Chapter 12

TIMELY ROOTKIT DETECTION
DURING LIVE RESPONSE

Daniel Molina, Matthew Zimmerman, Gregory Roberts, Marnita Eaddie
and Gilbert Peterson

Abstract This paper describes a non-intrusive rootkit detection tool designed to
support forensic investigations that involve the live analysis of com-
puter systems. The tool, which does not require pre-installation, corre-
lates outputs from multiple system data gathering utilities. Test results
indicate that the tool successfully detects several well-known rootkits,
including Hacker Defender, AFX, Vanquish, FU and FUto.

Keywords: Rootkit detection, live response

1. Introduction

Rootkits enable attackers to have undetected access to computer sys-
tems; they hide an attacker’s presence by manipulating system data
and/or operating system code. These malicious programs hamper digi-
tal forensic investigations — evidence that is collected carefully may still
be compromised by active rootkits. In particular, rootkits may prevent
forensic tools from gathering accurate information. Addressing this is-
sue requires investigators to run more intrusive tools that can alter the
system state.

This paper describes a rootkit detection tool designed for live analysis
that minimizes system modification. The tool, which does not require
pre-installation, correlates outputs from multiple system data gather-
ing utilities. The detection tool has proved to be effective against five
rootkits: Hacker Defender [8], AFX [14], Vanquish [17], FU [15] and
FUto [16]. In the tests, these rootkits were hiding a backdoor (Back
Orifice 2000 [19]) and a folder containing four files.

140 ADVANCES IN DIGITAL FORENSICS 1V

2. Rootkits

Rootkits are programs that enable attackers to have undetected access
to computer systems. The term “root” comes from the UNIX world
where “root” is the highest level of privilege afforded to a user. Originally
written for UNIX, rootkits now target a variety of operating systems.

A rootkit typically incorporates Trojaned system processes and scripts
that automate the actions involved in compromising systems [12]. Root-
kits often attempt to be untraceable by hiding files, network connections,
memory addresses and registry entries. Some rootkits are embedded in
other programs or media as in the case of the rootkit found in Sony CDs
in 2005 [4].

Windows rootkits — like those that target UNIX systems — seek the
highest possible privilege level. Windows runs on the Intel x86 archi-
tecture, which employs a memory protection scheme using four rings
(Rings 0-3). Ring 0, which has the highest level of privilege, represents
the memory space where the operating system kernel and drivers reside.
Ring 3 has the lowest privilege level and represents the memory space
where user applications reside.

Stealthy rootkits tend to operate at a lower ring than Ring 3 where
rootkit detection and prevention software typically operates. Hoglund [7]
and Rutkowska [18] note that placing a rootkit detector in a lower ring
increases the detection rate. On the other hand, a rootkit that executes
in a lower ring than a detector can control or fabricate the information
gathered by the detector, which enables the rootkit to remain hidden.

The rootkit detection technique described in this paper correlates out-
puts from multiple system data gathering utilities. These utilities are
executed from user space (Ring 3) without prior installation.

2.1 Rootkit Categories

Rootkits are categorized as kernel, library, user-level, hardware-level
and virtual machine based rootkits. Some rootkits fall in multiple cate-
gories, e.g., those with kernel and user-level components.

» Kernel Rootkits: These rootkits add additional kernel code and/or
replace a portion of kernel code to enable them to obtain stealthy
control of computer systems.

m Library Rootkits: These rootkits achieve stealth by modifying sys-
tem libraries used by user and/or kernel applications [2].

m User-Level Rootkits: These rootkits, also called application-level
rootkits, are programs that modify system files or binaries on
disk [11].

Molina, et al. 141

m Hardware-Level Rootkits: These rootkits attempt to subvert com-
puter systems at the lowest level. They are extremely difficult to
implement, but Heasman [6] has demonstrated that such rootkits
are possible. We do not attempt to detect hardware-level rootkits
because of their complexity and lack of availability.

» Virtual Machine Based Rootkits (VMBRs): These rootkits at-
tempt to take control of the virtual machine monitor (VMM),
which lies between the hardware and operating system. Thus,
VMBRs are able to control requests to the hardware that origi-
nate from the upper levels. A VMBR typically modifies the boot
sequence and loads itself instead of the chosen VMM or operating
system. After it is loaded, the rootkit loads the host operating sys-
tem as a virtual machine. An example of a VMBR is SubVirt [9].

A VMBR is difficult to detect during live analysis because rootkit
detection software is executed within the virtual machine. Soft-
ware running on the target machine cannot access the state of a
VMBR [9]. From the user’s perspective, a VMBR is in a hidden
VMM where malware can operate without interference. A VMBR
thus has the ability to access all keystrokes, network packets, mem-
ory allocations, system events, etc. We do not attempt to detect
VMBRs because of their complexity and lack of availability.

