
Chapter 16

METRICS FOR QUANTIFYING
INTERDEPENDENCIES

Emiliano Casalicchio and Emanuele Galli

Abstract The quantification of interdependencies is a major challenge when at-
tempting to analyze the behavior of critical infrastructures. This paper
presents a taxonomy of interdependency quantification metrics based
on their information content, decision support and risk analysis capa-
bilities, and computational costs. The paper also discusses a systematic
approach for computing metrics and performance indices that measure
the effectiveness of strategies designed to enhance critical infrastructure
protection and resilience. A case study is used to illustrate the compu-
tation of the metrics and performance indices, and their application to
the analysis of critical infrastructure interdependencies.
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1. Introduction

A critical infrastructure is a physical system that, if disrupted, can seriously
affect the national security, economy and social welfare of a nation. Examples
of critical infrastructures include telecommunications, electric power systems,
natural gas and oil, banking and finance, transportation, water supply systems,
government and emergency services [1]. Clearly, modern society cannot func-
tion if large portions of the critical infrastructure are disrupted or destroyed.

In order to understand the behavior of critical infrastructures, it is necessary
to accurately model and quantify their interdependencies [14]. Researchers
have proposed several qualitative and quantitative techniques for analyzing
interdependencies. Qualitative approaches rely on mathematical formalisms
such as Leontief-based models [10], Markov chains [2], Petri nets [8], hierarchical
holographic modeling (HHM) [7, 9] and graph theory [15, 16]. Quantitative
approaches typically engage discrete simulation or agent-based modeling and
simulation (ABMS) [3–6, 14].
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While considerable research has focused on interdependency modeling and
analysis, very few efforts have examined the issue of quantifying interdependen-
cies. Zimmerman [17] has proposed explicit metrics for quantifying interdepen-
dencies. One metric measures the “direction” of infrastructure failures as the
ratio between the number of times one type of infrastructure causes damage
to another type of infrastructure and the number of times other types of in-
frastructures cause damage to the first type of infrastructure. Zimmerman and
Restrepo [18] have specified a metric that measures the duration of cascading
effects; they use this metric to quantify the effects of U.S. power grid outages
on other infrastructures.

This paper presents a taxonomy that classifies interdependency metrics on
the basis of their information content, decision support and risk analysis ca-
pabilities, and computational costs. In addition, it describes systematic ap-
proaches for computing metrics using system or model observations, and for
calculating performance indices that measure the effectiveness of strategies de-
signed to enhance critical infrastructure protection and resilience.

In general, interdependency metrics may be classified as those that measure
the macro characteristics of interdependencies and their impact on system be-
havior and those quantify the strengths or weaknesses of infrastructures and
infrastructure components. Metrics in the first category support decision mak-
ing at the organizational or strategic level while those in the second category
support decision making at the engineering or practical level.

We also use statistical measures, namely the percentile value, cumulative
distribution function (CDF) and complementary cumulative distribution func-
tion (CCDF). The percentile value and CDF of an observed state variable are
used to quantify the degree of satisfaction or goodness of choice. The CCDF
of a set of observed outcomes is used to perform survivability analyses.

We employ a case study to illustrate the computation of metrics and perfor-
mance indices, and their use in analyzing critical infrastructure interdependen-
cies. Two scenarios are examined, outage propagation in infrastructures and
victim rescue after a terrorist attack.

2. Metrics and Performance Indices

We classify metrics for quantifying critical infrastructure interdependencies
in terms of decision support capabilities, information content and computa-
tional cost. In particular, we identify three categories of metrics: (i) shape
metrics that quantify macro or “shape” characteristics of interdependencies
such as direction [17] and duration [18] (Figure 1(a)); (ii) core metrics that
measure the causes and effects of outages for specific infrastructure compo-
nents (Figures 1(b) and (c)) and the effectiveness of strategies/mechanisms
for improving critical infrastructures protection and resilience; and (iii) sector-
specific metrics that measure the states of infrastructures at the global and
component levels.

