Experiments with Biologically-Inspired Methods
for Service Assignment in Wireless Sensor
Networks

Tales Heimfarth and Peter Janacik

Abstract Given the scarcity of energy in wireless sensor networks (@JSh-
network data processing by distributed, cooperating sesvis often used to reduce
the amount of information that has to be routed to the bagmistand thereby to
reduce communication and energy consumption. Howeverjriomize the amount
of communication between services and their requesterptiations of services in
the network have to be selected carefully. Therefore, tympproposes an efficient
biologically-inspired heuristic for service assignmemdWSNs. In order to reduce
the amount of information exchange necessary for our hénge use a concept
observed in ant colonies that utilizes only local inforroatiWe model packets as
ants (depositing pheromones at the visited nodes), seraEéood sources and re-
questers as formicaries. To optimize an objective funcfreduction of commu-
nication distance between services and requesters), daorexpgent makes local
service assignment decisions based on solely local infimmahe pheromones de-
posited by the ants. Furthermore, our paper presents theafatefinition of the
problem of service assignment and a thorough analysis @cdstion of the results
of our experiments, which show the efficiency of our approach

1 Introduction

Wireless sensor networks (WSN) consist of a large number dfeelcled sensors
connected via wireless links that are deployed in the mosit@nvironment. Each
node in such a network is equipped with a small processost@ined memory, a
set of sensors and, in some application examples, actu&neskey point of such
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networks is the energy efficiency: since it is not feasibleejplace batteries after
deployment, the energy must be carefully managed in ordactease the life time
of the system.

In-network data processing techniques have been sucttgssfiployed to im-
prove considerably the energy efficiency of the networkidlad of letting each sin-
gle node send its raw sensor data to the base station, widabsia high amount
of multi-hop traffic, the idea is to process the data locatiyorder to compute a
higher level result that will be transmitted to the basei@atSince nodes are only
equipped with a very constrained hardware, this in-netvpodcessing, carried out
by cooperating services, is distributed among neighbanimgdes. Therefore, there
is the need for an adequate abstraction implemented by #ratipy system (OS),
which offers the functionality of dynamic service re-assigent to the application.
This means that the OS should control the migration of theices.

We developed NanoOS [5], an OS for wireless sensor netwoitkstie aim
of supporting collaborative processing. In this work, wenfalize the problem of
allocating the mobile services to nodes of our network withdbjective of reducing
the communication overhead. Given a network topology gramdh a task/service
interaction graph, we aim to map the services to the noddseafi¢twork targeting
the minimization of the objective function that in our casehie communication
cost. Due to the fact that our problem is NP-complete, wenthice a heuristic,
responsible for the dynamic assignment of the system s=rwidthin the sensor
network.

This paper is organized as follows: Section 2 reviews theesikthe-art in ser-
vice assignment for WSNs, before Section 3 presents thegwobEfinition. Sec-
tion 4 introduces our ant-based service assignment hieynghich consists of a
basic and extended version. The results of the evaluati@uioheuristic are then
described in Section 5. Finally, Section 6 presents thelosions.

2 Related Work

In this section, existing approaches dealing with migratié services in wireless
sensor networks will be presented. Although there is a withge of middleware
and virtual machine approaches, at this moment, the majofribperating systems
for WSNs do not provide service assignment mechanisms. Gleefact that most
task/service assignment mechanisms used in WSNs are oadioieling during run-
time), code mobility is necessary for such approaches.