2.2 Rootkit Hiding Techniques

Kernel and user-level rootkits apply various hiding techniques, either
individually or in combination. The principal hiding techniques are:

m Patching: This technique involves static or dynamic modification
of binaries. Static patching is also used by software crackers to
bypass software protection and registration methods.

m Hooking: This technique redirects or alters the normal flow of
execution of a program by modifying one or more function calls
in memory. Hacker Defender is an example of a rootkit that uses
hooking.

m Direct Kernel Object Manipulation: This technique exploits the
way the Windows OS schedules processes. Malicious processes are
hidden by removing their entries from the doubly linked list used
by the Windows Object Manager [7]. FU and FUto are examples
of rootkits that use this hiding technique.

142 ADVANCES IN DIGITAL FORENSICS IV

2.3 Rootkit Detection Techniques

Rootkit detectors fall in one or more of the following categories [21]:

s Signature Based Detectors: These detectors scan system files for
rootkit fingerprints.

» Heuristic/Behavioral Based Detectors: These detectors check for
deviations from normal system behavior.

m Cross-View Based Detectors: These detectors compare system pa-
rameters obtained in two or more different ways to detect incon-
sistencies or anomalies.

m Integrity Based Detectors: These detectors compare the current
snapshot of a system to a known trusted snapshot.

m Hardware-Based Detectors: These detectors employ direct mem-
ory access to retrieve data, which is scrutinized for rootkit finger-
prints.

At the time of writing this paper, software-based rootkit detectors
have components that execute from user space, kernel space or both. A
detector is much more effective when it runs at a level below the rootkit.
For example, if a rootkit only executes in user space then the detector
has a better chance of detecting the rootkit from kernel space.

Kernel-level rootkits can be identified by a detector that coexists with
the rootkit in kernel space or by a hardware-based detector. However,
such detectors cannot be used during a live response because they affect
evidence integrity.

Some anti-virus programs include rootkit detection features. For ex-
ample, F-Secure Internet Security 2005 offers “manipulation control,”
a behavior-blocking mechanism that prevents malicious processes from
manipulating other processes [5].

Some of the well-known rootkit detectors are:

s BlackLight: This Windows rootkit detector identifies rootkit files,
folders and processes, but not hidden registry keys [20]. It offers
a removal option for detected rootkits; however, this feature must
be used with care to avoid problems with the computer system.

m RootkitRevealer: This Windows tool detects rootkits by perform-
ing a high level scan from user space and a raw disk scan; the
results of the two scans are compared for anomalies. The tool re-
ports differences in the Windows registry and file system. However,
it does not have any rootkit removal capabilities [20].

Molina, et al. 143

m JceSword: This Windows tool suite includes a process viewer,
startup analyzer, port enumerator and other utilities. The tool
only provides data, leaving rootkit identification to the user [20].

m Chkrootkit: This UNIX shell script checks specific system binaries
to determine if a rootkit has been installed [10].

m Rootkit Hunter: This UNIX rootkit detector performs MD5 com-
parisons of critical system files and searches for known rootkit files,
hidden files and suspicious information in loadable kernel modules.
Also, it checks file permissions and scans plain text and binary files
for strings that indicate the presence of rootkits [1].

3. Live Response Analysis

Digital forensic investigators typically employ live analysis tools (e.g.,
FRED or Helix) to collect evidence from running systems. However,
even if the evidence is collected carefully and documented diligently, it
may be compromised by active rootkits.

Forensic investigators must be cognizant of how user-level and kernel-
level rootkits affect the integrity of computer systems. User-level rootkits
alter the security subsystem and display inaccurate information; they in-
tercept system calls and filter output APIs to hide processes, files, system
drivers, network ports, registry keys and paths, and system services [3].
Kernel-level rootkits usurp system calls, hide processes, registry keys
and files, and redirect calls to Trojan functions [13].

Due to the increasing threat of rootkits and their impact on computer
systems, digital forensic investigators must strive to detect rootkits in
a timely manner. Rootkit detection tools can aid investigators in de-
termining if rootkits are present and which data may have been com-
promised. Some of these tools have to be installed before a system is
exposed to a hostile environment. Installing a rootkit detector during
live analysis can dramatically alter the state of the system.

Once a computer system is turned off, a rootkit cannot actively hide
itself or other information that could indicate its presence. A forensic
investigator may, therefore, conduct an off-line analysis of the computer
image and search for signatures that reveal the presence of rootkits.
However, even if a rootkit is detected, the investigator may have difficulty
determining whether or not the rootkit was active.

