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Abstract. Usually, Evolutionary Computation (EC) is used for optimisation 
and machine learning tasks. Recently, a novel use of EC has been proposed – 
Multiobjective Evolutionary Based Risk Assessment (MEBRA). MEBRA 
characterises the problem space associated with good and inferior performance 
of computational algorithms. Problem instances are represented (“scenario 
Representation”) and evolved (“scenario Generation”) in order to evaluate 
algorithms (“scenario Evaluation”). The objective functions aim at maximising 
or minimising the success rate of an algorithm. In the “scenario Mining” step, 
MEBRA identifies the patterns common in problem instances when an 
algorithm performs best in order to understand when to use it, and in instances 
when it performs worst in order to understand when not to use it.  
  So far, MEBRA has only been applied to a limited number of problems. Here 
we demonstrate its viability to efficiently detect hot spots in an algorithm's 
problem space. In particular, we apply the basic MEBRA rationale in the area 
of Air Traffic Management (ATM). We examine two widely used algorithms 
for Aircraft Landing Sequencing: First Come First Served (FCFS) and 
Constrained Position Shifting (CPS). Through the use of three different 
problem (“scenario”) representations, we identify those patterns in ATM 
problems that signal instances when CPS performs better than FCFS, and those 
when it performs worse. We show that scenario representation affects the 
quality of MEBRA outputs. In particular, we find that the variable-length 
chromosome representation of aircraft scheduling sequence scenarios converges 
fast and finds all relevant risk patterns associated with the use of FCFS and 
CPS.  

Keywords: Algorithms’ Behavior, Aircraft Sequencing, Evolutionary 
Computation. 

1   Introduction 

Existing demands on the air traffic system routinely exceed the capacity of airports. 
This leads to air-traffic imposed ground and airborne delays of aircraft. For the 
majority of U.S. and European airports such delays are estimated to be over 15 
minutes per aircraft [4] costing airlines billions of dollars per year [10]. Thus airports 
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are proving to be serious bottlenecks in handling rising air traffic densities. Since 
constructing new airports or additional runways is not a near-term solution, 
researchers investigate various approaches as how to make the most efficient use of 
the available runways given safety constraints. Amongst these approaches is the 
effective scheduling of aircraft landings, which can significantly improve runway 
throughput capacity as well as safety and efficiency of airports. 

It has been shown in the literature that the problem of finding optimal landing 
sequences – when the constraints of spacing between arrivals depend on the aircraft 
type as is the case in real-world applications – is NP-hard [6]. Thus it is unlikely that 
efficient optimisation algorithms exist [6]. Even if there was an accurate schedule 
optimiser, it would probably lack the speed to respond quickly to operational demands 
in the high-paced work environment of air traffic controllers (ATC). In the real world, 
therefore, fast and frugal heuristics are more useful than sophisticated but slow 
algorithms. 
  The most commonly used heuristics-based algorithm that generates efficient 
aircraft landing sequences is First Come First Served (FCFS). The basis of this 
method is the Estimated Time of Arrival (ETA) of aircraft at the runway and the 
minimum time separation between aircraft [7]. In FCFS, the aircraft land in order of 
their scheduled arrival times. ATC add suitable separation times to ensure appropriate 
spacing between aircraft. FCFS is straightforward and favoured by airlines for its 
fairness and by ATC for its simplicity that puts little demands on ATC workloads. 
However, its drawback is that it may lead to reduced runway throughput due to 
unnecessary spacing requirements [8]. 
  Another common approach is Constrained Position Shifting (CPS) [2] in which an 
aircraft can be moved forward or backward in the FCFS schedule by a specified 
maximum number of positions. This approach provides ATC with additional 
flexibility and helps pilots to better predict landing times and positions [8]. However, 
it also increases the controller’s workload in terms of increased ATC-Pilot 
communication and controller directives. 
  Both FCFS and CPS thus have their advantages and disadvantages, which express 
themselves in variations of algorithmic performance depending on problem situation 
and context of use. Considering the large amount of money lost because of runway 
congestions, it makes economical sense to investigate in which aircraft landing 
sequence scenarios (ALSS) CPS performs better (or worse) than FCFS. Such an 
investigation will enable airports to identify and understand the risks, both negative 
and positive, when choosing one scheduling heuristic over another. 
   In this paper, we make use of the recently introduced Multiobjective Evolutionary 
Based Risk Assessment (MEBRA) framework [1] to identify positive and negative 
risks associated with the application of a particular algorithm. Rather than optimising 
an algorithm, MEBRA explores and evaluates the risk profiles of algorithms. These 
risk profiles are signatures in the problem space and associated with the performance 
of a computational algorithm. In its risk assessment, MEBRA employs scenario 
representation, scenario generation, scenario evaluation and scenario mining. Here the 
term “scenario” refers to a problem instance in which the computational algorithm 
under investigation is applied. 
  So far though, MEBRA has only been applied to a limited number of problems. 
Here we demonstrate its viability by applying it to the Air Traffic Management (ATM) 



