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Abstract:  Ideally, computer security should be an integral part of all 

programming courses. Beginning programming classes pose a particular challenge, 

because the students are learning basic concepts of programming. Thus, teaching 

them about buffer overflows as security problems, requiring an explanation of 

concepts such as ―smashing the stack,‖ will confuse students more than motivate 

them to check array bounds. Advanced concepts such as race conditions require 

more background than the students have, or will have, when taking introductory 

programming classes. An alternate approach is to teach the underlying concepts of 

robust programming; preventing crashes or errors is central to such a course. This 

paper presents some exercises that illustrate this approach, and some thoughts on 

what constitutes ―secure programming‖.  
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1. Introduction  

Secure programming is a misnomer. A program may be secure under one set of 

conditions, and yet be woefully non-secure under a different set of conditions. As 

an example, a program that limits access to a resource to a few specified, 

authenticated users is secure when the goal of the system is confidentiality, but not 

when the goal is accessibility and the resource intended to be publicly available. 

For this reason, introductory programming classes should focus on much more 

concrete properties of programs: robustness and correctness. One can then 

introduce ―security‖ in a later class as a collection of necessary (or desirable) 

properties for correctness, and the students will have the background to be able to 

focus on the security issues, knowing the robustness and correctness issues. 

A second aspect of secure programming lies in design. When presented with a 

problem, students often try to program the most direct solution. Sometimes, a few 

minutes’ thought will lead the student to a much simpler, easier program. The 



  

 

trick is learning how to look beyond the statement of the problem to what the 

problem is trying to solve. Like understanding unstated meanings in talking with 

other humans, being able to see the essence of a problem may make the problem 

much easier—or point to a deeper problem that must be solved. 

Section 2 discusses several programming exercises for introductory classes. 

These exercises illustrate various aspects of robust programming. Section 3 

presents a problem that appears straightforward, but has an interesting subtlety of 

design. Section 4 discusses some aspects of a programming language suitable for 

introductory programming classes. Section 5 presents some concluding thoughts. 

  

2. Robustness  

Robust, or bomb-proof, programming is a style that prevents programs from 

acting unexpectedly, for example terminating abnormally.  The basic principles of 

robust programming are: 

 Paranoia. If your program or library doesn’t generate it, don’t trust it. 

 Stupidity. Assume the user or caller won’t understand your interface, and will 

send anything through it. 

 Dangerous implements. If any data structure is visible to the user or caller, 

assume it will change between references. 

 Can’t happen. If you are sure it can’t happen, check for it and return or print 

an error. 

These basic principles underlie a myriad of security problems. As an example, the 

CWE/SANS Top 25 Most Dangerous Programming Errors [1] cites 9 weaknesses 

that arise from insecure interaction between components—in other words, by 

sending incorrect data through the interface, violating the principle of stupidity. 

The OWASP Top Ten project [2], which identifies the most serious web 

application vulnerabilities, cites cross-site scripting as the top problem and 

injection flaws (such as SQL injection) as the second most common problem. 

Both of these involve ignoring the principle of paranoia because it is trusting data 

that the program did not generate or check.  Students who learn these principles 

and practice them are much less likely to create software with these problems. 

The problems below were given to several classes during a first course in C 

programming. They can easily be adapted to work with other languages. 



  

 

2.1. Demonstration of the Problem 

One of the ways to impress upon students how important these principles are, and 

how often they are violated, is to give them an exercise that demonstrates 

problems with standard functions and libraries.  

Problem. Please write three programs that use functions from the standard I/O 

library. You are to call the functions in such a way that they cause the program to 

crash, or generate unpredictable results. To demonstrate crashing, use output from 

gdb(1) to show that the crash occurred within the standard I/O library. To 

demonstrate unpredictable results, run your program without changes on at least 

two different types of computers in the student laboratories. Note that you must 

supply the correct type of argument for the function. You may not, for example, 

pass a character pointer when a file pointer is expected. 

This problem is typically given near the end of the first course in programming, 

when the students have a basic knowledge of debugging, have used gdb to find 

bugs in programs, and have worked with the standard I/O library. 

The (admittedly anecdotal) responses to this question are interesting. At first, 

the students are nervous because they don’t believe they will find anything. Then 

one or two students will find something, and suddenly many of the students will 

become excited, and tackle the problem. It generates quite a bit of discussion, 

especially about the assumptions that the authors of the library made, and the 

environment for which the library was designed. 

About 10 years ago, this problem was surprisingly easy; calls with NULL file 

pointers, or negative numbers, worked like a charm. Recently, though, the 

robustness of many versions of the standard I/O library has improved, increasing 

the difficulty of this problem. Thus, now this problem would probably be more 

suited for a second course in programming. For the introductory course, other 

libraries provide the (lack of) robustness required for this exercise. 

The complement of finding errors is preventing them. This is the topic of the 

next exercise.  