In the Sensorware [3] virtual machine, the application &siesof scripts de-
ployed on a subset of network nodes. Scripts function likéestnachines, influ-
enced by external events. Scripts may replicate, so thatpgpkcation has the con-
trol of the service assignment, which enables agents to imalddual strategies,
implemented by the application programmer. In contrasbuinapproach, the oper-
ating system controls the migration of services accordingrt OS location policy
optimizing a given objective function. This disburdens tiser from having to im-
plement a migration policy in each application.
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MagnetOS [1] uses the two online algorithms NetCenter antPiefor deci-
sions on system component assignment. NetPull monitorsreonitation at the
link level and migrates components one hop towards the beighith the greatest
communication. NetCenter, on the other hand, relies onarétievel information
and migrates objects to the node hosting the componen&g)abmmunicate the
most with, possibly over multiple hops. Differently from rosystem, NetCenter
transfers the system components directly to the node lip#tim object with the
highest interaction. This may lead to a non-optimal assgmnand oscillations,
since the sum of the communication coming from other objattifferent nodes
may exceed the communication traffic generated by the saugitgonent chosen as
migration endpoint by MagnetOS.

In Cougar [8], queries are broadcasted to all nodes of theanktand results are
aggregated and forwarded to a given leader node. The quérgipgr, located on
the gateway node, is responsible for analyzing the queridsgenerating a good
query execution plan, which contains the data flow insidenib@e and network.
As this query optimizer-based approach relies on a cem¢élhode, this and our
approach are not comparable.

3 Problem Definition

In our approach we are optimizing the position of the ses/@fdhe system through
migration Our heuristic dynamically re-assigns the services to sau¢he system
in order to reduce the communication overhead. To enablethkiation of our
heuristic, we define the problem to be solved in each steady at a formal opti-
mization problem.

The system is represented by two graphs. The first is the nletesource)
graph and the second one is the processing thread (task&egvaph (similar to
the task interaction graph, TIG). The ad hoc network is medidly an undirected
graphG = (V,E), where V is the set of wireless nodes and an edge} < E if and
only if a communication link is established between nodesV andv € V. The
two nodes in this case are neighbors.

For each link, a weighting function attributes a positiveighe¢. w: E — R*.
This weight measures the quality (or goodness) of a wirdlaks We define for
each edge not in the grapfu(v} ¢ V), w(u,v) = . The quality of the link is
calculated combining the following parameters: transioissuccess rate, received
signal strength and history of the link. The statistic-loegbservation of transmis-
sion success is a good indication of the future successmatertheless it reacts
slowly to changes and at beginning has no data to be caldul@te received sig-
nal strength indication makes quick indications possibig,it is not very precise.
Therefore, we combine these two parameters. Moreoverdier do prioritize stable
links, the history is also used. We use normalized link rastrivhere 0 means very
good link and 1 poor one. We call the link metvictual distance

For each node, the weighting functiowescribes the amount of resources avail-
able at a node.: E — R*. This models the resource capacity of the node.
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Service (=]
Task [

Resource availability (node) x
requirement (task/service)

Fixed assigment <x>

Task Allocation

Fig. 1 Example of an instance of service assignment problem.

The processing thread (task/service) graph (M,C) models the communica-
tion requirements between the diverse processing thrddlde @S and application.
M is the set of tasks and services (processing threads) mimtithe moment in
the system and an eddem,m;} € C when there exist an interaction (with com-
munication) between the executable umits andm,. For each interaction € C,

a functionb attributes a positive weight that measures average ofdriaéfiween
the tasks/serviced.: C — R". This function defines the amount of interaction be-
tween two modules of the system. Moreover, the funcéiohl — R* attributes the
amount of resources necessary for the execution of eaclséagice. Finally, the
function f : M — V defines the fixed assignment, i.e., the tasks that are dhatica
assigned to a determined node and should not be moved.

The service assignment in wireless sensor network prolensists of allocat-
ing the tasks and services of the task grapio the nodes of the network grag
minimizing the amount of communication. The amount of comivation is mea-
sured by the sum of all products of the amount of communiodtioes the distance
of the communicating entities. This distance is measuradrims of our link met-
ric. A schematic diagram of the input and result of the asgigmt is shown in the
Figure 1.

The figure 2 presents the formal definition of the optimizaooblem.

The problem is NP-complete (for a similar NP-complete alt@m problem, see
[4]), since it generalizes the well-known NP-complete qa#d assignment Prob-
lem (QAP) [7]. The QAP is a special case of our problem whenstwices are
in the same number as the processors and just a single séangene) may be
assigned to each processor.