problem domain. We study performance and identify risks associated with the use of 
FCFS and CPS in ALSS. Our paper further investigates how scenario representation 
impacts on algorithm evaluation. We examine three different representations: Fixed 
Length Chromosome, Variable Length Chromosome, and a Probabilistic Model. 
   At the start of our application of MEBRA to ATM, random ALSS are generated 
and encoded in the chromosome representation. Then complex landing sequence 
scenarios are evolved over many generations by applying genetic operators and using 
a fitness function that correlates with risk. This imposes selection pressure on the 
population of scenarios. ALSS that are deemed “fitter individuals” have increased 
likelihood to survive into the next generation. In the final “scenario Mining” step of 
MEBRA, the scenario population at the end of evolution is used to identify common 
characteristics, or “signatures”, of aircraft landing sequences that contribute to 
schedule delays. This aids in understanding those factors that result in technical risks 
in the generation of landing sequences when using scheduling heuristics such as 
FCFS or CPS. 
  The rest of this paper is organised as follows. In Section 2, we describe the aircraft 
landing sequencing problem along with details of the FCFS and CPS algorithms. Next, 
we present the MEBRA framework (Section 3) and how it applies to the risk 
assessment of aircraft landing sequencing algorithms (Section 4). We illustrate the 
approach in a simple example and describe our results in Section 5. Conclusions are 
drawn in the final section. 

2   Aircraft Landing Sequencing 

The U.S Federal Aviation Administration (FAA) has established minimum spacing 
requirements between landing aircraft to prevent the turbulence from wake vortices 
[5]. If an aircraft interacts with the wake vortex of the aircraft landing in front of it, it 
could lose control. To prevent this risk, a minimum time separation between aircraft is 
mandated. This separation depends on both the size of the leading aircraft and that of 
the trailing aircraft. The FAA divides aircraft into three weight classes, based on the 
maximum take-off weight capability. These classes are: 

1. Heavy Aircraft are capable of having a maximum takeoff weight of 255,000 
lbs or more. 

2. Large Aircraft can have more than 41,000 lbs and up to 255,000 lbs 
maximum takeoff weight. 

3. Small Aircraft are incapable of carrying more than 41,000 lbs takeoff weight. 
 
A matrix of the minimum time separations mandated by the FAA is shown in 

Table 1. 

2.1   First Come First Served 

FCFS is a prominent scheduling algorithm in Sequencing Theory [9]. It is the most 
straightforward method to sequence aircraft arrivals in an airport. Much of present 
technology has some relationship with it or is even based on it [6]. 



Table 1.  Minimum time separation (in seconds) between landings as mandated by the FAA.  

 Leading  Aircraft 
 

        Trailing Aircraft 
 Heavy  Large  Small 

      Heavy   96   157   196 
      Large   60    69   131 
      Small   60    69    82 

   
 
FCFS determines the aircraft landing sequence according to the order of its estimated 
time of arrival (ETA) at the runway. ETA is computed by the control center at the 
time an incoming aircraft crosses the transition airspace boundary. If the difference 
between the ETA of two successive aircraft violates the minimum separation time 
constraints, then the Scheduled Time of Arrival (STA) of the trailing aircraft is 
adjusted accordingly. The following numerical example illustrates this adjustment. 
  Given seven aircraft, A, B, C, D, E, F, G, each belonging to one of the three weight 
classes H (heavy), L (large) or S (small). FCFS orders these aircraft according to their 
ETA, see third row of Table 2. It then adds time to an ETA, when the separation time 
between two aircraft is smaller than the allowable minima shown in Table 1. For 
instance, the ETA of the small aircraft C is only 60 sec later than the ETA of the 
preceding large aircraft B. Thus 71 sec are added to the ETA of C to achieve a 
separation of 131 sec as required by the FAA (Table 1). In the example, the STA of 
all aircraft following C are now determined by adding the minimum separation time 
to the STA of the leading aircraft because all STA calculated this way happen to be 
later than the ETAs. The makespan (i.e. the difference between final STA and first 
STA) in this example is 18m59s - 07m51s = 668 sec. 
  FCFS scheduling establishes the landing sequence based on predicted landing times. 
It therefore is easy to implement and does not put significant pressure onto ATC 
workloads. However, it ignores information which can be used to increase runway 
throughput capacity. 