2.2. Handling Procedure and Function Errors 

This problem puts the students in the position of the programmer, and has them 

program defensively. It deals with converting a string to an integer, a topic that 

causes problems because the students must deal with many possible errors. 

Problem. The function atol(3) takes a pointer to a character string as an 

argument and returns the integer value corresponding to that string.  

Unfortunately, it has several problems: 

 Overflow is not detected; 



  

 

 If the string is not a valid integer, it converts as much of the string as it can 

and then stops; and 

 Most implementations do not handle a leading ―+‖ sign. 

Implement a new function called natol (for new atol) that handles all these 

problems.  Your function must have the interface: 

long natol(char *numstr, int *errcode) 

where numstr is a pointer to the string whose integer value is to be returned, and 

errcode is a pointer to an integer variable which, when natol exits, has one of the 

following values: 

0. no error has occurred; or 

1. numstr points to something that is not a valid decimal integer (this includes 

numstr being NULL); or 

2. overflow occurred, and the number being read was positive.  The result of the 

function is undefined (that is, you can make it return anything you like, but it 

must return something); or 

3. overflow occurred, and the number being read was negative.  The result of the 

function is undefined. 

This problem teaches students how to handle errors within library functions. 

The functions should communicate the error back to the caller, so the caller can 

handle the error appropriately. Having the library write an error message to the 

standard output or error (or some other I/O stream) without documenting that side 

effect can cause serious problems should the caller be producing output in a 

particular format. 

This problem also has a design aspect to it. Checking for overflow in a 

language-independent way is not at all obvious, especially to beginning students. 

The obvious approach, checking succeeding values until the absolute value of one 

is smaller than the absolute value of its predecessor, doesn’t always work. The 

correct technique uses division. As this routine iterates over the characters in 

numstr, it appends one digit per iteration; thus, the check need only confirm that 

the digit being appended does not cause overflow. The key idea is not to append 

the digit; rather, it is to determine the maximum digit that could be appended 

without causing overflow. The students have to be careful programming this to 

avoid causing overflow when checking for overflow. 

2.3. Handling Input Errors 

A third problem extends the idea of checking for errors to user input by 

building on a common exhortation in C programming: avoid the use of gets(3), an 

input function known vulnerable to buffer overflow. Students are taught to use the 

function fgets(3), which requires a parameter indicating the size of the array in 

which the input line is to be stored. The subtlety of fgets is that if the line is too 



 

 

long, only that part of the line that fits into the buffer is read. The next invocation 

of fgets begins reading where the previous invocation left off. This exercise 

provides a more intuitive interface. The function either provides the entire line, 

regardless of length, or (for backwards compatibility) can act like fgets. 

Problem. Write a C function called dyngets that reads an input line of arbitrary 

length from a given file descriptor. The interface to dyngets is to be: 

char *dyngets(char *buf, int n, FILE *fp) 

On entry, if buf is not NULL, then this function acts exactly like fgets(3). 

If buf is NULL, then it and the second parameter, n, are ignored.  On exit, 

dyngets returns a pointer to an internal buffer containing the input line. This 

internal buffer is allocated using malloc(3) or realloc(3). If the line is too long to 

fit in the currently allocated internal buffer, the buffer is grown to be long enough 

to hold the full line. The return value is NULL on end of file or error. 

You are to allocate the internal buffer for dyngets, and you must reuse the 

internal buffer whenever dyngets is called. This buffer should be allocated using 

malloc on the first call to dyngets, and as you read longer and longer lines, use 

malloc to allocate a new buffer and free(3) to free the old one, or realloc (with 

appropriate error checking) to change the length of the buffer. 

This exercise requires students to manage memory in a way that is invisible to 

the caller. Common mistakes are to make the internal buffer visible externally, 

violating the principle of dangerous implements, or not properly handling the 

internal buffer by either deallocating it at the beginning of each invocation, or 

failing to check the return value of realloc. 

 A second subtlety arises from the emulation of fgets. As the second argument 

is an integer, students must check that it is a non-negative integer. Although fgets 

should check this, some versions do not, and this causes unpredictable behavior. 

2.4. Assuming the Obvious: Does 1 == 1 Always? 

Students who first encounter floating point numbers do not realize that they 

represent a subset of the set of real numbers, and that the differences can adversely 

affect calculations. Some real numbers can be expressed exactly (such as 1/2), but 

others have no such floating point representation (such as 1/7). This exercise poses 

the question of ―what does a floating point 1 represent on a computer‖. 

Problem. Every computer is limited in the amount of precision it can represent 

for floating-point numbers. At some point, where epsilon is very small, the 

following expression will be true: 

1.0 == 1.0 + epsilon 

Write a program to find the largest value of epsilon on your computer for 

which the above is true. Note that the value of epsilon may be different for 

floats and doubles. Find both values (and the value for long doubles if your 

compiler supports them).  



