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SCADA PROTOCOLS: A MODBUS TCP
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Abstract The layering of protocols in critical infrastructure networks – exempli-
fied by Modbus TCP in the oil and gas sector and SS7oIP in the telecom-
munications sector – raises important security issues. The individual
protocol stacks, e.g., Modbus and SS7, have certain vulnerabilities,
and transporting these protocols using carrier protocols, e.g., TCP/IP,
brings into play the vulnerabilities of the carrier protocols. Moreover,
the layering produces unintended inter-protocol interactions and, possi-
bly, new vulnerabilities. This paper describes a formal methodology for
evaluating the security of multilayer SCADA protocols. The methodol-
ogy, involving the analysis of peer-to-peer communications and multi-
layer protocol interactions, is discussed in the context of Modbus TCP,
the predominant protocol used for oil and gas pipeline operations.
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1. Introduction

Critical infrastructure systems, e.g., SCADA and public telephone networks,
have traditionally employed specialized equipment and protocol stacks. More-
over, they were usually isolated from TCP/IP networks.

In recent years, however, the proliferation of TCP/IP networks, along with
the advanced services they provide and the availability of inexpensive COTS
equipment, have caused several critical infrastructure protocol stacks to be
re-designed to use TCP/IP as a foundation for transport and network inter-
connectivity. For example, in the oil and gas sector, the original Modbus Serial
protocol [14] is transported by TCP in the Modbus TCP variant [13], which
provides increased network connectivity and multiple, concurrent transactions.

Similarly, in the telecommunications sector, the SS7 over IP (SS7oIP) pro-
tocol [6, 15] “floats” the top three layers of the SS7 protocol stack on IP using
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another protocol (RUDP) as “glue.” SS7oIP significantly reduces the operat-
ing costs of telecommunications carriers by migrating SS7 traffic from dedicated
long-haul signaling links to inexpensive WAN backbones. Furthermore, com-
bining cost-effective IP transport equipment and service-rich SS7 applications
enables carriers to provide enhanced services (e.g., Short Message Service and
Unified Messaging) and pursue new business opportunities.

The layering of protocols raises important security issues. The individual
protocols (e.g., Modbus) or protocol stacks (e.g., SS7) have vulnerabilities.
Transporting them over TCP/IP and RUDP brings into play the vulnerabili-
ties of the carrier protocols. Meanwhile, layering multiple protocols produces
unintended interactions between protocols and, possibly, new vulnerabilities.

This paper describes a methodology for evaluating the security properties of
multilayer protocols used in critical infrastructure networks. The security anal-
ysis methodology involves the modeling of protocol communications, and the
analysis and verification of protocols using formal methods. The methodology
analyzes multilayer protocols from the point of view of single-layer protocol
(peer-to-peer) communications and multilayer protocol interactions. A case
study is discussed in the context of Modbus TCP, the predominant protocol
used in the oil and gas sector. In the case study, a vulnerability is identified in
the peer-to-peer Modbus protocol, a correction is proposed, and the security of
the corrected protocol is verified. Next, a vulnerability involving inter-protocol
interactions in the corrected peer-to-peer protocol is identified, and a correction
is proposed, which is subsequently verified.

Several techniques have been proposed for modeling, analyzing and verifying
the security properties of peer-to-peer protocols [1–4, 8, 11, 16–18]. This paper
engages standard cryptographic protocol strategies for modeling and analyzing
protocol communications and the knowledge held by communicating entities
(principals and intruders). A verification tool, AVISPA [3, 18], is then used to
identify violations of desired security properties and, subsequently, to verify the
proposed corrections. The principal contribution of this work is the extension
of peer-to-peer techniques to address protocol stack interactions, which is vital
to securing critical infrastructure networks.

2. Modbus Protocol

Modbus is one of the oldest, but most widely used industrial control protocols
[12–14]. Modbus’ open specifications and TCP extension have contributed to
its popularity, especially in the oil and gas sector, where it is the de facto
standard for process control networks.

The Modbus protocol establishes the rules and message structure used by
programmable logic controllers (PLCs) to communicate amongst themselves
and with human machine interfaces (HMIs). The Modbus application layer
defines the mechanisms by which devices exchange supervisory, control and
data acquisition information for operating and controlling industrial processes.