                   Table 2.  FCFS scheduling example 

Aircraft      A   B   C   D   E   F   G 
Category   L   L   S   H   L   S   H 
ETA 07m51s 10m00s 11m00s 12m00s 13m00s 14m00s 15m00s 
AC Order  A:1  B:2  C:3  D:4  E:5  F:6  G:7 
STA 07m51s 10m00s 12m11s 13m11s 15m48s 17m59s 18m59s 
 

2.2   Constrained Position Shifting 

CPS, first proposed by Dear [3], stipulates that the ETA-based schedule can be 
changed slightly and that an aircraft may be moved up by a small number of positions. 



Neumann and Erzberger [8] investigated an enumerative technique for computing the 
sequence which minimises the makespan, subject to a single position shift (1-CPS) 
constraint. In the example of Table 2, for instance, the swap of aircraft D and E would 
result in a reduction of makespan by 23 sec: the STAs of E, D, F and G would be 
13m20s, 14m20s, 17m36s and 18m36s, respectively. This is the basic motivation for 
CPS methods. 
  Finding the optimal ordering of a set of aircraft through CPS can be seen as a 
search for the lowest-cost path through a tree of possible aircraft orderings, where the 
cost is the sum of the time separations required between each pair of aircraft. For the 
CPS problem, an initial sequence of aircraft is given, along with the list of minimum 
separation constraints (e.g. Table 1) and the maximum possible time-shifts for each 
aircraft.  In the final sequence shown in Table 3, each aircraft is constrained to lie 
within one shift from its initial position, and no aircraft must have a time of arrival 
earlier than permitted by the maximum allowable time shift. 
 
                   Table 3.  CPS scheduling example 
 
Aircraft      A   B   C   D   E   F   G 
Category   L   L   S   H   L   S   H 
ETA 07m51s 10m00s 11m00s 12m00s 13m00s 14m00s 15m00s 
AC Order  A:1  B:2  C:3  E:4  D:5  F:6  G:7 
STA 07m51s 10m00s 12m11s 13m20s 14m20s 17m63s 18m36s 

3  MEBRA – Multiobjective Evolutionary Based Risk Assessment 

The objective of this paper is to demonstrate how evolutionary computation (EC) 
methods can be used to assess the performance of aircraft landing sequencing 
algorithms. The approach we take is a simplified version of the Multiobjective 
Evolutionary Based Risk Assessment (MEBRA) framework that is designed for the 
purpose of exploring and evaluating computational algorithms under risk [1]. In 
aircraft landing sequencing problems, risks associated with computational algorithms 
include production of suboptimal scheduling sequences, i.e. unnecessarily large 
makespans; computational complexity that results in algorithms taking too long and 
becoming unresponsive to operational demands; and unnecessary increases of ATC 
workloads. The occurrence of these risks depends on the specifics of the problem at 
hand; for instance in an ALSS that requires a large number of aircraft to be scheduled 
in a very short period of time ATC are more likely to get overloaded than in an ALSS 
when only a few aircraft need to be sequenced. MEBRA of algorithmic performance 
is thus concerned with searches on the problem space, also known as the “scenario 
space”, rather than the solution space. 

MEBRA comprises four building blocks: Scenario Representation, Scenario 
Generation, Scenario Evaluation, and Scenario Mining. MEBRA’s Scenario 
Representation can be as simple as sampling a parameter space that captures 
quantitative aspects of a problem, or as complex as narratives that try to capture 
futuristic strategic uncertainties. During Scenario Generation MEBRA makes use of 



evolutionary computation. Problem instances are evolved over many generations 
while being exposed to selection pressure. This pressure makes less risky scenarios 
less likely to survive into the next generation and therefore is part of Scenario 
Evaluation. In this paper, we make use of the single objective version of MEBRA, 
called SEBRA. In the Scenario Mining step, MEBRA identifies risk patterns or “hot 
spots”, i.e. conditions in scenario space under which risk eventuates. Scenario mining 
techniques can be as simple as descriptive statistics of the evolved scenario 
population or as complex as a framework that analyses dynamics and network 
dependencies to unveil the “rules of the game”. 