4 Ant Based Service Assignment

In this section our heuristic to distribute the serviceshia $ensor (or ad hoc) net-
work will be presented.
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Input: A processing thread (task and service) graph with weightales, weighted links,
and fixed assignment functioT,b,e, f) and a network graph with weighted nodes and
links (G,w,r)

Constraints:  For every input instand&,w,r,T,b,e, f), Let S= {s1,%,..,5} = {s €
M|f(s) = 0} be the set of mobile services (without a fixed assignment). The salig
tion space is given by:

M (G,w,r,T,be f)=

={(01,92,--,9n) EV"WEV, 5 ficnjg=v} &(S) + 3 (mem|f(m)=v} &(M) < T (V)}

The tuple(gi,02,..,0n) is an assignment and has the following meaning: seryiét as-
signed to nodej;. The constraint assures that the services and tasks assigned taéhe n
do not request more resource than the availability on the node.

Costs:  For every assignmefti,92,..,0n) € .Z(G,w,r,T,b,e f), the cost is calculated as
f(m) if f(m) #0

gils =m otherwise

COSt((ngZv-~agn)’(G’W7r’T7b',evf)) = z b({ml,mz})D(q(rTh),q(nh)) (1)

{my,my}eC
WhereD(u,V) is the cost of the multi-hop shortest path employing the virtustiaice ber

tween nodesi,ve V.
Goal: Minimum

follows: Let the functiorg: M — V be:g(me M) = {

Fig. 2 Formal Definition of the Optimization Problem

4.1 Basic Heuristic

In our approach, we are optimizing the position of the se@withroughmigration
i.e., we try to find the optimal configuration where the comination overhead
caused by the remote requests is minimized and to react tartkand topology
changes adequately. In order to solve this online discigien@ation problem, we
decide to use an ant-inspired algorithm. We assume, in auigtie, that an initial
distribution of the services in the network already existsorder to describe our
heuristic, some additional definitions are necessary.

The setP contains the types of all possible services of the systeroh Bar-
vice s is an instance of same typgee P. Every taska € {M — S} has no type.
Letr € M be the requester (a service or a task) of some sep4c&. The service
stateS represents the connection between the requedtethe services (a flow
of communication, generated by the requests and resporfideskset of all flows
of the system we will calW. In our system, each nodec V has a pheromone
tableR, = [p\é]reM,seSy wherep‘i6T € [0,1]. This pheromone level represents the re-
quest rate (and traffic) made by the requester the service that is crossing the
nodev. In our approach, all nodes are responsible for the sergsig@ament, since
each node’s evaluation is based orldgisal view, in order to reduce communication
costs. Moreover, the needed information is constantly gimgn due to frequent
pheromone updates.

Using an analogy with the ant foraging behavior [2], the m&win our approach
are the equivalent of the food source. The calls made by theesters are the agents
(or ants) and the requesters are the formicaries. The wadlegks form the pathway
used by the ants. While the requests are being routed to thiaatem service, they
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leave pheromone on the nodes. The pheromone tables in edehane updated

i (t)+op(h

according to the following equatiompg (t + 1) = %p(:;) where thedp(h) is
the variation of the pheromone and it is a function of the sizthe packet. After
the introduction of some basic concepts of our heuristicwilepresent here the

component policy of our migration mechanism:

Transfer policy: In our heuristic, each service is indemsmidand may decide it-
self about starting a migration. The target of a service atign is every node
with sufficient resources.

Selection policy: The selection policy is based on a thriesBdhat is compared
to the measured current communication overhead of thecgswif it is above
0, the servicesis selected to migrate.

Location policy: The location policy decides about whicldashould receive a
migrating service. We will describe it in the next section.

Information policy:  Our heuristic uses almost just passifermation gathering
by means of pheromone tables. We avoid any broadcastingaciire informa-
tion dissemination to save the scarce energy resources.