Modbus engages a simple request/reply communication mechanism between
a master unit and slave devices (Figure 1). For example, a control center
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Figure 1. Modbus master-slave communications.

(master) might send a “read” message to a sensor (slave) to obtain the value of
a process parameter (e.g., temperature). Alternatively, it might send a “write”
message to an actuator (slave) to perform a control action (e.g., open a valve).

A unicast transaction involving the master and an addressed slave comprises
two messages, a request message (e.g., for a temperature reading or to open a
valve) and the corresponding response message (e.g., the temperature reading or
an acknowledgment that the valve was opened). On the other hand, a broadcast
transaction involves one request message from the master that is received by
all the slaves; the slaves do not send response messages. An example broadcast
transaction is a “write” message that resets all sensors and actuators.

Modbus communications occur over serial lines or, more recently, using
TCP/IP as a transport mechanism. The following sections describe the se-
rial and TCP variants of the Modbus protocol. For additional details, readers
are referred to the protocol specification [12] and the guides for serial [14] and
TCP/IP network [13] implementations.

2.1 Modbus Serial Protocol

In the Modbus Serial protocol, messages are transmitted over a serial line
using the ASCII or RTU transmission modes. A Modbus Serial message has
three components: (i) slave address, (ii) Modbus Application Protocol Data
Unit (PDU), and (iii) an error checking field (Figure 2). The slave address in
a request message identifies the intended recipient; the corresponding address
in a response message is used by the master to identify the responding slave.
A broadcast message has an address of 0. A unicast message has an address in
the [1,247] range that identifies an individual slave in the network. Values in
the [248,255] range are reserved addresses.

The Modbus PDU has two fields, a one-byte function code and function pa-
rameters (max 252 bytes). The function code specifies the operation requested
by the master; it also conveys error information when an exception occurs in a
slave device. The function parameters field contains data pertaining to function
invocation (request messages) or function results (reply messages).
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Figure 2. Modbus Serial message.

Modbus function codes specify a variety of read and write operations on
slaves, as well as diagnostic functions and error conditions. Public codes cor-
respond to functions whose semantics are completely defined or will be defined
in the Modbus standard. Valid public codes fall in the non-contiguous ranges:
[1,64], [73,99] and [111,127]. User-defined codes in the [65,72] and [100,110]
ranges are not considered by the Modbus standard; their implementations are
left to vendors and there are no guarantees regarding their compatibility. Re-
served function codes are public codes that are reserved to ensure compatibility
with legacy systems. Function code values in the unused range [128,255] are
for indicating error conditions in response messages.

Response messages have the same structure as request messages. The Mod-
bus specification defines positive and negative responses to request messages. A
positive response informs the master that the slave has successfully performed
the requested action; this is indicated by including the request message function
code in the response. On the other hand, a negative or exception response no-
tifies the master that the transaction could not be performed by the addressed
slave. The function code for a negative response is computed by adding 128 to
the function code of the request message; thus, function codes in the [128,255]
range denote error conditions. A negative response also includes an exception
code in the function parameters part of the response message that provides in-
formation about the cause of the error. The Modbus specification defines nine
exception responses whose format and content depend on the issuing entity and
the type of event producing the exception.

2.2 Modbus TCP Protocol

The Modbus TCP protocol provides connectivity within a Modbus network
(a master and its slaves) as well as for TCP/IP interconnected Modbus networks
(multiple masters, each with multiple slaves). Modbus TCP enables a master to
have multiple outstanding transactions. Moreover, it permits a slave to engage
in concurrent communications with multiple masters.

In Modbus TCP, slaves listen for incoming TCP connections on port 502
(IANA assigned port) and may optionally listen on additional ports. The device
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Figure 3. Modbus TCP message.

that performs the passive open operation on TCP (server) assumes the role of
a Modbus slave. Similarly, the device performing the active open operation on
TCP (client) assumes the role of a Modbus master. Once a TCP communication
channel has been established, Modbus roles cannot be changed on that channel;
however, multiple outstanding transactions can exist on the channel. Another
communication channel must be opened if a device is to assume a different role.

