
Experiments with Biologically-Inspired Methods
for Service Assignment in Wireless Sensor
Networks

Tales Heimfarth and Peter Janacik

Abstract Given the scarcity of energy in wireless sensor networks (WSNs), in-
network data processing by distributed, cooperating services is often used to reduce
the amount of information that has to be routed to the base station and thereby to
reduce communication and energy consumption. However, to minimize the amount
of communication between services and their requesters, the locations of services in
the network have to be selected carefully. Therefore, this paper proposes an efficient
biologically-inspired heuristic for service assignment in WSNs. In order to reduce
the amount of information exchange necessary for our heuristic, we use a concept
observed in ant colonies that utilizes only local information. We model packets as
ants (depositing pheromones at the visited nodes), services as food sources and re-
questers as formicaries. To optimize an objective function(reduction of commu-
nication distance between services and requesters), an explorer agent makes local
service assignment decisions based on solely local information: the pheromones de-
posited by the ants. Furthermore, our paper presents the formal definition of the
problem of service assignment and a thorough analysis and discussion of the results
of our experiments, which show the efficiency of our approach.

1 Introduction

Wireless sensor networks (WSN) consist of a large number of embedded sensors
connected via wireless links that are deployed in the monitored environment. Each
node in such a network is equipped with a small processor, constrained memory, a
set of sensors and, in some application examples, actuators. One key point of such
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networks is the energy efficiency: since it is not feasible toreplace batteries after
deployment, the energy must be carefully managed in order toincrease the life time
of the system.

In-network data processing techniques have been successfully employed to im-
prove considerably the energy efficiency of the network. Instead of letting each sin-
gle node send its raw sensor data to the base station, which incurs a high amount
of multi-hop traffic, the idea is to process the data locally in order to compute a
higher level result that will be transmitted to the base station. Since nodes are only
equipped with a very constrained hardware, this in-networkprocessing, carried out
by cooperating services, is distributed among neighboringnodes. Therefore, there
is the need for an adequate abstraction implemented by the operating system (OS),
which offers the functionality of dynamic service re-assignment to the application.
This means that the OS should control the migration of the services.

We developed NanoOS [5], an OS for wireless sensor networks with the aim
of supporting collaborative processing. In this work, we formalize the problem of
allocating the mobile services to nodes of our network with the objective of reducing
the communication overhead. Given a network topology graphand a task/service
interaction graph, we aim to map the services to the nodes of the network targeting
the minimization of the objective function that in our case is the communication
cost. Due to the fact that our problem is NP-complete, we introduce a heuristic,
responsible for the dynamic assignment of the system services within the sensor
network.

This paper is organized as follows: Section 2 reviews the state-of-the-art in ser-
vice assignment for WSNs, before Section 3 presents the problem definition. Sec-
tion 4 introduces our ant-based service assignment heuristic, which consists of a
basic and extended version. The results of the evaluation ofour heuristic are then
described in Section 5. Finally, Section 6 presents the conclusions.

2 Related Work

In this section, existing approaches dealing with migration of services in wireless
sensor networks will be presented. Although there is a wide range of middleware
and virtual machine approaches, at this moment, the majority of operating systems
for WSNs do not provide service assignment mechanisms. Giventhe fact that most
task/service assignment mechanisms used in WSNs are online (deciding during run-
time), code mobility is necessary for such approaches.

In the Sensorware [3] virtual machine, the application consists of scripts de-
ployed on a subset of network nodes. Scripts function like state machines, influ-
enced by external events. Scripts may replicate, so that theapplication has the con-
trol of the service assignment, which enables agents to haveindividual strategies,
implemented by the application programmer. In contrast, inour approach, the oper-
ating system controls the migration of services according to an OS location policy
optimizing a given objective function. This disburdens theuser from having to im-
plement a migration policy in each application.
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MagnetOS [1] uses the two online algorithms NetCenter and NetPull for deci-
sions on system component assignment. NetPull monitors communication at the
link level and migrates components one hop towards the neighbor with the greatest
communication. NetCenter, on the other hand, relies on network-level information
and migrates objects to the node hosting the component(s) they communicate the
most with, possibly over multiple hops. Differently from our system, NetCenter
transfers the system components directly to the node hosting the object with the
highest interaction. This may lead to a non-optimal assignment and oscillations,
since the sum of the communication coming from other objectsat different nodes
may exceed the communication traffic generated by the singlecomponent chosen as
migration endpoint by MagnetOS.