4 Application of MEBRA to Aircraft Landing Sequencing 
Algorithms 

4.1   ALSS Representation 

In order to capture complex patterns of aircraft landing sequences, we use three 
different chromosome representations: fixed-length sequence representing a problem 
instance, a variable-length sequence representing a pattern that is repeated in a 
problem instance, and a stochastic finite state machine representation representing the 
probability transition matrix to generate patterns. A detailed description of the three 
representation is as follows:   

1. Fixed-length chromosome. In the fixed-length chromosome, each gene 
represents an aircraft type. The position in the chromosome corresponds to 
the aircraft’s position in the arrival schedule according to ETA. The length of 
the chromosome is equal to the total number of aircraft whose landing need to 
be scheduled. In our experiments, the fixed-length chromosome contains 200 
genes. At chromosome initialisation, ETA values are spaced with 1 sec and 
assigned to the aircraft sequence. We use this initialisation condition because 
having all aircraft arrive “at once” puts the biggest demand on the landing 
sequencing algorithms and thus will facilitate the search for “hot spots” in 
ALSS. 

2. Variable-length chromosome. The variable-length chromosome encodes a 
pattern. A pattern is a partial sequence of aircraft arrivals. As with the fixed-
length chromosome, each gene encodes an aircraft type. With respect to the 
whole aircraft arrival sequence, the partial sequence has a starting point 
described by a position in the arrival schedule and a length that is smaller than 
the total number of aircraft to be scheduled. In our experiments, the starting 
point is always the first position in the scheduling sequence and the pattern’s 
length varies between 3 and 50. At the time a pattern is evaluated, it is 
repeated as many times as needed to generate a 200-gene sequence. For 
example, a pattern of length 50 would need to be repeated four times. This 
normalises the scale when comparing-variable length and fixed-length 
chromosome representations. The evolution based on the variable length 



representation is pushed to find those patterns that optimise the fitness 
function (see Subsection 4.3). A selection pressure is placed automatically to 
favour shorter patterns since their frequency in the 200-gene sequence 
increases. 

3. Stochastic Finite State Machine (SFSM) chromosome. The SFSM 
chromosome contains nine genes which encode how likely it is that an aircraft 
type is followed by another in the schedule. The genes thus represent 
probabilities of the nine possible SFSM transitions. The initial generation 
initializes the chromosomes randomly from uniform distributions. Obviously, 
when the SFSM is used to generate a sequence, transition probabilities out of 
each node are normalised. Moreover, it is natural that this stochastic 
representation would require multiple evaluations (30 in our case) of each 
chromosome to approximate its fitness. 

4.2   ALSS Generation 

In the generation of ALSS we make use of evolutionary computation (EC) techniques. 
In EC, a seed population of scenarios is evolved over many generations (implicit 
parallelism) to explore the space of possible ALSS. From generation to generation, 
individuals are subjected to single-point crossover and uniform mutation. Evolution 
(“search”) proceeds to meet a given selection pressure (such as in Equation 2 below) 
and according to some given rules; e.g. in our experiments (Section 4.5) we apply 
tournament selection with elitism. Note that evolving ATM problems according to the 
selection pressure in Equation 2 does not ensure that we always find scenarios for 
which both FCFS and CPS generate optimal landing schedules. However, for most of 
the evolved complex scenarios in the final population this actually is the case. It is 
thus fair to assume that low-risk scenarios evolved with Equation 2 will have features 
that differ from those of the high-risk problems generated under the selection pressure 
of Equation 1 (below). 

4.3   ALSS Evaluation 

To assess both positive and negative risk of inefficiency-based delays in aircraft 
landing sequencing algorithms we define two fitness functions. The first one is 
designed to identify those situations where FCFS is inferior to CPS. Therefore, the 
objective of the first fitness function is to maximise the difference between the FCFS 
makespan and the CPS makespan. As mentioned earlier, we study worst-case 
situations, i.e. when all aircraft in a sequence arrive within one second of each other 
and are ready to be landed. The “negative-risk” objective function can be described 
formally as follows: 

Max {F = TFCFS – TCPS (1) } . 

where TX
 

 denotes the makespan of algorithm X.  