Modbus TCP transactions are functionally equivalent to their serial coun-
terparts: the master and slaves exchange PDUs, except that the transactions
are encapsulated in TCP messages (Figure 3). Consequently, a Modbus TCP
PDU includes the Modbus Application Protocol (MBAP) in addition to the
Modbus Application PDU used in Modbus Serial.

The MBAP header has four fields: (i) transaction identifier, (ii) protocol
identifier, (iii) length and (iv) unit identifier. The transaction identifier al-
lows devices to pair transaction requests and replies. The protocol identifier
indicates the application protocol encapsulated by the MBAP header (zero for
Modbus). The length field indicates the length in bytes of the remaining fields
(unit identifier and PDU). The unit identifier indicates the slave associated
with the transaction (used only in the case of legacy implementations).

The Modbus TCP specification requires that only one application PDU be
transported in the payload of a TCP packet. Since application PDUs have a
maximum size of 253 bytes and the length of the MBAP is fixed at seven bytes,
the maximum length of a Modbus TCP data unit is 260 bytes.

3. Security Analysis Methodology

This section describes the formalism used to model protocols. In addition,
it discusses the technique used to identify violations of security properties and
to verify corrections made to protocols.

3.1 Protocol Modeling

The first step in security analysis is to model the protocol. It is necessary to
capture the roles of the participating agents, the initial knowledge associated
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with each role, and the communications sequence. The roles indicate the parts
that agents in the protocol can play. The initial knowledge associated with each
role is the data that an agent must know in order to participate in the protocol.
The communications sequence defines the messages (and their contents) that
are sent and received by agents.

We illustrate the modeling process using the simple protocol:

A −→ B : {ID1, Amount1}

B −→ A : {ID1, Amount1, Hash(ID1, Amount1)}Kab

The protocol has two agents (A and B) and a two-step communication se-
quence. Agents A and B assume the roles of initiator and responder, respec-
tively. A knows the values ID1 and Amount1, which it sends to B. B receives
the values from A, computes a hash of the two values, and sends all the in-
formation to A encrypted using a symmetric key Kab known only to A and
B.

In the following, we describe the modeling of agent communications and
intruder attacks in more detail.

3.1.1 Agent Communications. Agents communicate when a
message sent by one agent matches the pattern exposed by another agent. We
specify the constructs involved in modeling agent communications, including
complex messages, encryption/decryption and pattern matching [16, 17].

Definition 1: A key (key ∈ KEY ) is a public/private key (Kn/K−1
n ), a

shared or secret key (Ks
n), or nil, for an unencrypted message:

key ::= Kn | K−1
n | Ks

n | nil

We assume the existence of a basic type NAME comprising an infinite
set of names. This basic type is used to create unique keys, and data for
messages and patterns. For example, n and m in Definition 1 are of type
NAME (n, m ∈ NAME).

A key matching operator is required to determine whether or not a key can
be used to decrypt a message. The first two rules in the definition below are
for asymmetric and symmetric encryption, respectively. The third rule is used
for cleartext messages.

Definition 2: The key matching operator (
K
∼) is defined by:

Ka
K
∼ K−1

b iff a = b

Ks
a

K
∼ Ks

b iff a = b

nil
K
∼ nil
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Messages exchanged by agents are nested tuples of values encrypted under
a key, where the values can be keys, messages, data, nonces or timestamps.

Definition 3: A message is a list of values {v1, v2, ., vj} encrypted under key,
i.e., {v1, v2, · · · , vj}key. A value is a key, a message, a name or a fresh name:

message = {v1, v2, · · · , vj}key

value = key|message|n|#n

Note that the names in a message represent message data. Fresh names refer
to nonces and timestamps that are generated in a single run of a protocol.

Communication between agents occurs when the sending agent’s message
matches the receiving agent’s pattern. The pattern exposed by the receiving
agent reveals the knowledge that it has about the incoming message.

Definition 4: A pattern is a list of patterns {p1, p2, · · · , pj} encrypted under
key and denoted by {p1, p2, · · · , pj}key or a key, a wildcard or placeholder (n?)
for capturing values or a name (n):

pattern = {p1, p2, · · · , pj}key|key|n?|n

Finally, we specify the rules for matching messages and patterns.