Figure 2 shows how core, shape and sector-specific metrics are positioned
in the three dimensional space of decision support capabilities, information
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Figure 1. (a) Shape metrics; (b, c) Core metrics.
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Figure 2. Taxonomy of metrics for quantifying interdependencies.

content and cost. The decision support dimension ranges from the engineering
level (low) to the strategic level (high). The information content dimension
ranges from the micro level (low) to the macro level (high). The cost dimension
ranges from low to high. The first two dimensions are qualitative in nature while
cost dimension values depend on the implementation and case study.

2.1 Shape Metrics

Consider the direct metric, relative duration (Ri,j), which measures the cas-

cading effect of an outage [18]. Ri,j = Tj

Ti
is defined as the ratio of the duration

Tj of an outage in infrastructure j due to an outage in infrastructure i and
the duration Ti of the outage in infrastructure i. The computation of a shape
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Figure 3. Relationship between sector-specific and direct metrics.

metric involves measuring Ri,j and quantifying the impact on infrastructure j.
The solution is to use sector-specific metrics. Ri,j is a function f(·) of the time t
and the set of sector-specific metrics Mj used to measure the performance levels
or capabilities of infrastructure j. In other words, Ri,j = f(t, m1

j , m
2
j , ..., m

p
j )

where mk
j ∈ Mj .

Consider the example presented in Figure 3. Suppose that at time t1 there
is a power grid outage (infrastructure i), and at time t′1 ≥ t1, a decrease is
observed in X , the overall throughput of the communication network (infras-
tructure j): X(t) = X0 if t ≤ t1 and X(t) ≤ X1 if t ≥ t′1. X1 is the critical
threshold for network performance, i.e., when X < X1 the network loses the
ability to provide services. If the power grid outage is fixed at time t2 and,
after time t3, the throughput is observed to return to X0, X(t) ≥ X2 at time
t3 and X(t) → X0 for t ≥ t3, we assert that, at time t3, the cascading effect
of the power grid outage has ended. We assume that, when X(t) ≥ X2, the
communication network can provide services (obviously, X1 ≤ X2 ≤ X0). Ri,j

is a function f(t, X) of the time and throughput: Rg,n = t3−t′
1

t2−t1
where t′1 is such

that X(t) ≤ X1 for t ≥ t′1 and t3 is such that X(t) ≥ X2 for t ≥ t3.
As observed by Zimmerman and Restrepo [18], if Ri,j < 1, the infrastructure

j can react on its own to the outage (e.g., reconfigure its services). Otherwise,
if Ri,j > 1, the infrastructure j is heavily dependent on the outage and it needs
some time to restore its services after the outage ends.

An example of an aggregate measure of a shape metric is the total relative
duration Ri,I of an outage in infrastructure i on a set of infrastructures I.
Suppose that the power grid outage impacts the communication network and
transportation system, and that the communication network outage impacts
credit card transactions. The cascading effect ends when all the infrastructures
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are restored to their normal operating conditions. Then, the total relative
duration of an outage in infrastructure i is given by Ri,I = maxj∈I,j ̸=i {Ri,j}
where Ri,j is a function of sector-specific performance indices of infrastructure
j.

2.2 Core Metrics

The direct metric Ri,j quantifies a macro characteristic of the interdepen-
dencies between infrastructures i and j, but it does not give any information
about the infrastructure nodes involved in or affected by the outage propaga-
tion. Nor does it provide the impact of the failure of a specific infrastructure
or infrastructure component. Core metrics quantify the effects of interdepen-
dencies at the level of infrastructure nodes or, more deeply, at the level of node
components. Thus, core metrics provide insight into the causes and effects of
outages.