The general idea is to migrate the service to some node tigahr&ome requests
flow (path) or near to it, in the direction of a requester. Eaetvice has several
flows coming from the diverse requesters. In order to detegmihich node should
receive the servicg an explorer packet will be used. Its next hop is defined based
on the pheromone value of the neighborhood and its finalilocatill eventually
be the target node for the migrationof

We will describe the two main phases (exploration and setl&) of the selec-
tion of the new target node for the serviethrough the migration of the exploration
packet.

Exploration Phase

In this phase, the exploration packet will migrate alongribdes of the wireless
sensor network in order to find a new target position for theise s. The explo-
ration phase ends and the settlement phase starts whenptloeation packet has
migrated a determined number of hopdldwed_h) or a loop occurred (detected
using a history lishistory).

After the deployment of the exploration packet, its migratis controlled by
means of attraction forces. Late V be the actual location (node) of the explorer
packetNgh, is the set of neighbors af andd € Ngh, is a neighbor ofu.

2xeM pd .
M if d#1
S _ ) Zye(Nghy—1) 2xeM p§+pot_pher )
ud pot_pher ;
otherwise

Yye(Nghy—1) 2xeM py§+ pot_pher

bﬁyd represents the sum of the pheromone of all flows coming thraugled
to the services normalized over the total amount of pheromone related toesis
to the services in the neighborhood. It represents relatively how much efttiaf-
fic directed to the serviceis using the node& as path (proportional use df for
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the requests). Thi;, 4, in the exploration phase, will act as a force attracting the
exploration packet to the corresponding node.

The potential pheromone (pot_phe is the sum of all other pheromones re-
lated to the servicg, coming from the neighbors not selected as next hop for the
exploration packepak when leaving the node hostirgglt is used to estimate the
level of pheromone potentially caused by those flows if theise would migrate
to the node being evaluated. An example can be seen in theeR3gu

Legend

Requester I
Service <<uses>>
Explorer Packet

ié

of

Pheromone Value

() . 5

Potential Pheromone

Fig. 3 Example showing the new potential path of a flow when service dvonigrate to the next
hop.

The main idea is to predict which situation would occur if gervice would
migrate to the current exploration packet position and twwhiould be the next
hop for a possible migration. The assumption made here tgtlarequest flows
not attended by the first migration decision would have tpaith size increased
exactly by the pathway executed by the exploration packes ffeans, although the
pheromone level from these flows would not appear to the exfim packet when
far away from the nodevj hostings, they should be considered when deciding the
next exploration packet hop. This is shown in Figure 3, wihieea=xploration packet
is in the nodeu. It uses the real pheromone of the ngdend, in the case of node
v, the potential pheromone level measured by the first mmmnadf the exploration
packet. The potential pheromone level is the sum of all pheree levels related to
the servicesthat are in all other nodes tharbecause was selected as target for the
first exploration packet migration. In this example, thegmtial pheromone level is
exactly the same level of the pheromone on nledéwill be formally defined later
on.

The next hop of the explorer packet is selected using thetiequa. We call |
the selected node.

& = MaXgengn,} (B, q),d € Ngh, ©)

Settlement Phase

After the exploration of possible candidates to host theisers, this phase is
responsible to find the appropriated node with enough ressup host the service.
We callu the actual node of the exploration packet.

The idea of this phase is to evaluate whether there are enesghrces at the
candidate node to host the servién the positive case, the service will migrate to
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the node. In the negative one, the neighborhood will be agtekd, according to
the actual situation of the neighborhood, a neighbor mayelexted or the explo-
ration packet may migrate to the last visited potential cdaie (retrieved from the
history field), to search there for the final destination &f $lervices.

