
futuristic strategic uncertainties. During Scenario Generation MEBRA makes use of

evolutionary computation. Problem instances are evolved over many generations
while being exposed to selection pressure. This pressure makes less risky scenarios
less likely to survive into the next generation and therefore is part of Scenario
Evaluation. In this paper, we make use of the single objective version of MEBRA,
called SEBRA. In the Scenario Mining step, MEBRA identifies risk patterns or “hot
spots”, i.e. conditions in scenario space under which risk eventuates. Scenario mining
techniques can be as simple as descriptive statistics of the evolved scenario
population or as complex as a framework that analyses dynamics and network
dependencies to unveil the “rules of the game”.

4 Application of MEBRA to Aircraft Landing Sequencing
Algorithms

4.1 ALSS Representation

In order to capture complex patterns of aircraft landing sequences, we use three
different chromosome representations: fixed-length sequence representing a problem
instance, a variable-length sequence representing a pattern that is repeated in a
problem instance, and a stochastic finite state machine representation representing the
probability transition matrix to generate patterns. A detailed description of the three
representation is as follows:

1. Fixed-length chromosome. In the fixed-length chromosome, each gene
represents an aircraft type. The position in the chromosome corresponds to
the aircraft’s position in the arrival schedule according to ETA. The length of
the chromosome is equal to the total number of aircraft whose landing need to
be scheduled. In our experiments, the fixed-length chromosome contains 200
genes. At chromosome initialisation, ETA values are spaced with 1 sec and
assigned to the aircraft sequence. We use this initialisation condition because
having all aircraft arrive “at once” puts the biggest demand on the landing
sequencing algorithms and thus will facilitate the search for “hot spots” in
ALSS.

2. Variable-length chromosome. The variable-length chromosome encodes a
pattern. A pattern is a partial sequence of aircraft arrivals. As with the fixed-
length chromosome, each gene encodes an aircraft type. With respect to the
whole aircraft arrival sequence, the partial sequence has a starting point
described by a position in the arrival schedule and a length that is smaller than
the total number of aircraft to be scheduled. In our experiments, the starting
point is always the first position in the scheduling sequence and the pattern’s
length varies between 3 and 50. At the time a pattern is evaluated, it is
repeated as many times as needed to generate a 200-gene sequence. For
example, a pattern of length 50 would need to be repeated four times. This
normalises the scale when comparing-variable length and fixed-length
chromosome representations. The evolution based on the variable length

representation is pushed to find those patterns that optimise the fitness
function (see Subsection 4.3). A selection pressure is placed automatically to
favour shorter patterns since their frequency in the 200-gene sequence
increases.

3. Stochastic Finite State Machine (SFSM) chromosome. The SFSM
chromosome contains nine genes which encode how likely it is that an aircraft
type is followed by another in the schedule. The genes thus represent
probabilities of the nine possible SFSM transitions. The initial generation
initializes the chromosomes randomly from uniform distributions. Obviously,
when the SFSM is used to generate a sequence, transition probabilities out of
each node are normalised. Moreover, it is natural that this stochastic
representation would require multiple evaluations (30 in our case) of each
chromosome to approximate its fitness.

4.2 ALSS Generation

In the generation of ALSS we make use of evolutionary computation (EC) techniques.
In EC, a seed population of scenarios is evolved over many generations (implicit
parallelism) to explore the space of possible ALSS. From generation to generation,
individuals are subjected to single-point crossover and uniform mutation. Evolution
(“search”) proceeds to meet a given selection pressure (such as in Equation 2 below)
and according to some given rules; e.g. in our experiments (Section 4.5) we apply
tournament selection with elitism. Note that evolving ATM problems according to the
selection pressure in Equation 2 does not ensure that we always find scenarios for
which both FCFS and CPS generate optimal landing schedules. However, for most of
the evolved complex scenarios in the final population this actually is the case. It is
thus fair to assume that low-risk scenarios evolved with Equation 2 will have features
that differ from those of the high-risk problems generated under the selection pressure
of Equation 1 (below).

4.3 ALSS Evaluation

To assess both positive and negative risk of inefficiency-based delays in aircraft
landing sequencing algorithms we define two fitness functions. The first one is
designed to identify those situations where FCFS is inferior to CPS. Therefore, the
objective of the first fitness function is to maximise the difference between the FCFS
makespan and the CPS makespan. As mentioned earlier, we study worst-case
situations, i.e. when all aircraft in a sequence arrive within one second of each other
and are ready to be landed. The “negative-risk” objective function can be described
formally as follows:

Max {F = TFCFS – TCPS (1) } .

where TX

 denotes the makespan of algorithm X.