In Cougar [8], queries are broadcasted to all nodes of the network and results are
aggregated and forwarded to a given leader node. The query optimizer, located on
the gateway node, is responsible for analyzing the queries and generating a good
query execution plan, which contains the data flow inside thenode and network.
As this query optimizer-based approach relies on a centralized node, this and our
approach are not comparable.

3 Problem Definition

In our approach we are optimizing the position of the services of the system through
migration. Our heuristic dynamically re-assigns the services to nodes in the system
in order to reduce the communication overhead. To enable theevaluation of our
heuristic, we define the problem to be solved in each steady state as a formal opti-
mization problem.

The system is represented by two graphs. The first is the network (resource)
graph and the second one is the processing thread (task/service) graph (similar to
the task interaction graph, TIG). The ad hoc network is modeled by an undirected
graphG= (V,E), where V is the set of wireless nodes and an edge{u,v} ∈ E if and
only if a communication link is established between nodesu ∈ V andv ∈ V. The
two nodes in this case are neighbors.

For each link, a weighting function attributes a positive weight. w : E → R
+.

This weight measures the quality (or goodness) of a wirelesslink. We define for
each edge not in the graph ({u,v} /∈ V), w(u,v) = ∞. The quality of the link is
calculated combining the following parameters: transmission success rate, received
signal strength and history of the link. The statistic-based observation of transmis-
sion success is a good indication of the future success rate,nevertheless it reacts
slowly to changes and at beginning has no data to be calculated. The received sig-
nal strength indication makes quick indications possible,but it is not very precise.
Therefore, we combine these two parameters. Moreover, in order to prioritize stable
links, the history is also used. We use normalized link metrics, where 0 means very
good link and 1 poor one. We call the link metricvirtual distance.

For each node, the weighting functionr describes the amount of resources avail-
able at a node.r : E → R

+. This models the resource capacity of the node.



4 Tales Heimfarth and Peter Janacik

Fig. 1 Example of an instance of service assignment problem.

The processing thread (task/service) graphT = (M,C) models the communica-
tion requirements between the diverse processing threads of the OS and application.
M is the set of tasks and services (processing threads) running at the moment in
the system and an edge{m1,m2} ∈ C when there exist an interaction (with com-
munication) between the executable unitsm1 andm2. For each interactionc ∈ C,
a functionb attributes a positive weight that measures average of traffic between
the tasks/services.b : C → IR+. This function defines the amount of interaction be-
tween two modules of the system. Moreover, the functione : M → IR+ attributes the
amount of resources necessary for the execution of each task/service. Finally, the
function f : M → V defines the fixed assignment, i.e., the tasks that are statically
assigned to a determined node and should not be moved.

Theservice assignment in wireless sensor network problemconsists of allocat-
ing the tasks and services of the task graphT to the nodes of the network graphG,
minimizing the amount of communication. The amount of communication is mea-
sured by the sum of all products of the amount of communication times the distance
of the communicating entities. This distance is measured interms of our link met-
ric. A schematic diagram of the input and result of the assignment is shown in the
Figure 1.

The figure 2 presents the formal definition of the optimization problem.
The problem is NP-complete (for a similar NP-complete allocation problem, see

[4]), since it generalizes the well-known NP-complete quadratic assignment Prob-
lem (QAP) [7]. The QAP is a special case of our problem when theservices are
in the same number as the processors and just a single service(anyone) may be
assigned to each processor.