Definition 5: The message-pattern matching operator ∼ is defined by the
following rules (v, vi ∈ V AL, p, pi ∈ PAT , key, keyi ∈ KEY , m ∈ MSG and
n ∈ NAME):

{v1, v2, ..., vj}key1
∼ {p1, p2, ..., pj}key2

iff

key1
K
∼ key2 ∧ vi ∼ pi ∀i = 1..j

m ∼ n?

m ∼ key?

v ∼ n?

v ∼ n iff v = n

key ∼ key?

Figure 4 presents a formal model of the two-step communication sequence:

A −→ B : {ID1, Amount1}

B −→ A : {ID1, Amount1, Hash(ID1, Amount1)}Kab

The figure formally specifies the agents’ roles and initial knowledge. Also, it
illustrates the modeling of messages and patterns, and the exchange of infor-
mation between agents.
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Figure 4. Modeling agent communications.

In the first step, A sends the message {ID1, Amount1}, which is matched
by the pattern {ID?, Amount?} exposed by B. The match causes the values
ID1 and Amount1 to be bound to B’s wildcard variables ID? and Amount?,
respectively. The binding is denoted by ID1/ID? and Amount1/Amount? in
B. Thus, B obtains (knows) the values ID1 and Amount1.

After receiving ID1 and Amount1, B computes the hash value of ID1 and
Amount1. In the second step, B sends ID1, Amount1 and the hash value to
A in an encrypted message, i.e., {ID1, Amount1, Hash(ID1, Amount1)}Kab

.
Note that the message is encrypted under Kab, a secret key shared by A and
B. As shown in Figure 4, the encrypted message is matched by the pattern
{ID1, Amount1, Hash?}Kab exposed by A. Thus, A’s wildcard variable Hash?
receives the hash value computed by B.

3.1.2 Intruder Attacks. An intruder I may perpetrate an attack
by exposing an appropriate pattern to capture information sent by agent A.
Next, it creates a fabricated message, which it sends to B. The corresponding
communication sequence involving agents A, I and B is:

A −→ I : {ID1, Amount1}

I −→ B : {ID1, Amount2}

B −→ I : {ID1, Amount2, Hash(ID1, Amount2)}Kab

I −→ A : {ID1, Amount2, Hash(ID1, Amount2)}Kab

In the first step, I might expose the pattern {ID?, Amount?} to capture both
ID1 and Amount1 in the message sent by A. Alternatively, if I only intends
to capture a value for Amount?, it might expose the pattern {ID1, Amount?}
– this means that I has initial knowledge of ID1. Of course, this pattern
would not work if A were to send the message {ID2, Amount1} because ID2

in the message would not match ID1 in the pattern {ID1, Amount?} exposed
by intruder I (according to Definition 5).

In the second step, I sends the message {ID1, Amount2}, which matches
B’s exposed pattern {ID?, Amount?}, enabling B to obtain the values ID1
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Translator AVISPAProtocol 
Description HLPSL Report

Security 
Goals

Figure 5. Analysis and verification framework.

and Amount2. B computes the hash value, and sends an encrypted message,
which is intercepted by I (Step 3). I obtains the encrypted message by exposing
a pattern {Message?}. However, I is unable to unlock the message because
it does not know key Kab, so it can only forward the encrypted message to
A (Step 4). Of course, when A unlocks the message and checks the hash, it
notices that something is amiss. Thus, I’s attack only has nuisance value.

Note that I is only able to change values that are eventually bound to
wildcards (variables) in a pattern exposed by a receiver (e.g., Amount?, which
receives the value Amount2 instead of Amount1 in the attack). The other
values in the exposed pattern are determined by the receiver and cannot be
changed by I.

3.2 Protocol Analysis and Verification

This section discusses the protocol analysis and verification methodology [7].
In particular, it describes the analysis and verification framework, the specifi-
cation of security goals, and the application of AVISPA [3, 18], an automated
tool for validating Internet security protocols.