Fig. 1. The progress in fitness values as a function of the number of objective function evaluations.
Figures on the left are for the negative-risk objective function while those on right are for the
positive-risk objective function. The top figure depicts the evolution of a population of
scenarios encoded with fixed-length chromosome representation, the middle one for the
variable-length chromosome representation and the bottom one for the SFSM chromosome
representation of ALSS.

 As described earlier, in any ALSS the CPS method guarantees an equal or better
makespan than the FCFS sequencing approach. By evolving solutions that optimise
the function in Equation 1, MEBRA will evolve problem instances for which CPS

considerably outperforms FCFS. While we cannot be sure that CPS is a very good
algorithm to use in such evolved complex scenarios, we definitely know that FCFS
performs very poorly. The evolutionary process thus finds scenario sets for which
CPS results in maximum improvements to the FCFS schedule; i.e. we identify
scenarios in which FCFS is particularly inefficient.
 The second fitness function, the “positive-risk” objective, is to minimise the
difference between the two makespans, i.e. we identify low-risk scenarios for which
CPS will not result in significantly reduced makespans. Formally,

Min {F = TFCFS – TCPS (2) } .

4.4 ALSS Mining

To compare among the three representations, we use three two-way 2x2 comparison
matrices. Each matrix captures the best-best, worst-best, worst-worst, and best-worst
overlaps between the solutions found using each representation. Each cell in the
matrix is the comparison result between:

1. Fixed length v.s. Variable Length: the count of matched patterns by sliding
the pattern of the variable length and counting its frequency in the fixed
length. We start from the first aircraft in fixed length chromosome and slide
the variable length chromosome by one aircraft position at each step. We
count the number of matches between the partial sequence in fixed length is
as same as the whole sequence of variable length chromosome.

2. Fixed length v.s. SFSM: the distance of probabilities of transitions by
transforming the fixed length to a SFSM using the frequency of transitions
found in the fixed length chromosome. We calculate the frequency of aircraft
transitions in the fixed length chromosome and translate these frequencies
into the stochastic finite state machine representation. We obtain nine
transition probabilities from the fixed length chromosome with the same
format as the SFSM chromosome. The Euclidean distance between the two
normalized probability vectors is used to calculate similarities.

3. Variable Length v.s. SFSM: the distance of probabilities of transitions by
transforming the variable length into the fixed length (by repeating the
patterns) then transforming the fixed length to a SFSM using the frequency of
transitions found in the 200-gene sequence. The calculations are then done in
the same way illustrated in the previous step.

4.5 Experimental Setup

We ran each of the 6 SEBRA evolutions 30 times with different seeds and a
population size of 200. We apply tournament selection with elitism, single-point
crossover with probability 0.9 and uniform mutation with probability equal to the
reciprocal of the chromosome length. For the variable length chromosome, the
mutation is set to 0.02. Those parameters are chosen carefully after a number of

sample runs. We allowed sufficient number of objective evaluations in each run for
evolution to become stable (the best solution does not change significantly).

5 Results

The progress in the two fitness functions, “negative-risk” and “positive-risk”
objectives, corresponding to each of the six experimental setups and the associated 30
seeds is plotted in Figure 1.

The following observations can be made:

1. Three types of local optima in the negative-risk objectives can be

distinguished when we use a variable-length chromosome representation of
ALSS – one with a fitness value of around 5000, a second with a fitness of
approximately 4400, and a third one with fitness of about 4000.

2. Both fixed-length and SFSM chromosome representations appear to have
become stuck between two of the three local optima found by the variable-
length chromosome.

3. In the variable-length chromosome representation the number of objective
evaluations to convergence is an order of magnitude smaller than the
evaluations needed in the other two scenario representations.

This suggests that it is more efficient to evolve pattern (as in the experiments with
variable-length ALSS chromosomes) than to evolve whole scenarios.

 Table 4. Count of Building Blocks Matches in Fixed-Length vs Variable-Length ALSS

Table 5. Distance of Probabilities for Building Blocks when comparing SFSM vs
Fixed-Length and vs Variable-Length ALSS

We now address the question whether the patterns found by evolving the variable-
length representation are also present in the evolved fixed-length and SFSM ALSS.
Table 4 shows that the patterns which maximize the difference between FCFS and
CPS (“worst”-case scenarios, as of Eq.1) and which are found by evolving variable-