4 Ant Based Service Assignment

In this section our heuristic to distribute the services in the sensor (or ad hoc) net-
work will be presented.
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Input: A processing thread (task and service) graph with weighted nodes, weighted links,
and fixed assignment function(T,b,e, f ) and a network graph with weighted nodes and
links (G,w, r)

Constraints: For every input instance(G,w, r,T,b,e, f ), Let S = {s1,s2, ..,sn} = {s ∈
M| f (s) = /0} be the set of mobile services (without a fixed assignment). The validsolu-
tion space is given by:
M (G,w, r,T,b,e, f ) =
= {(g1,g2, ..,gn) ∈Vn|∀v∈V,∑{i∈IN|gi=v} e(si)+∑{m∈M| f (m)=v} e(m) ≤ r(v)}
The tuple(g1,g2, ..,gn) is an assignment and has the following meaning: servicesi is as-
signed to nodegi . The constraint assures that the services and tasks assigned to the nodev
do not request more resource than the availability on the node.

Costs: For every assignment(g1,g2, ..,gn) ∈ M (G,w, r,T,b,e, f ), the cost is calculated as

follows: Let the functionq : M →V be:q(m∈ M) =

{
f (m) if f (m) 6= /0

gi |si = m otherwise
cost((g1,g2, ..,gn),(G,w, r,T,b,e, f )) = ∑

{m1,m2}∈C

b({m1,m2}) ·D(q(m1),q(m2)) (1)

WhereD(u,v) is the cost of the multi-hop shortest path employing the virtual distance be-
tween nodesu,v∈V.

Goal: Minimum

Fig. 2 Formal Definition of the Optimization Problem

4.1 Basic Heuristic

In our approach, we are optimizing the position of the services throughmigration,
i.e., we try to find the optimal configuration where the communication overhead
caused by the remote requests is minimized and to react to demand and topology
changes adequately. In order to solve this online discrete optimization problem, we
decide to use an ant-inspired algorithm. We assume, in our heuristic, that an initial
distribution of the services in the network already exists.In order to describe our
heuristic, some additional definitions are necessary.

The setP contains the types of all possible services of the system. Each ser-
vice s is an instance of same typep ∈ P. Every taska ∈ {M −S} has no type.
Let r ∈ M be the requester (a service or a task) of some services∈ S. The service
stateSi

r represents the connection between the requesterr to the services (a flow
of communication, generated by the requests and responses). The set of all flows
of the system we will callW. In our system, each nodev ∈ V has a pheromone
tablePv = [pv

Ss
r
]r∈M,s∈S, wherepv

Ss
r
∈ [0,1]. This pheromone level represents the re-

quest rate (and traffic) made by the requesterr to the servicei that is crossing the
nodev. In our approach, all nodes are responsible for the service assignment, since
each node’s evaluation is based on itslocal view, in order to reduce communication
costs. Moreover, the needed information is constantly changing, due to frequent
pheromone updates.

Using an analogy with the ant foraging behavior [2], the services in our approach
are the equivalent of the food source. The calls made by the requesters are the agents
(or ants) and the requesters are the formicaries. The wireless links form the pathway
used by the ants. While the requests are being routed to the destination service, they
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leave pheromone on the nodes. The pheromone tables in each node are updated

according to the following equation:pSi
r
(t + 1) =

p
Si
r
(t)+δ p(h)

1+δ p(h) where theδ p(h) is
the variation of the pheromone and it is a function of the sizeof the packet. After
the introduction of some basic concepts of our heuristic, wewill present here the
component policy of our migration mechanism:

Transfer policy: In our heuristic, each service is independent and may decide it-
self about starting a migration. The target of a service migration is every node
with sufficient resources.

Selection policy: The selection policy is based on a threshold θ that is compared
to the measured current communication overhead of the services. If it is above
θ , the services is selected to migrate.

Location policy: The location policy decides about which node should receive a
migrating service. We will describe it in the next section.

Information policy: Our heuristic uses almost just passiveinformation gathering
by means of pheromone tables. We avoid any broadcasting or proactive informa-
tion dissemination to save the scarce energy resources.

The general idea is to migrate the service to some node that rely in some requests
flow (path) or near to it, in the direction of a requester. Eachservice has several
flows coming from the diverse requesters. In order to determine which node should
receive the services, an explorer packet will be used. Its next hop is defined based
on the pheromone value of the neighborhood and its final location will eventually
be the target node for the migration ofs.