        

       

       
 

Fig. 1. The progress in fitness values as a function of the number of objective function evaluations. 
Figures on the left are for the negative-risk objective function while those on right are for the 
positive-risk objective function. The top figure depicts the evolution of a population of 
scenarios encoded with fixed-length chromosome representation, the middle one for the 
variable-length chromosome representation and the bottom one for the SFSM chromosome 
representation of ALSS. 

 
  As described earlier, in any ALSS the CPS method guarantees an equal or better 
makespan than the FCFS sequencing approach. By evolving solutions that optimise 
the function in Equation 1, MEBRA will evolve problem instances for which CPS 



considerably outperforms FCFS. While we cannot be sure that CPS is a very good 
algorithm to use in such evolved complex scenarios, we definitely know that FCFS 
performs very poorly. The evolutionary process thus finds scenario sets for which 
CPS results in maximum improvements to the FCFS schedule; i.e. we identify 
scenarios in which FCFS is particularly inefficient. 
  The second fitness function, the “positive-risk” objective, is to minimise the 
difference between the two makespans, i.e. we identify low-risk scenarios for which 
CPS will not result in significantly reduced makespans. Formally, 

Min {F = TFCFS – TCPS (2) } . 

4.4   ALSS Mining 

To compare among the three representations, we use three two-way 2x2 comparison 
matrices. Each matrix captures the best-best, worst-best, worst-worst, and best-worst 
overlaps between the solutions found using each representation. Each cell in the 
matrix is the comparison result between: 
 

1. Fixed length v.s. Variable Length: the count of matched patterns by sliding 
the pattern of the variable length and counting its frequency in the fixed 
length. We start from the first aircraft in fixed length chromosome and slide 
the variable length chromosome by one aircraft position at each step. We 
count the number of matches between the partial sequence in fixed length is 
as same as the whole sequence of variable length chromosome.  

2. Fixed length v.s. SFSM: the distance of probabilities of transitions by 
transforming the fixed length to a SFSM using the frequency of transitions 
found in the fixed length chromosome. We calculate the frequency of aircraft 
transitions in the fixed length chromosome and translate these frequencies 
into the stochastic finite state machine representation. We obtain nine 
transition probabilities from the fixed length chromosome with the same 
format as the SFSM chromosome. The Euclidean distance between the two 
normalized probability vectors is used to calculate similarities. 

3. Variable Length v.s. SFSM: the distance of probabilities of transitions by 
transforming the variable length into the fixed length (by repeating the 
patterns) then transforming the fixed length to a SFSM using the frequency of 
transitions found in the 200-gene sequence. The calculations are then done in 
the same way illustrated in the previous step. 

4.5   Experimental Setup 

We ran each of the 6 SEBRA evolutions 30 times with different seeds and a 
population size of 200. We apply tournament selection with elitism, single-point 
crossover with probability 0.9 and uniform mutation with probability equal to the 
reciprocal of the chromosome length. For the variable length chromosome, the 
mutation is set to 0.02. Those parameters are chosen carefully after a number of 



sample runs. We allowed sufficient number of objective evaluations in each run for 
evolution to become stable (the best solution does not change significantly). 

5   Results 

The progress in the two fitness functions, “negative-risk” and “positive-risk” 
objectives, corresponding to each of the six experimental setups and the associated 30 
seeds is plotted in Figure 1. 

The following observations can be made: 
 
1. Three types of local optima in the negative-risk objectives can be 

distinguished when we use a variable-length chromosome representation of 
ALSS – one with a fitness value of around 5000, a second with a fitness of 
approximately 4400, and a third one with fitness of about 4000. 

2. Both fixed-length and SFSM chromosome representations appear to have 
become stuck between two of the three local optima found by the variable-
length chromosome. 

3. In the variable-length chromosome representation the number of objective 
evaluations to convergence is an order of magnitude smaller than the 
evaluations needed in the other two scenario representations. 

 
This suggests that it is more efficient to evolve pattern (as in the experiments with 
variable-length ALSS chromosomes) than to evolve whole scenarios. 
   