3.2.1 Framework. The framework used for protocol analysis and
verification is presented in Figure 5. A formal protocol specification (e.g., the
example in Section 3.1) and security goals (described in Section 3.2.2 below)
are translated into the High Level Protocol Specification Language (HLPSL)
for use by the AVISPA tool [3, 18]. AVISPA produces a report that documents
whether or not the security goals are satisfied. The report also describes the
attacks (if any exist) that may be perpetrated by an intruder.

HLPSL is an expressive, modular role-based formal language that can be
used to specify control flow patterns, data structures, alternative intruder mod-
els [5] and complex security properties, along with various cryptographic prim-
itives and their algebraic properties. HLPSL models agent communications,
including both messages and patterns, and security goals for protocols. Cur-
rently, the translation to HLPSL is performed manually. However, it is rela-
tively simple to construct a compiler that automates the translation process.

The HLPSL file with protocol specifications and security goals is submitted
to AVISPA for analysis and verification. AVISPA, which is described in more
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detail in Section 3.2.3, has been tested on numerous protocols [3, 18]. We
believe this is the first time AVISPA has been applied to analyze a SCADA
protocol, including adapting it to examine multilayer protocol interactions.

AVISPA produces a formal report, which labels a protocol as SAFE, UNSAFE,
INCONCLUSIVE or ERROR. SAFE indicates that no vulnerabilities were identified
based on the specified security goals. UNSAFE means that AVISPA was able to
find one or more attacks on the protocol; each attack is specified in the report
as a message sequence chart. INCONCLUSIVE means that AVISPA was unable
to reach any conclusions in a bounded number of iterations; in other words,
the protocol is safe or additional iterations are required to identify an attack.
ERROR implies that AVISPA was unable to correctly interpret the HLPSL file.

3.2.2 Security Goals. The security goals are the properties that
must be satisfied by a protocol being analyzed by AVISPA, e.g., authentica-
tion and secrecy, key agreement properties, anonymity and non-repudiation [3].
Specific security goals that can be evaluated by AVISPA include:

Peer Entity Authentication: Assuring one agent of the identity of a
second agent through the presentation of evidence and/or credentials.

Data Origin Authentication: Ensuring confidence that a received
message or piece of data was created by a certain agent at some time
in the past, and has not been altered or corrupted. This property is also
called message authentication.

Implicit Destination Authentication: Ensuring that a message is
only readable by agents authorized by the sender.

Replay Protection: Assuring that a previously authenticated message
is not reused.

Key Authentication: Ensuring that a particular secret key is limited
to specific known and trusted parties.

Key Confirmation: An agent has proof that a second agent has a
particular secret key.

Fresh Key Derivation: Dynamic key management is used to derive
fresh session keys.

Identity Protection Against Eavesdroppers: An intruder should
not be able to establish the real identity of an agent based on communi-
cations exchanged by the agent.

Proof of Origin: Undeniable evidence that an agent sent a message.

Proof of Delivery: Undeniable evidence that an agent received a mes-
sage.
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AVISPA can reason about other security goals, but these may involve addi-
tional implementation efforts. Security goals are specified by augmenting the
transitions of roles (messages and patterns) with goal-facts. HLPSL has built-
in support for three primitive goals: secrecy, weak authentication and strong
authentication. The expression secrecy of X indicates that if an intruder ob-
tains X , a violation of the specified security requirement has occurred. It is
important to note that AVISPA assumes that all protocol roles with access
to variable X will keep their respective copies a secret. The weak and strong
authentication goals are modeled after Lowe’s [10] notions of non-injective and
injective agreement, respectively.

A weak authentication of Y by X on variable Z, expressed as X weakly
authenticates Y on Z, is achieved if at the end of a protocol run initiated by
X , both X and Y agree on the value Z. This definition does not guarantee a
one-to-one relationship between the number of times X has participated in a
valid protocol run and the number of times Y has participated, i.e., it is possible
for X to believe that it has participated in two valid runs when Y has been
taking part on a single run. A strong authentication goal, simply expressed
as X authenticates Y on Z, requires that each protocol run initiated by X
corresponds to a unique run of the protocol by Y . The HLPSL goal section is
used to describe the combinations of facts that indicate an attack.

The internal representation of attack conditions is in terms of temporal logic
[9]; additional properties must be expressed using temporal logic. Of the three
main security goals for SCADA protocols, integrity is most easily verified using
AVISPA.