We will describe the two main phases (exploration and settlement) of the selec-
tion of the new target node for the services through the migration of the exploration
packet.

Exploration Phase
In this phase, the exploration packet will migrate along thenodes of the wireless

sensor network in order to find a new target position for the service s. The explo-
ration phase ends and the settlement phase starts when the exploration packet has
migrated a determined number of hops (allowed_h) or a loop occurred (detected
using a history listhistory).

After the deployment of the exploration packet, its migration is controlled by
means of attraction forces. Letu ∈ V be the actual location (node) of the explorer
packet.Nghu is the set of neighbors ofu, andd ∈ Nghu is a neighbor ofu.

bs
u,d =







∑x∈M pd
Ss
x

∑y∈(Nghu−l) ∑x∈M py
Ss
x
+pot_pher

if d 6= l

pot_pher
∑y∈(Nghu−l) ∑x∈M py

Ss
x
+pot_pher

otherwise
(2)

bs
u,d represents the sum of the pheromone of all flows coming through noded

to the services normalized over the total amount of pheromone related to requests
to the services in the neighborhood. It represents relatively how much of the traf-
fic directed to the services is using the noded as path (proportional use ofd for
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the requests). Thebs
u,d, in the exploration phase, will act as a force attracting the

exploration packet to the corresponding node.
The potential pheromone (pot_pher) is the sum of all other pheromones re-

lated to the services, coming from the neighbors not selected as next hop for the
exploration packetpak, when leaving the node hostings. It is used to estimate the
level of pheromone potentially caused by those flows if the service would migrate
to the node being evaluated. An example can be seen in the Figure 3.

Fig. 3 Example showing the new potential path of a flow when service would migrate to the next
hop.

The main idea is to predict which situation would occur if theservice would
migrate to the current exploration packet position and which would be the next
hop for a possible migration. The assumption made here is that the request flows
not attended by the first migration decision would have theirpath size increased
exactly by the pathway executed by the exploration packet. This means, although the
pheromone level from these flows would not appear to the exploration packet when
far away from the node (v) hostings, they should be considered when deciding the
next exploration packet hop. This is shown in Figure 3, wherethe exploration packet
is in the nodeu. It uses the real pheromone of the nodej and, in the case of node
v, the potential pheromone level measured by the first migration of the exploration
packet. The potential pheromone level is the sum of all pheromone levels related to
the services that are in all other nodes thanu becauseu was selected as target for the
first exploration packet migration. In this example, the potential pheromone level is
exactly the same level of the pheromone on nodeh. It will be formally defined later
on.

The next hop of the explorer packet is selected using the equation 3. We call j
the selected node.

ei = max{d∈Nghu}(b
i
v→d),d ∈ Nghu (3)

Settlement Phase
After the exploration of possible candidates to host the service s, this phase is

responsible to find the appropriated node with enough resources to host the service.
We callu the actual node of the exploration packet.

The idea of this phase is to evaluate whether there are enoughresources at the
candidate node to host the services. In the positive case, the service will migrate to
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the node. In the negative one, the neighborhood will be checked and, according to
the actual situation of the neighborhood, a neighbor may be selected or the explo-
ration packet may migrate to the last visited potential candidate (retrieved from the
history field), to search there for the final destination of the services.

The following procedure is executed in the settlement phase: The current node
u is tested whether it may host the services. The test consists of checking whether
nodeu has enough free resources. The formalization of the test canbe seen in the
following equation:e(s) ≤ r(u)−∑{m∈M|q(m)=u}e(m) If the resources are enough,
the settlement phase is terminated and the nodeu sends a message to the services to
trigger the migration process. Otherwise, the same test is made in all the nodes of the
direct neighborhood ofu. The virtual distance is used for ordering the test process.
Nodes within smallest virtual distance are tested first. Theprocess ends when a
suitable node is found, i.e., the node with enough resourcesand the smallest virtual
distance tou is selected. We denote this node asf . If w(u, f ) < w(u, last(history)),
i.e., the virtual distance betweenu and f is smaller than the virtual distance between
u and the last visited node by the exploration package (beforereachingu), the nodeg
is selected definitively to be the new host ofs. A message is sent tos in order to start
the migration. Otherwise, the exploration package is sent back to thelast(history)
node. The nodeu is deleted from thehistory field and the settlement procedure
starts again.