 Fixed
 best worst

Variable best 20196 0
 worst 0 7200

 Fixed Variable
 best worst best worst

SFSM best 0.718186 1.452852 0.635106 1.827628
 worst 1.898998 0.839643 1.914774 1.079916

length ALSS can be found with high frequency in the evolved fixed-length ALSS.
These patterns are not at all present in fixed-length scenarios that minimize the
difference between the two makespans (“best”-case scenarios, as of Eq.2). This
indicates that the variable-length patterns are some sort of building blocks in this
problem and that it is more efficient to evolve building blocks directly than to evolve
the solution vector as a whole.
 Similar trends are found in Table 5. The normalized transition probabilities found
by the fixed and variable length representations are closer to those found by the
SFSM representation in corresponding experiments.
 Figure-2 depicts two patterns found by evolving SFSM ALSS. Examples of high
frequency patterns found by evolving the variable-length representation when looking
for worst-case scenarios include: HSHSHSH, HSHSHSS, HLSHS, and SHSHSH.
These patterns are not as simple as they may appear. The HSHSHSH pattern, when
used as a building block will generate an HH link. Examples of building blocks found
in best-case scenarios include: SLLH, LHSL, HHHH, LHHHH, and HHHSS SLLH,
LHSL, HHHH, LHHHH, and HHHSS. It is easy to see why each of these patterns
would give an advantage to CPS over FCFS.
 In summary, we demonstrated that evolutionary computation can be a powerful
framework to evaluate the performance of different algorithms. A deeper analysis of
the resulting solutions can shed light on the problem patterns that determine strengths
and weaknesses of an algorithm compared with another (baseline) algorithm. In the
problem domain investigated in this paper, discovering these patterns allows to
balance safety risks that can result from an unnecessary increase of ATC workloads
and the (economic and ecological) costs that result from unnecessary delays or
holdings of aircraft.

 Fig. 2. Two examples of SFSM found in the case of Max objective function.

6 Conclusions

For many years, Evolutionary Computation (EC) has been successfully applied to
optimisation problems, although almost exclusively to evolve solutions for such
problems. In this paper, we showed that EC techniques can be used in a novel way,
namely to assist in the assessment of algorithmic performance. We employed the
Multiobjective Evolutionary Based Risk Assessment (MEBRA) concept to evolve

problem instances in which heuristic algorithms perform particularly poorly or
particularly well.
 MEBRA can be used as a comparative analysis technique. Through the application
of clustering methods, pattern analysis and the like to the population of evolved
problem instances, or scenarios, it can detect signatures, or “hot spots”, in the scenario
space for which an algorithm performs better or worse than a reference algorithm.
Thus, MEBRA provides valuable information about when it is best to use one
algorithm over another.
 We applied a single-objective version of the MEBRA framework – SEBRA – to the
comparison of two prevalent heuristics used in the landing sequencing of aircraft
arrivals in an airport: the First Come First Served (FCFS) and Constrained Position
Shifting (CPS) algorithms. We found indeed that SEBRA could identify hot spots in
the problem space for which FCFS performed markedly worse than CPS. We also
found patterns in the sequences of estimated time of arrival (ETA), for which FCFS
performs equally well as the computationally more complex CPS. The patterns were
interesting and could easily be interpreted by making use of the minimum separation
time matrix.
 Our results indicate that convergence and variance of SEBRA depend on the
chromosome representations for the SEBRA problem instances. The fixed-length
chromosome and stochastic representations were stable and converged reasonably
fast. The variable-length chromosome representation converged the fastest and found
all patterns of interest.

References

1. Abbass, H.A., Alam, S., Bender, A.: MEBRA: Multiobjective Evolutionary Based Risk
Assessment. Computational Intelligence Magazine, August: 29--36 (2009)

2. Balakrishnan, H., Chandran, B.: Scheduling aircraft landing under constrained position
shifting. AIAA Guidance, Navigation, and Control Conference and Exhibit (2006)

3. Dear, R.: The dynamic scheduling of aircraft in the near terminal area. Technical report,
M.I.T (1976)

4. Donohue, G., Laska, W.: United States and European Airport Capacity Assessment using the
GMU Macroscopic Capacity Model (MCM). In Proc. of the 3rd USA/Europe ATM R&D
Seminar, Napoli, Italy (2000)

5. FAA: Aeronautical Information Manual/Federal Aviation Regulation. McGraw-Hill (2003)
6. Hu, X., Chen, W.: Genetic algorithm based on receding horizon control for arrival

sequencing and scheduling. Engineering Applications of Articial Intelligence, 18:633--642
(2005)

7. Neuman, F., Erzberger, H.: Analysis of sequencing and scheduling methods for arrival traffic
(1990)

8. Neuman, F., Erzberger, H.: Analysis of delay reducing and fuel saving sequencing and
spacing algorithms for arrival spacing. Technical report, NASA Technical Memorandum
103880 (1991)

9. Pinedo, M.: Scheduling:theory,algorithms,and systems. Prentice-Hall, New Jersey (2002)
10. Wickens, C.D.: The Future of Air Traffic Control, chapter Human Operators and

Automation. National Academy Press, Washington, D.C. (1998)