In the example in Section 3.1, agent A might wish to ensure the integrity of
the message from B. The following three statements would be introduced
in the corresponding HLPSL file to check the integrity of the communica-
tions. The statement witness(B, A, hash function, hash(ID1, Amount1)) in
B’s role definition states that B has produced a certain hash value for A.
The statement request(A, B, hash function, hash?) in A’s role definition states
that A wants the hash value to be verified. The HLPSL goal statement
A authenticates B on hash function indicates that A and B must agree on
the value of hash function.

3.2.3 AVISPA. AVISPA [3] was created to analyze Internet pro-
tocols and applications. It incorporates four separate backends: OFMC, CL-
AtSe, SATMC and TA4SP. AVISPA has been tested on numerous industrial
protocols, and has uncovered many known and unknown flaws [18].

To understand how AVISPA works, note that the values that an intruder
I can assign to a variable (wildcard) depend on the values in I’s knowledge
base and the current state of the protocol run. These values must match the
receiver’s exposed pattern. If the values do not match, the message will be
ignored or rejected, and the protocol run will not be completed. Knowledge
about the specific values to be given to variables may come from information
gathered about messages that are sent/received later in the protocol sequence.
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Indeed, I requires knowledge about the protocol communication sequence to
perpetrate an attack. AVISPA automates the process of searching for values
assigned to variables that satisfy the protocol constraints. If an assignment
of values results in a security requirement not being satisfied, AVISPA reports
this fact and presents a sequence of communication exchanges as proof.

AVISPA provides a web interface that enables users to edit protocol specifi-
cations, and select and configure AVISPA backend tools. One or more backends
may be used to evaluate a protocol. Input to all AVISPA backends must be in
HLPSL.

AVISPA outputs a vulnerabilities report that lists the attacks that could
be perpetrated by an intruder. An attack is detected when a communication
sequence is found such that there is a successful protocol run and one or more
security requirements are violated. Otherwise, it is assumed that an intruder
is unable to generate an attack in the given scenario.

4. Modbus TCP Case Study

This section presents a Modbus TCP case study, which focuses on the au-
thentication of Modbus agents and the origins of messages. The study shows
that identifying and correcting flaws at the peer-to-peer (Modbus Serial) level
are insufficient. It is imperative that security analyses of multilayer protocols,
such as Modbus TCP, also be performed at the inter-protocol level.

4.1 Modbus Serial Analysis

Unicast transactions in the Modbus Serial protocol involve the exchange of
request and reply messages. Figure 6(a) models a unicast transaction using
the formalism discussed in Section 3. The Master unit sends the message
{Slave, FC1, Data1, CRC1} to Slave requesting it to perform function FC1

with parameters Data1; CRC1 is included to verify the integrity of the message.
The Slave listens for messages by exposing the pattern {Slave, FC1?, Data1?,
CRC1?}. The first field (with value Slave) indicates that Slave only receives
messages addressed to Slave (see Definition 5 in Section 3). The remaining
three fields FC1?, Data1? and CRC1? are wildcards (variables) that are bound
to the data values FC1, Data1 and CRC1, respectively.

Upon executing the request, Slave responds with the message {Slave, FC2,
Data2, CRC2} indicating that it (Slave) is responding with status FC2 (FC2 =
FC1 or FC2 = FC1 + 128 for positive/negative replies [12]) as described by
Data2; CRC2 is used to establish message integrity. Master exposes the pat-
tern {Slave, FC2?, Data2?, CRC2?} to receive this data from Slave.

A flaw was discovered after formally modeling Master-Slave communica-
tions and using the protocol analysis technique described in Section 3. The
flaw enables an Intruder to intercept and modify messages sent by the Master
and Slave (Figure 6(b)). In this attack, the Intruder intercepts Master’s re-
quest message {Slave, FC1, Data1, CRC1} and sends the fabricated message
{Slave, FC2, Data2, CRC2} to Slave. Upon receiving this message, Slave per-
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{Slave, FC1, Data1, CRC1} {Slave, FC1?, Data1?, CRC1?}

{Slave, FC2, Data2, CRC2}{Slave, FC2?, Data2?, CRC2?}

message
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pattern

pattern

Master Slavea.