The procedure described above repeats until an appropriatenode is found. In the
rather improbable case of not finding any new node to host the service, the migration
is canceled.

4.2 Extended Heuristic

This section identifies a problem caused by the greedy natureof the basic heuristic
and presents an improvement to overcome possible adversarial situations. For the
sake of simplicity, we assume in the following example thatallowed_h=1, i.e., just
one hop migrations are allowed. Nevertheless, the problem occurs for arbitrary val-
ues of this parameter when more than one nearby located requesters use the same
service, but due to the employed routing algorithm, the requests are routed through
different paths. An example of such situation is depicted inFig. 4, where requesters
r1, r2 andr3 are accessing the services in the nodeu. For a straightforward com-
munication cost calculation, we assume that the average bandwidth utilization is
proportional to the pheromone deposited at a node inside theflow path. Thus, the
total communication cost is 1.135 (using equation 1).

We analyze the migration that would be decided by the basic heuristic. As the
pheromone value of nodeh is higher than the values deposited at nodesj andk
(separately), the exploration packet is sent to nodeh. Suppose thatallowed_h=1,
the service would migrate to nodeh. The total communication cost of the system
changes to 1.22. This result shows that the heuristic, in such adverse situation, se-
lects the wrong node to migrate to, increasing the total communication cost of the
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Fig. 4 Instance of the problem that will result in a wrong migration decision due to greedy behavior

system. This happens because of the lack of information overnot directly-connected
parts of the network (each node has just thelocal view of the system).

The main idea of the improvement is not to migrate the serviceto the neighbor
with the highest amount of requests (highest flow) as in the basic heuristic, but to the
neighbor whose flow, in some part, is crossing nodes near to other flows requesting
the same service. If the defined metric (virtual distance) has (geographical) norm
properties, this will be equivalent to migrating the service to the geographicaldi-
rection from where the highest amount of requests is coming. Two flowsrelated to
the requestersr1 andr2 (see Fig. 4) are transversing neighboring nodes in their path
to s, thus, they should attract the service instead ofr3. We define that such flows
transversing neighboring nodes are called correlated flows.

The concept of the correlated flows is used in the explorationphase in order
to guide the migration of the exploration packet. Instead ofcounting solely the
pheromone deposited at each neighbor when analyzing the amount of pheromone
of a neighbor, the sum of the pheromone deposited at the node with all correlated
pheromone is used to guide the migration. Therefore the equation 2 is modified as
follows:

bs
u,d =

flows using d
︷ ︸︸ ︷

∑
x∈M

pd
Ss

x
+

correlated flows
︷ ︸︸ ︷

∑
x∈M

∑
z∈M

∑
g∈Nghv−{d,l}

pg
Ss

z
· ⌈pd

Ss
x
⌉ ·F(Ss

z,S
s
x)

normalizer
(if d 6= l ) (4)

The first term of the equation is the same as in eq. 2, i.e., the sum of all requests
coming to services through noded. The second term of the numerator is the sum
of the pheromone generated by correlated flows of the flows present at noded. The
functionF tests whetherSs

z andSs
x are correlated flows, and the ceiling⌈pd

Ss
x
⌉ checks

whether the connectionSs
x exists in the noded (i.e. pd

Ss
x
> 0). The denominator nor-

malizesbs
u,d (0≤ bs

u,d ≤ 1). The next hop of the exploration packet is selected using
equation 3.



10 Tales Heimfarth and Peter Janacik

5 Results

In this section, we present the simulation results of our basic and extended service
assignment heuristics. The simulations were performed using the Shox [6] simula-
tor, an event-based wireless network simulator. For our simulation, we assume fixed
transmission power, bidirectional links (which is achieved in reality by ignoring uni-
directional links) and Friis Free Space propagation model for isotropic point source
in an ideal propagation medium for RSSI calculations. The link metric used is based
on the RSSI and each node only offers enough resources for running a single ser-
vice and task. Tasks request different, randomly selected services. The bandwidths
needed in the different communications were randomly selected.