The following procedure is executed in the settlement phlse current node
u is tested whether it may host the servic& he test consists of checking whether
nodeu has enough free resources. The formalization of the tesbea®en in the
following equation:e(s) < r(u) — ¥ jmemjqm)—u} €M) If the resources are enough,
the settlement phase is terminated and the nosbnds a message to the senste
trigger the migration process. Otherwise, the same tesaiterm all the nodes of the
direct neighborhood afi. The virtual distance is used for ordering the test process.
Nodes within smallest virtual distance are tested first. ptecess ends when a
suitable node is found, i.e., the node with enough resowedshe smallest virtual
distance tau is selected. We denote this nodefadf w(u, f) < w(u, last(history)),
i.e., the virtual distance betweerandf is smaller than the virtual distance between
uand the last visited node by the exploration package (begaehingu), the nodey
is selected definitively to be the new hossoA message is sent &in order to start
the migration. Otherwise, the exploration package is saok o thelast(history)
node. The nodel is deleted from thenistory field and the settlement procedure
starts again.

The procedure described above repeats until an appropodtis found. In the
rather improbable case of not finding any new node to hostthéce, the migration
is canceled.

4.2 Extended Heuristic

This section identifies a problem caused by the greedy nafuttes basic heuristic
and presents an improvement to overcome possible adwarsauations. For the
sake of simplicity, we assume in the following example tldwed _h=1, i.e., just
one hop migrations are allowed. Nevertheless, the problarare for arbitrary val-
ues of this parameter when more than one nearby locatedstegsi@ise the same
service, but due to the employed routing algorithm, the estpiare routed through
different paths. An example of such situation is depictellign 4, where requesters
ri, rp andrz are accessing the servisén the nodeu. For a straightforward com-
munication cost calculation, we assume that the averagdvidti utilization is
proportional to the pheromone deposited at a node insidéadwepath. Thus, the
total communication cost is 135 (using equation 1).

We analyze the migration that would be decided by the bagiciste. As the
pheromone value of node is higher than the values deposited at noglesd k
(separately), the exploration packet is sent to ned8uppose thaallowed _h=1,
the service would migrate to node The total communication cost of the system
changes to 22. This result shows that the heuristic, in such adversatiin, se-
lects the wrong node to migrate to, increasing the total canioation cost of the
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Fig. 4 Instance of the problem that will result in a wrong migrationidien due to greedy behavior

system. This happens because of the lack of informationraatirectly-connected
parts of the network (each node has justlteal view of the system).

The main idea of the improvement is not to migrate the seradbe neighbor
with the highest amount of requests (highest flow) as in tiseckeeuristic, but to the
neighbor whose flow, in some part, is crossing nodes neahty fibws requesting
the same service. If the defined metric (virtual distance) (geographical) norm
properties, this will be equivalent to migrating the seevio the geographicali-
rectionfrom where the highest amount of requests is coming. Two flaleged to
the requestens, andr; (see Fig. 4) are transversing neighboring nodes in thelir pat
to s, thus, they should attract the service insteadsofWe define that such flows
transversing neighboring nodes are called correlated flows

The concept of the correlated flows is used in the explorgtioase in order
to guide the migration of the exploration packet. Insteacc@iinting solely the
pheromone deposited at each neighbor when analyzing thararobpheromone
of a neighbor, the sum of the pheromone deposited at the ndbealivcorrelated
pheromone is used to guide the migration. Therefore thetiu2 is modified as
follows:

flows using d correlated flows
d L [p&] F(S.S)
s & XEZ“ZEZ”QGNQ%{‘“} c (ifd#1) )
ud normalizer

The first term of the equation is the same as in eq. 2, i.e.,uhed all requests
coming to services through noded. The second term of the numerator is the sum
of the pheromone generated by correlated flows of the flonsepteat nodel. The
functionF tests whethe§ andS; are correlated flows, and the ceilitﬁg%] checks
whether the connectio® exists in the nodd (i.e. p& > 0). The denominator nor-
malizesby 4 (0 < b} 4 < 1). The next hop of the exploration packet is selected using
equation 3.
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5 Results