{Slave, FC1, Data1, CRC1}
{Slave, FC2, Data2, CRC2}

{Slave, FC3, Data3, CRC3}
{Slave, FC4, Data4, CRC4}

Master SlaveIntruder
b.

{Slave, FC1, Data1, CRC1}K {Slave, FC1?, Data1?, CRC1?}K

{Slave, FC2, Data2, CRC2}K{Slave, FC2?, Data2?, CRC2?}K

message

message

pattern

pattern

Master Slavec.

-1
M

-1
S

M

S

Figure 6. Modbus Serial attack and correction.

forms FC2 with Data2 instead of FC1 with Data1. Next, Slave responds
with {Slave, FC3, Data3, CRC3} where FC3 = FC2 or FC3 = FC2 + 128 for
positive/negative replies.

At this point, as shown in Figure 6(b), Intruder intercepts Slave’s message
and sends the fabricated message {Slave, FC4, Data4, CRC4} where FC4 =
FC1 or FC4 = FC1 + 128 to Master. Note that the fabricated message is
constructed so that it matches the pattern exposed by Master to receive a
response message from Slave regarding function FC1.

One way to defeat this attack is to use asymmetric encryption for Modbus
messages. The new specification of a Modbus transaction is shown in Figure
6(c). The private keys of the Master and Slave are K−1

M and K−1
S , respectively;

the corresponding public keys are KM and KS . The Master uses the Slave’s
public key KS to encrypt the request message {Slave, FC1, Data1, CRC1}KS ,
and the Slave exposes the pattern {Slave, FC1?, Data1?, CRC1?}K−1

S
. Match-

ing is verified according to Definitions 2 and 5 (note that KS
K
∼ K−1

S ). The
Slave responds by using the Master’s public key KM to encrypt the mes-
sage: {Slave, FC2, Data2, CRC2}KM , which is matched by the pattern {Slave,
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FC2?, Data2?, CRC2?}K−1

M
exposed by the Master. Subsequent analysis of the

modified protocol reveals that the flaw is fixed.

4.2 Modbus TCP Analysis

Peer-to-peer analysis of Modbus neither ensures that the protocol is secure
nor that is being used securely. Layering Modbus Serial on TCP requires that
TCP flaws be considered in addition to flaws arising from negative interactions
between the two protocols. TCP attacks, e.g., session hijacking, are well known
and are not discussed here. In fact, modeling and analyzing TCP – as was done
in the case of Modbus Serial – can reveal flaws and verify the security of protocol
corrections. This section focuses specifically on a negative interaction produced
by layering Modbus Serial on TCP.

Modbus TCP permits PDUs to be transported in TCP/IP messages. In
Modbus TCP, master units are called “clients” because they send requests to
slaves by initiating a connection using an active open operation on the TCP/IP
stack. Slaves are called “servers” because they process requests and send the
results to master units by listening, i.e., performing a passive open on the
TCP/IP stack using a predefined port.

Figure 7(a) models the corrected Modbus TCP protocol, i.e., the corrected
Modbus Serial protocol in Figure 6(c), which is transported by TCP. Note
that to simplify the presentation, only relevant fields are shown in the proto-
col messages. The first four fields of each message capture essential IP data
(required for proper processing) in the following order: source IP address, des-
tination IP address, source port and destination port. Encrypting messages at
the peer-to-peer level affects Modbus TCP because Modbus headers and PDUs
are encrypted (Figure 7(a)). Note also that the Modbus specifications require
that messages contain additional MBAP fields (e.g., transID, PID, length
and unitID).

Figure 7(b) presents an attack that exploits a flaw arising from negative
interactions between layers of the Modbus TCP protocol. In the attack, the
Intruder intercepts the Client’s encrypted request message sent from IP -C
(Client’s IP address) to IP -S (Server’s IP address). Since the Intruder cannot
decrypt the Modbus message (it does not know K−1

S ), it changes the TCP/IP
data associated with the source of the IP datagram and forwards the Modbus
content as is. The Server responds to the Intruder’s IP address IP -I with
{transID, PID, length2, unitID, FC2, Data2} encrypted with its private key
K−1

S . The Intruder decrypts the Modbus payload using KS and creates a bogus
(but valid) Modbus response by encrypting {transID, PID, length3, unitID,
FC3, Data3} using the Client’s public key KC .