5.1 Simulation Scenarios and Evaluation

Table 1 provides an overview of the simulated scenarios. Thesmall scenarios were
selected since they also allow the calculation of the optimal solution. For large sce-
narios, it is not possible to calculate the optimal (reference) solution of our discrete
optimization problem due to its computational complexity.Nevertheless, we de-
cided to make an example simulation of a large scenario to show that its behavior is
similar to small instances.

For the generation of the task/service graph for each task, arandom number of
services was selected. The tasks request those services with a random bandwidth
requirement (normalized). Dijkstra’s shortest path algorithm was used for finding
routes between requesters and the services.

Scenario Name Field Size
(m2)

Number
of Nodes

Radio
Range

Connection
Probabil-
ity

Node den-
sity

Average
Degree
(Theo-
retic)

Num.
Services,
Requesters

Small Scenarios
small-sparse-sd 80x60 10 28 0.9 0.002 5.13 8, 6
small-dense-sd 80x60 10 43 1 0.002 12.1 8, 6

Large Scenarios
large-sparse-sd 102x77 100 13 0.9 0.013 6.7 20, 40

Table 1 Overview of the different simulation scenarios.

The presented scenarios were evaluated using different algorithms. For the small
scenario, the optimum solution was calculated using a branch-and-bound algorithm.
For all scenarios, our basic and extended ant-based serviceassignment heuristics
were simulated. Moreover, we decided to calculate the cost of a completely random
assignment, i.e., the tasks and services are randomly distributed among the nodes of
the network.



Experiments with Biologically-Inspired Methods for ServiceAssignment in WSN 11

5.2 Experiments

We executed 40 experiments for each scenario presented in Table 1. In the next
sections, we will present and analyze the results of the experiments.

Optimal Assignment Cost
In this section, we will analyze the results achieved with the optimal cost as-

signment. Figure 5(a) presents the optimal service assignment cost for thesmall-
sparse-sd andsmall-large-sd scenarios1. As expected, denser scenarios exhibit a
smaller assignment cost. This can be explained by the fact that better links (lower
cost) are available for the communication between tasks andservices, reducing the
total cost. Moreover, due to the higher amount of neighbors (higher node degree),
assignments that yield a high amount of costs in sparse environments may be attrac-
tive in dense environments because of the existence of multiple new links.

Experiment Results
This section presents the outcome of our 40 experiments for the presented sce-

narios. In Figure 5, the results for our three scenarios are depicted. For the small
scenarios, each result is normalized against the optimal assignment. For the large
scenario, we present the nominal result.

As we can see in Figures 5(b) and 5(c), our heuristic found theoptimal solution
in several cases. Moreover, for the vast majority of cases, the heuristic has a much
better performance than the random initial assignment. Theextended heuristic and
the basic one have also a very similar behavior, nevertheless, for some experiments,
the extended one has a much better performance than the basic. The reasons for
these outcomes will be discussed further below.

Figure 5(d) shows the results for a large scenario. Due to thefact that we do
not have, for large scenarios, a reference approach, it is not possible to make state-
ments about the absolute performance of the algorithms. Nevertheless, it is possible
to notice that the heuristics could find a much better cost than the initial random
assignment. Moreover, the behavior of the extended and basic heuristics are similar
to the one observed in the small experiments.

Heuristics’ Assignment Costs
In this section, the mean value of the achieved costs for eachheuristic for all sce-

narios will be presented. The cost for the absolute assignment of our test scenario
is shown in Figure 6. The random assignments and basic and extended heuristic as-
signments have the same tendency of the optimum: for sparse networks, they deliver
always an assignment with higher cost. This is expected due to the relation between
the assignment cost and the link costs, and for sparse environments, the average link
cost increases.