Two core metrics can be obtained by refining the shape metric Ri,j in order
to identify the weakest node in infrastructure j or the most important node in
infrastructure i. To identify the weakest node in infrastructure j with respect
to an outage in infrastructure i, we define Ri,nk

j
= f(t, Mk

j ) where nk
j is the

kth node of infrastructure j and Mk
j is the set of metrics used to measure

the performance or capabilities of nk
j . The weakest node is then obtained by

evaluating the expression nl
j = maxk∈Nj

{

Ri,nk
j

}

where Nj is the set of nodes

comprising infrastructure j.
Similarly, to identify the most important node in infrastructure i that affects

infrastructure j, we define Rnh
i ,nk

j
= f(t, Mk

j ) where nh
i is the hth node of

infrastructure i. The most important node in infrastructure i is determined by

evaluating the expression nl
i = maxh∈Ni

{

Rnh
i ,nk

j

}

for each k ∈ Nj .

In general, if a sector-specific metric mk
j ∈ Mk

j is used, the weakest node
in infrastructure j with respect to an outage in infrastructure i is obtained by
evaluating the expression nl

j = maxk∈Nj

{

∆mk
j

}

where ∆mk
j is the variation

of the sector-specific metric considered. Similarly, the most important node
in infrastructure i that affects the behavior of infrastructure j is obtained by
evaluating the expression nl

i = maxh∈Ni

{

∆mk
j

}

∀k ∈ Nj. Obviously, depend-
ing on the metric considered, the maximization problem can be turned into a
minimization problem.

In addition to measuring the loss of performance or capability of an infras-
tructure, core metrics can be used to measure the effectiveness of strategies for
protecting critical infrastructures or enhancing their resilience. For example,
core metrics can quantify the effects produced by changing a rescue plan, the
consequences of network re-engineering or the effects of a new service reconfig-
uration strategy. Also, core metrics can be used to specify the probability that
a certain percentage of a population will be rescued after an incident, the per-
centage of fatalities in a population or the duration of rescue operations. These
concepts cannot be quantified using direct metrics. Other examples that can
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Figure 4. Computing shape and core metrics from sector-specific metrics.

be quantified by core metrics are the number of damaged infrastructure nodes,
the time taken to recover node functionality, the time taken to reconfigure a
system or network, and more.

2.3 Computing Shape and Core Metrics

As discussed above, sector-specific metrics are used to compute shape and
core metrics. Figure 4 illustrates the relationships between sector-specific met-
rics, core metrics and shape metrics and the processes for computing shape and
core metrics. Parameters that can be used directly as core metrics (i.e., without
any transformation) are determined by analyzing a real system or a detailed
model of the system (or both). To compute shape metrics, is necessary to
identify the relevant sector-specific metrics and the appropriate transformation
functions (f1, ..., fn) as described in Section 2.1.

2.4 Metric Characteristics

Table 1 summarizes the characteristics of shape metrics, core metrics and
sector-specific metrics. In particular, it compares the three types of metrics
based on their information content, decision support capabilities and compu-
tational cost.

2.5 Statistical Performance Indices

A statistical metric can be used to express the degree of satisfaction with
respect to the X th percentile of a performance index. The X th percentile of
a dataset is defined as the value that is larger than X% of the data. The
Xth percentile of a random variable is obtained by inverting its cumulative
distribution function (CDF), which is defined as FX(x) = P{x ≤ X}. For
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Table 1. Summary of interdependency metric characteristics.

Metrics Information Decision Cost
Content Support

Shape metrics Macro level

Support decisions
at the organiza-
tional and strate-
gic levels

Low/Medium
Detailed model
is not manda-
tory

Core metrics Micro level Support decisions
at the engineering
and practical
levels; Quantify the
causes and effects
of outages

Medium/High
Detailed model
is mandatory
(typically a simu-
lation model)

Sector-specific
metrics

Engineering level

Input for comput-
ing shape and core
metrics

example, the 95th percentile of X is τ = F−1
X (0.95). Thus, the percentile of

interest is easily obtained by plotting the CDF.
For performance indices such as crisis resolution time, rescue time and num-

ber of failed nodes it makes sense to measure the degree of satisfaction of a new
(counter)measure. On the other hand, for the number of repaired nodes, it is
more appropriate to compute X such that P{x > X} = Y . The value of X is
computed using the complementary cumulative distribution function (CCDF).
The CCDF, which is commonly used in survivability analysis, is defined as
Fc(x) = 1−FX(x) = Pr{x > X}. Upon inverting Fc, we obtain X = F−1

c (Y ).