Protocol analysis reveals that encryption – while it maintains message con-
fidentiality – does not ensure message integrity. The attack in Figure 7(b)
exploits the flaw, enabling the Intruder to intercept and modify messages and
make the Server believe it is the Client (master unit). One might observe
that this attack is defeated if the Server (a remote terminal unit) could be
configured with the IP address of the Client (the Modbus payload itself does
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c.

a.

message

message

pattern

pattern

Client Server{IPSrc, IPDest, SrcPrt, DestPrt, {transID, 
PID,  length1, unitID, FC1, Data1}K }

{IPSrc, IPDest, SrcPrt, DestPrt, {transID?, 
PID, length?, unitID, FC1?, Data1?}K }

{IPDest, IPSrc, DestPrt, SrcPrt, {transID, 
PID, length2, unitID, FC2, Data2}K }

{IPDest, IPSrc, DestPrt, SrcPrt, {transID, 
PID, length2?, unitID, FC2?, Data2?}K }

S
-1
S

-1
C C

Client Server{IP-C, IP-S, SrcPrt, 502, {transID, 
PID,  length1, unitID, FC1, Data1}K } {IP-I, IP-S, SrcPrt, 502, {transID, 

PID, length1, unitID, FC1, Data1}Ks}

{IP-S,IP-I , 502, SrcPrt, {transID, 
PID, length2, unitID, FC2, Data2}K }{IP-S, IP-C, 502, SrcPrt, {transID, 

PID, length3, unitID, FC3, Data3}K }

Intruderb.
S

-1
S

C

message

message

pattern

pattern

Client Server{IPSrc, IPDest, SrcPrt, DestPrt, {transID, 
PID,  length1, unitID, FC1, Data1, Hash1}K }

{IPSrc, IPDest, SrcPrt, DestPrt, {transID?, 
PID, length?, unitID, FC?, Data?, Hash?}K }

{IPDest, IPSrc, DestPrt, SrcPrt, {transID, 
PID, length2, unitID, FC2, Data2, Hash2}K }

{IPDest, IPSrc, DestPrt, SrcPrt, {transID, 
PID, length?, unitID, FC2?, Data2?, Hash2?}K }

S
-1
S

C
-1
C

Figure 7. Modbus TCP attack and correction.

not contain any information identifying the Client). Clearly in this case, a
message from IP -I would have been rejected and the attack would have failed.
However, due to limited computational power, remote terminal units often de-
ploy minimal TCP/IP stacks with few, if any, security settings.

The corrected protocol in Figure 7(c) appends a two-byte hash value of the
IP source and destination addresses, the TCP source port and the Modbus
transaction ID to the Modbus PDU. This has the effect of including an ad-
ditional field (protected by encryption) that is used to establish integrity (by
associating IP and Modbus-related data in a single field). Formal analysis of
this corrected protocol reveals that it addresses the flaw by preserving Modbus
agent authenticity and message integrity.

5. Conclusions

Using carrier protocols such as TCP/IP to transport control protocols in
SCADA/distributed control systems, telecommunications and other critical in-
frastructure networks is efficient and cost effective. However, the layering of
protocols raises serious security issues. The original control protocols were
designed for use in isolated networks, not to be transported over WANs by
carrier protocols. Protocol layering brings into play the vulnerabilities in the
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individual protocols and carrier protocols, as well as unexpected vulnerabilities
produced by negative interactions between protocol stack layers.

This paper has presented a methodology for formally modeling multilayer
protocols and protocol stacks, and systematically analyzing peer-to-peer and
inter-protocol interactions. The methodology engages AVISPA, a popular pro-
tocol validation tool, to identify flaws and verify that corrections satisfy the
desired security goals. As such, the methodology is useful for analyzing the
security properties of existing multilayer protocols as well as “secure” indus-
try implementations involving legacy and transport protocols. With additional
research and refinement, this methodology could serve as the foundation for
designing inherently secure protocols and protocol stacks for next generation
critical infrastructure networks.
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