 

 

 

This exercise has two effects. The first is to show students why one needs to 

question assumptions. Unless students understand how floating point numbers are 

represented (a topic often omitted in introductory courses), the discovery that 

epsilon can be non-zero helps them understand the need to follow the principle of 

―can’t happen‖. Something that appears to be wrong is, in fact, correct! 

The second is an interesting design question. Some students will treat the 

expression as an algebraic expression, and instead attempt to find the smallest 

value for epsilon that is equal to 0.0. That approach fails because very small 

floating point numbers can be distinguished from 0, but when added to 1, the 

precision of the floating point number is reduced considerably. That is, most 

computers can represent the real number 2
–63

 exactly, but cannot represent the real 

number 1+2
–63

 exactly, due to limits on the size of the mantissa. So the algorithm 

the students design must take this into account. 

2.5. Summary 

This section presented four problems that require students to take care to avoid 

non-robust behavior: incorrect results or program crashes. The first demonstrates 

that system libraries, on which programs rely, may be non-robust. The second and 

third problems encourage the students to apply the principles of robust 

programming to make their library routines ―solid‖. The fourth challenges a 

simple yet common idea among students taking an introductory programming 

class: that computers are precise and exact. In fact, they are not, particularly when 

dealing with floating point numbers. 

Two of these problems had design components. We now focus on that aspect 

exclusively. 

3. Design  

Robust programming favors simplicity and elegance of algorithm. It is much 

easier to avoid unnecessary interfaces and poor coding when the program is 

simple and straightforward. Often, complex or long problems have simple 

solutions, and when they do, spending time to find that solution is well 

worthwhile.  

The Monty Hall problem is a wonderful problem for teaching principles of 

robust design. It is based on the old TV game show Let’s Make a Deal. In that 

show, the moderator, Monty Hall, would select a member of the audience, and 

offer them a valuable prize. The prize was behind one of three doors. Behind the 

other two were joke prizes, like a goat and a can of paint. The member of the 

audience would select one of the doors (say, door number 2). Monty would then 



  

 

say, ―Before I show you what’s behind door number 2, let me show you what’s 

behind door number 1.‖ Door number 1 would open, to show the can of paint. 

Then Monty would ask if the player wanted to change to a different door. The 

question is, should the player do so? 

The intuitive answer is that it doesn’t matter. As the door Monty opens always 

has a joke prize, one of the two remaining doors has a joke prize, and the other has 

the valuable prize. Hence the valuable prize is equally likely to lie behind either 

door.1 

Problem. Write a program to simulate 100,000 iterations of the Monty Hall 

problem. Use the simulation to demonstrate whether it is to the player’s advantage 

to change doors. Please explain your results. 

When given in an introductory programming class at UC Davis, student 

assignments used essentially the following algorithm (iterated the requisite 

number of times): 

choose a random door for the valuable prize 

player chooses a random door 

Monty shows player a door without the valuable prize 

generate a random number between 1 and 2 inclusive 

if that number is 1, player changes door 

if player’s door is same as door with valuable prize, increment counter 

At the end, the program divides the counter by the number of iterations for the 

probability that the player will get the valuable prize should she change doors. 

A much simpler solution arises when one notices that the number of the door 

Monty shows is irrelevant. It will never be the one with the valuable prize. So, all 

that matters is whether the player’s initial choice is the door with the valuable 

prize. If it is not, the switch will give the player the valuable prize. If it is, the 

switch will give the player a joke prize. Thus, the following algorithm also solves 

the exercise: 

choose a random door for the valuable prize 

player chooses a random door 

if player did not choose door with valuable prize, increment counter 

The probability is computed as before. 

The reason this problem is so useful is because the correct answer is 

counterintuitive, unless you look at the problem in the right way; and the 

simulation appears to give the wrong answer. Thus, this problem forces the 

students to analyze their design in detail. 

                                                           
1 The correct answer requires the student to remember there are three doors, not two. The 

probability that the initial selection is the door with the valuable prize is 1/3. The 

probability that the valuable prize is behind one of the other two doors is 2/3. When 

Monty opens a door, that door cannot contain the valuable prize. Thus, the probability is 

2/3 that the unselected, unopened door is the door with the valuable prize. So it is to the 

player’s advantage to change her selection.  



  

 

While this program is not, strictly speaking, security-related, it teaches the 

students skills they need for secure programming. They learn how to ask what the 

goal of the problem is and focus on meeting that goal, rather than simply choosing 

the obvious approach. They also see what happens when the mechanism does not 

work as expected; they learn to question the expected result and analyze it, to see 

if it is in fact correct. This skepticism is critical to being able to determine the 

assumptions that a program relies upon—a key aspect of secure programming. 

5. Conclusion  

The rudiments of secure programming lie in the first programming classes all 

students take. By emphasizing careful design, robustness, and correctness, those 

courses can lay a foundation upon which advanced classes can teach programming 

that deals with specific security problems. Without such a foundation, all the 

instruction into how to code securely will do little to improve the state of software 

security. 
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