In Figure 6(a), the different costs are shown together for the small scenarios. As it
can be seen in the figure, our basic and extended heuristics have a good performance,

1 For the service assignments, the terms total communication cost (presented in the figure) and
assignment cost have the same meaning.
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(a) Optimal assignment cost (b) Communication costsmall-sparse,
normalize

(c) Comm. costsmall-dense, norm. (d) Comm. costlarge-sparse

Fig. 5 (a) Optimal assignment cost of sparse and dense scenarios and (b–d) communication cost
results of the realized experiments

(a) Absolute, small (b) Absolute, large (c) Normalized, small

Fig. 6 Assignment costs for the different heuristics with small and large problem size.
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not far from the optimal solution. The basic and extended heuristics have a very
similar performance. We discuss the reasons and the performance difference further
below.

In Figure 6(b), the results of our large scenario are depicted. It is possible to see
that they are very similar to the small scenario, improving our confidence that the
heuristics could find good solutions for small as well as for large scenarios.

Figure 6(c) shows the normalized results for the small scenarios. The optimal
assignment is used as reference. It is possible to notice that, for all cases, a very
small difference could be verified for sparse and dense scenarios. The basic heuristic
has an average cost of 1.44 times the optimal cost for sparse environments and 1.5
for dense ones. The extended heuristic shows a small improvement: 1.41 for sparse
and 1.43 for dense scenarios. This means that the cost of the basic heuristic was
about 2% higher in sparse scenarios and 5% in dense scenarios. A similar behavior
has been found in the large scenario.

As it can be observed in Figures 5(b) and 5(c), the basic and extended heuristic,
for several experiments, could find solutions with very similar costs and for some
experiments, the extended overcame the basic one. For the experiments where the
results were similar, we suppose that there are not flow correlations that help the
heuristic behavior. For the experiments where the extendedheuristic has a much
better performance, correlations could be found and a better service migration was
realized.

The question that arises from the results is why correlations were not so com-
mon. We suppose that the reason was the selected routing algorithm together with
the influence of the Friis Free Space Model in our link metric.Because of the ex-
ponential path loss, nodes near to each other have a greater advantage in the signal
strength than others with a small higher physical distance.Due to the fact that we
are, for our simulations, relying strongly on the signal strength to calculate the link
metric, it reflects very much this exponential path loss. TheDijkstra’s shortest path
algorithm always selects the shortest path between any two nodes and does not try
to divide the load among the existing link channels. Furtherwe are also not taking
into account the link utilization (and possible congestion). Together, such facts act
in a way that effectively just a small subset of links is used for all communications.
A kind of backbone emerges in the network. This leaves less space for our flow
correlations. We suppose that, in real scenarios, where thelink metric has a more ir-
regular nature and where there are routing mechanisms that divide the transmission
effort among different routes, the extended heuristic willincrease its performance
in relation to the basic one.

6 Conclusion

In this paper, we study the problem of automatic assignment of mobile services on
wireless sensor networks. We model our problem as an optimization problem and
present an efficient biologically-inspired heuristic to solve it. Given an initial assign-
ment, the heuristic is responsible to drive the migration ofthe services based on the
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actual network/service configuration targeting the reduction of the communication
cost.

We chose to use concepts observed in ant colonies, since theyexhibit several
properties that are desirable in wireless sensor networks.Hence, we propose an
extension to the heuristic: neighboring pheromone trails act together to attract the
service to the direction with higher request rate.

Simulations done using the wireless network simulator Shoxshowed that the
heuristic perform well. The basic heuristic has an average cost of 1.44 times the
optimal cost for sparse environments and 1.5 for dense ones. The extended heuristic
produces a slighter better result than the basic one: 1.41 for sparse and 1.43 for
dense scenarios. We suppose that this occurs due to the fact that just a small subset
of links is used to route almost all packets in the network (a backbone is formed).

For a large number of real applications, the basic heuristicyields adequate results
with very small computational cost. The extra effort necessary for the extended
heuristic may not be compensated. However, in real environments, where the link
metric does not follow in a regular way the Friis path loss anddifferent routing
mechanisms may be used, the extended heuristic may bring better results.

Concluding, our work provides an additional piece of evidence that concepts
inspired by biology can be successfully transferred to computer systems.
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