  Table 4.  Count of Building Blocks Matches in Fixed-Length vs Variable-Length ALSS 
 
 
 
   
 
 
 
Table 5.  Distance of Probabilities for Building Blocks when comparing SFSM vs 
Fixed-Length and vs Variable-Length ALSS  
 
 
 
 
  
 
 
 
We now address the question whether the patterns found by evolving the variable-
length representation are also present in the evolved fixed-length and SFSM ALSS. 
Table 4 shows that the patterns which maximize the difference between FCFS and 
CPS (“worst”-case scenarios, as of Eq.1) and which are found by evolving variable-

      Fixed 
 best  worst 

Variable  best  20196   0 
 worst   0  7200 

      Fixed       Variable 
 best  worst  best  worst 

SFSM  best 0.718186 1.452852 0.635106 1.827628 
 worst 1.898998 0.839643 1.914774 1.079916 



length ALSS can be found with high frequency in the evolved fixed-length ALSS. 
These patterns are not at all present in fixed-length scenarios that minimize the 
difference between the two makespans (“best”-case scenarios, as of Eq.2). This 
indicates that the variable-length patterns are some sort of building blocks in this 
problem and that it is more efficient to evolve building blocks directly than to evolve 
the solution vector as a whole. 
  Similar trends are found in Table 5. The normalized transition probabilities found 
by the fixed and variable length representations are closer to those found by the 
SFSM representation in corresponding experiments. 
  Figure-2 depicts two patterns found by evolving SFSM ALSS. Examples of high 
frequency patterns found by evolving the variable-length representation when looking 
for worst-case scenarios include: HSHSHSH, HSHSHSS, HLSHS, and SHSHSH. 
These patterns are not as simple as they may appear. The HSHSHSH pattern, when 
used as a building block will generate an HH link. Examples of building blocks found 
in best-case scenarios include: SLLH, LHSL, HHHH, LHHHH, and HHHSS SLLH, 
LHSL, HHHH, LHHHH, and HHHSS. It is easy to see why each of these patterns 
would give an advantage to CPS over FCFS. 
  In summary, we demonstrated that evolutionary computation can be a powerful 
framework to evaluate the performance of different algorithms. A deeper analysis of 
the resulting solutions can shed light on the problem patterns that determine strengths 
and weaknesses of an algorithm compared with another (baseline) algorithm. In the 
problem domain investigated in this paper, discovering these patterns allows to 
balance safety risks that can result from an unnecessary increase of ATC workloads 
and the (economic and ecological) costs that result from unnecessary delays or 
holdings of aircraft. 
 

  
 
      Fig. 2. Two examples of SFSM found in the case of Max objective function. 

6   Conclusions 

For many years, Evolutionary Computation (EC) has been successfully applied to 
optimisation problems, although almost exclusively to evolve solutions for such 
problems. In this paper, we showed that EC techniques can be used in a novel way, 
namely to assist in the assessment of algorithmic performance. We employed the 
Multiobjective Evolutionary Based Risk Assessment (MEBRA) concept to evolve 



problem instances in which heuristic algorithms perform particularly poorly or 
particularly well. 
  MEBRA can be used as a comparative analysis technique. Through the application 
of clustering methods, pattern analysis and the like to the population of evolved 
problem instances, or scenarios, it can detect signatures, or “hot spots”, in the scenario 
space for which an algorithm performs better or worse than a reference algorithm. 
Thus, MEBRA provides valuable information about when it is best to use one 
algorithm over another. 
  We applied a single-objective version of the MEBRA framework – SEBRA – to the 
comparison of two prevalent heuristics used in the landing sequencing of aircraft 
arrivals in an airport: the First Come First Served (FCFS) and Constrained Position 
Shifting (CPS) algorithms. We found indeed that SEBRA could identify hot spots in 
the problem space for which FCFS performed markedly worse than CPS. We also 
found patterns in the sequences of estimated time of arrival (ETA), for which FCFS 
performs equally well as the computationally more complex CPS. The patterns were 
interesting and could easily be interpreted by making use of the minimum separation 
time matrix. 
  Our results indicate that convergence and variance of SEBRA depend on the 
chromosome representations for the SEBRA problem instances. The fixed-length 
chromosome and stochastic representations were stable and converged reasonably 
fast. The variable-length chromosome representation converged the fastest and found 
all patterns of interest. 
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