3. Case Study

A report by the U.S. Homeland Security Advisory Council [11] emphasizes
that techniques and tools for analyzing critical infrastructure interdependen-
cies and their consequences “are of value only if applied within the context
of a clear objective – a desired outcome that is measurable.” We use a case
study to demonstrate our methodology and, in particular, the application of
interdependency metrics.

The case study, which is derived from [4, 5], considers three critical infras-
tructures: the communication network used for data transmission and voice
calls, the power grid and the transportation network of urban roads. Other
infrastructures involved in the case study are hospitals and health care cen-
ters and the Information System for Civic Emergency Management (IS4CEM),
which coordinates recovery in the event of terrorist attacks, catastrophes and
infrastructure outages. IS4CEM also provides information about health care
center availability, transportation network availability and event evolution.

Two scenarios are examined, outage propagation and victim rescue after
a terrorist attack. The outage propagation scenario only considers the main
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infrastructures (power grid, transportation network and communication net-
work). The scenario demonstrates how shape metrics can quantify the effect of
a power grid outage on the behavior of a communication network.

On the other hand, the victim rescue scenario illustrates how core metrics
can be used to study the evolution of a crisis in the presence of various types
of power grid outages. The scenario assumes several persons have been injured
after a terrorist attack. The communication network is used by the injured
victims, citizens, authorities, rescue crews and hospitals. Hospitals and rescue
crews use the IS4CEM to coordinate rescue operations. The transportation
network is used by rescue crews to reach the injured and take them to hospitals;
the network is also used by injured victims who drive themselves to hospitals
for first aid. The power grid supplies the communication network, IS4CEM,
hospitals, rescue crew stations and the transportation network (traffic lights).

4. Interdependency Analysis

Our simulation experiments using Federated ABMS [5] were designed to
demonstrate the ability of core metrics to quantify interdependencies and to
verify that the statistical measures used as performance indices are appropriate.
Three power grid outage situations were considered for the outage propagation
and victim rescue scenarios: no outage, one outage and two outages. The
nodes experiencing outages were selected randomly. In the outage propagation
scenario, we assume that the time to fix the outage is constant. In the victim
rescue scenario, we assume that the outage is permanent for the duration of
the simulation.

The scenarios involved three hospitals, ten power grid nodes and ten routers
and access points. The victim rescue scenario involved ten rescue team members
and 50 injured victims. A total of 50 simulations were conducted for each case
for each of the two scenarios; each simulation used a different seed for random
number generation.

4.1 Outage Propagation Scenario

We assume that at time t = 100 ticks, one or two randomly selected power
grid nodes fail. We also assume that no auxiliary power systems are available;
therefore, when a power grid node fails, one or more network nodes (routers
or access points) go out of service until they receive power. The time taken to
repair a power grid node outage is set at 300 ticks.

Figure 5 compares the overall throughput of the communication network
X =

∑

i∈N Xi where N is the set of nodes in the network and Xi is the
throughput of node i. As expected, X decreases if one or more routers fail. We
assume that the critical threshold for network performance is 8,000 Mbps.

Figure 6 presents the overall throughput at the start (t = 100) of a power
grid outage (left-hand side) and at the end (t = 400) of the outage (right-hand
side). As shown in Figure 6 (left), when there is one outage, X degrades at t =
100; after three ticks X falls below 8,000 Mbps and stabilizes to around 7,000
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Figure 5. Overall throughput of the communication network.

Figure 6. Overall throughput during a power grid outage.

Mbps after 100 additional ticks. When the outage ends at t = 400, four ticks
pass before normal operating conditions are re-established (Figure 6, right),
corresponding to Rg,n ≈ 1. Normal operating conditions are rapidly restored
due to the robustness of the routing algorithm and also because delays due to
nodes being rebooted or damaged during the abnormal shutdown are not taken
into account.