In this section, we present the simulation results of ourdbaisd extended service
assignment heuristics. The simulations were performetusie Shox [6] simula-
tor, an event-based wireless network simulator. For ouukition, we assume fixed
transmission power, bidirectional links (which is achiguereality by ignoring uni-
directional links) and Friis Free Space propagation moaleisbtropic point source
in an ideal propagation medium for RSSI calculations. Thletetric used is based
on the RSSI and each node only offers enough resources foingia single ser-
vice and task. Tasks request different, randomly sele@adces. The bandwidths
needed in the different communications were randomly satiec

5.1 Simulation Scenarios and Evaluation

Table 1 provides an overview of the simulated scenarios.shiml scenarios were
selected since they also allow the calculation of the odtsnktion. For large sce-
narios, it is not possible to calculate the optimal (refeggrsolution of our discrete
optimization problem due to its computational complexiNevertheless, we de-
cided to make an example simulation of a large scenario to ghat its behavior is
similar to small instances.

For the generation of the task/service graph for each taskn@dom number of
services was selected. The tasks request those servides wandom bandwidth
requirement (normalized). Dijkstra’s shortest path atgon was used for finding
routes between requesters and the services.

Scenario Name  Field Sizdumber Radio ConnectioiNode den-Average Num.
(m?) of NodesRange Probabil- sity Degree Services,
ity (Theo- Requesters
retic)

Small Scenarios

small-sparse-sd 80x60 10 28 0.9 0.002 5.13 8,6

small-dense-sd 80x60 10 43 1 0.002 12.1 8,6
Large Scenarios

large-sparse-sd  102x77 100 13 0.9 0.013 6.7 20, 40

Table 1 Overview of the different simulation scenarios.

The presented scenarios were evaluated using differemtidlons. For the small
scenario, the optimum solution was calculated using a brancl-bound algorithm.
For all scenarios, our basic and extended ant-based sexssignment heuristics
were simulated. Moreover, we decided to calculate the dastompletely random
assignment, i.e., the tasks and services are randomlibdistd among the nodes of
the network.
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5.2 Experiments

We executed 40 experiments for each scenario presentedbla Taln the next
sections, we will present and analyze the results of theranpats.

Optimal Assignment Cost

In this section, we will analyze the results achieved wité dptimal cost as-
signment. Figure 5(a) presents the optimal service asgghoost for thesmall-
sparse-sd andsmall-large-sd scenarios. As expected, denser scenarios exhibit a
smaller assignment cost. This can be explained by the fattetter links (lower
cost) are available for the communication between tasksandces, reducing the
total cost. Moreover, due to the higher amount of neighbligher node degree),
assignments that yield a high amount of costs in sparsecemaignts may be attrac-
tive in dense environments because of the existence ofgteutiew links.

Experiment Results

This section presents the outcome of our 40 experiment$éptesented sce-
narios. In Figure 5, the results for our three scenarios epcted. For the small
scenarios, each result is normalized against the optinsédrament. For the large
scenario, we present the nominal result.

As we can see in Figures 5(b) and 5(c), our heuristic founaghienal solution
in several cases. Moreover, for the vast majority of casesheuristic has a much
better performance than the random initial assignment.ektended heuristic and
the basic one have also a very similar behavior, neverthdi@ssome experiments,
the extended one has a much better performance than the bhsiceasons for
these outcomes will be discussed further below.

Figure 5(d) shows the results for a large scenario. Due tdatiethat we do
not have, for large scenarios, a reference approach, itipossible to make state-
ments about the absolute performance of the algorithmsefitesless, it is possible
to notice that the heuristics could find a much better cost tha initial random
assignment. Moreover, the behavior of the extended and basristics are similar
to the one observed in the small experiments.

Heuristics’ Assignment Costs

In this section, the mean value of the achieved costs for lkegtistic for all sce-
narios will be presented. The cost for the absolute assighnfeour test scenario
is shown in Figure 6. The random assignments and basic aadded heuristic as-
signments have the same tendency of the optimum: for spataerks, they deliver
always an assignment with higher cost. This is expectedaltietrelation between
the assignment cost and the link costs, and for sparse env@ats, the average link
cost increases.