In the case of two outages, a significant degradation in the overall throughput
is observed. After three ticks, the overall throughput falls below 6,000 Mbps
(Figure 6, left) and after 30 additional ticks, it is below 5,000 Mbps. However,
at t = 214, the reconfiguration features of the routing algorithm take effect, and
at t = 250, the overall throughput stabilizes to around 5,500 Mbps (Figure 6,
right). Also in this case, Rg,n ≈ 1 and normal operating conditions are re-
established a few ticks after the power outages end (Figure 6, right).

The time plot of the sector-specific metric is useful for analysis. When the
critical threshold for the throughput is 8,000 Mbps, Rg,n ≈ 1, and the duration
of the communication network outage is about the same as that in the power
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Figure 7. Crisis resolution time CDF. Figure 8. Rescue time CDF.

grid. However, if the critical threshold is reduced to 5,300 Mbps, Rg,n = 0 in
the case of one outage and Rg,n ≈ 0.35 for two outages (Figure 5).

4.2 Victim Rescue Scenario

We assume that at time t = 0, 50 people are injured in a terrorist attack
(Nw = 50). We compare the results for the three cases (no outage, one outage
and two outages) using the 90th percentile value, CDF and CCDF.

Figure 9. Percentage of dead CDF. Figure 10. Percentage of rescued CCDF.

Figures 7, 8 and 9 show the CDFs of the crisis resolution time (Tc), rescue
time (Tr) and percentage of dead (Wd%), respectively. The CDF plots give
an excellent indication of system behavior and how the outages increase Tc,
Tr and Wd. The CCDF is used to analyze the number of injured victims
who are rescued (Figure 10). The CCDF gives the probability that more than
W% of the injured are rescued, i.e., P{Wr > W}. The value of W such that
P{Wr > W} = p is obtained by inverting the CCDF.

Table 2 presents the 90th percentile values for Tc, Tr and Wd. Using the CDF
and the concept of percentile is easy to compute the probability pd that W% of
the injured will die and the probabilities pr and pc that Tr and Tc, respectively,
are less than T seconds, i.e., pd = Fd(W ), pr = Fr(T ) and pc = Fc(T ) where
Fd, Fr and Fc are the CDFs of Wd, Tr and Tc, respectively.
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Table 2. Tc, Tr and Wd (90th percentile values).

Outages

Metric Zero One Two

Tr (sec) 165.83 187.96 269.44
Tc (sec) 350 725 725
Wd (%) 34.66 99 100

Table 3. W% values such that P{Wr > W} = p.

Outages

P {Wr > W } Zero One Two

0.90 64% 6% 0%
0.75 66% 22% 0%
0.50 72% 68% 6%

Table 3 shows the W% values (i.e., more than W% of the injured are rescued)
for various values of p = P{Wr > W}. These are obtained by fixing a value for
p and extracting the corresponding value of W from the CCDF.

5. Conclusions

The interdependency quantification metrics presented in this paper are use-
ful for analyzing and simulating the behavior of critical infrastructures. Shape
metrics, with their macro-level information content, support decision makers at
the organizational and strategic levels. These metrics can be computed based
on engineering-level observation or using high-level system observations that
engage simulation or analytic models. In contrast, core metrics measure the
causes and effects of outages for specific infrastructure components and the
effectiveness of strategies for improving critical infrastructures protection and
resilience. They require more computational overhead than shape metrics, but
they give decision makers useful information about outages and direct or in-
direct quantification of interdependencies. Sector-specific metrics measure the
states of infrastructures at the global and component levels, and provide input
for computing shape and core metrics. Statistical measures, such as the per-
centile, CDF and CCDF, are also useful for analysis. The case study, involving
simulations of outage propagation and victim rescue scenarios, demonstrate the
value of the metrics and statistical measures for analyzing critical infrastructure
interdependencies.
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