In Figure 6(a), the different costs are shown together festhall scenarios. As it
can be seen in the figure, our basic and extended heuristieslgnod performance,

1 For the service assignments, the terms total communication cost rffedsa the figure) and
assignment cost have the same meaning.
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not far from the optimal solution. The basic and extendedikgcs have a very
similar performance. We discuss the reasons and the pefaerdifference further
below.

In Figure 6(b), the results of our large scenario are depidtas possible to see
that they are very similar to the small scenario, improving confidence that the
heuristics could find good solutions for small as well as éwgé scenarios.

Figure 6(c) shows the normalized results for the small stesnaThe optimal
assignment is used as reference. It is possible to noti¢eftiraall cases, a very
small difference could be verified for sparse and dense sesn@he basic heuristic
has an average cost of4#l times the optimal cost for sparse environments afd 1
for dense ones. The extended heuristic shows a small immrene 141 for sparse
and 143 for dense scenarios. This means that the cost of the basitstic was
about 2% higher in sparse scenarios and 5% in dense scerfasosilar behavior
has been found in the large scenario.

As it can be observed in Figures 5(b) and 5(c), the basic atahé&d heuristic,
for several experiments, could find solutions with very gimcosts and for some
experiments, the extended overcame the basic one. For plezi@ents where the
results were similar, we suppose that there are not flow letiwas that help the
heuristic behavior. For the experiments where the extemmgedistic has a much
better performance, correlations could be found and arnsdteice migration was
realized.

The question that arises from the results is why correlatiware not so com-
mon. We suppose that the reason was the selected routingtlabgdogether with
the influence of the Friis Free Space Model in our link metBiecause of the ex-
ponential path loss, nodes near to each other have a grelatttage in the signal
strength than others with a small higher physical distaBes to the fact that we
are, for our simulations, relying strongly on the signaésgth to calculate the link
metric, it reflects very much this exponential path loss. Dijkstra’s shortest path
algorithm always selects the shortest path between any ddesnand does not try
to divide the load among the existing link channels. Furtherare also not taking
into account the link utilization (and possible congestidmgether, such facts act
in a way that effectively just a small subset of links is useddll communications.
A kind of backbone emerges in the network. This leaves leasesfor our flow
correlations. We suppose that, in real scenarios, whetdithmetric has a more ir-
regular nature and where there are routing mechanismsithdg¢ dhe transmission
effort among different routes, the extended heuristic imidrease its performance
in relation to the basic one.

6 Conclusion

In this paper, we study the problem of automatic assignmiemiobile services on
wireless sensor networks. We model our problem as an ogttiaiz problem and
present an efficient biologically-inspired heuristic tbveat. Given an initial assign-
ment, the heuristic is responsible to drive the migratiothefservices based on the
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actual network/service configuration targeting the reidncof the communication
cost.

We chose to use concepts observed in ant colonies, sinceeiindyit several
properties that are desirable in wireless sensor netwétkace, we propose an
extension to the heuristic: neighboring pheromone traits@gether to attract the
service to the direction with higher request rate.

Simulations done using the wireless network simulator Sétwowed that the
heuristic perform well. The basic heuristic has an averagg of 144 times the
optimal cost for sparse environments anBl fbr dense ones. The extended heuristic
produces a slighter better result than the basic onkt for sparse and.43 for
dense scenarios. We suppose that this occurs due to thbdagist a small subset
of links is used to route almost all packets in the networkgekbone is formed).

For a large number of real applications, the basic heun&ids adequate results
with very small computational cost. The extra effort neaegdor the extended
heuristic may not be compensated. However, in real enviemsy where the link
metric does not follow in a regular way the Friis path loss difterent routing
mechanisms may be used, the extended heuristic may britey begults.

Concluding, our work provides an additional piece of eviethat concepts
inspired by biology can be successfully transferred to astensystems.
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