4. Rootkit Detection System

The Windows rootkit detection system described in this section uses
open source utilities that perform a system scan from user space. These

144 ADVANCES IN DIGITAL FORENSICS IV

utilities, which do not have to be pre-installed, are executed via a batch
script that runs each utility and sends its output to a separate file. After
the batch script completes, data from the output files is correlated by
an automated analysis program to identify discrepancies. A Java-based
GUI with a file parser is used to generate a report of the discrepancies.
Because the utilities are executed from trusted media, it is important
that the GUI and parser utility also run from trusted media. This is
accomplished by using a Java Runtime Environment (JRE) located on
the trusted media source.

The rootkit detector provides investigators with the ability to initiate
a batch job that invokes all the command line utilities and scans the
output files for potential threats. The outputs of the utilities are ana-
lyzed for (i) differences between output files that should display identical
information, and (ii) combinations of discrepancies that could indicate
possible threats. While it is simple to classify all of the differences be-
tween the outputs, it is difficult to categorize and assess all possible
combinations of discrepancies. Therefore, the detector focuses on cer-
tain key differences and combinations of these differences.

Figure 1 illustrates the identification of discrepancies. The scenario
involves identifying the presence of a hidden file called secret.hide by
examining directory listings produced by two different tools (dir and
1s). This method is effective at discovering files hidden by the Vanquish
rootkit.

Having identified the discrepancies in the output files, predefined de-
tection rules are applied to determine if the discrepancies indicate the
presence of a rootkit. Figure 2 presents a scenario where three discrep-
ancies have been identified: Discrepancy A comes from comparing the
outputs of dir and 1s.exe, Discrepancy B comes from comparing the
outputs of pslist.exe and handle.exe, and Discrepancy C comes from
comparing the outputs of dir and handle.exe. Information about the
discrepancies is passed to the detection rules (as in Figure 2), which
determine if a rootkit is present or not.

5. Results

The Windows-based rootkit detection tool was tested on a system
running Windows XP with Service Pack 2. To make the testing pro-
cess consistent, the victim system was run on VMWare, which enables
malicious code (e.g., rootkits) to be executed without infecting the host
operating system. In addition, it enables the user to start or stop a test
image quickly and reliably, and to go back to previous snapshots.

Molina, et al.

Output of First

Contents of C:
[sys]

Directory Listing:

Output of Alternate
Directory Listing:

Files of C:
hidden/secret.hide

SWp . sys

[temp]
templ.txt

system_file
kernel.sys

temp file.

sys/system file
sys/kernel.sys
sys/swp.sys

temp/templ.txt

dat temp/temp_file.dat

Extract Pertinent

Information from Output

Extracted Data:

[sys]
system_file
kernel.sys
SwWp.sys

[temp]
templ.txt
temp_file.dat

Extracted Data:

[hidden]
secret .hide
[sys]
system_file
kernel.sys
SWp.sys
[temp]
templ.txt
temp_file.dat

Compare Data and
Identify Differences

Program Report Output:

File system discrepancy, possible
Hidden file at:
C:\hidden\secret .hide

Figure 1.

Identification of discrepancies.

145

Initial tests involved running the batch script and analyzing each out-
put file for evidence of a rootkit. The output file of handle.exe clearly
indicated the presence of the Hacker Defender rootkit via a non-existent
process with a PID and an object named Hacker Defender. The AFX

and Vanquish rootkits were also detected during initial testing.

The next step was to perform tests against rootkits that employed
more sophisticated hiding techniques (i.e., kernel-level subversion). The

146

ADVANCES IN DIGITAL FORENSICS 1V

Discrepancy A:

File system

Discrepancy B:

Process list

Discrepancy C:

Process list

discrepancy, discrepancy: discrepancy:
possible hidden
file at: Possible hidden Process 1744
pcocess Executing in
C:\hidden\secret pid: 1744 directory
.hide
<Non-existent C:\hidden\
process>
A 4

Decision Rules (Pseudocode)

if hidden directory exist &&
hidden process exist &&
hidden proc runs from hidden dir

then output possible rootkit warning

Figure 2. Discrepancy combinations used for detecting rootkits.

rootkits tested were FU and FUto, both hiding the Back Orifice PID.
The tool identified the Back Orifice PID, but was unable to identify the
FU and FUto PIDs. However, upon performing a directory listing of
the folder C:\Windows\Prefetch, it was determined that bo2K.exe and
FU.exe had prefetch files that indicated that the two programs had been

executed.
Table 1. Experimental results.
Rootkit Rootkit PID Bo2k PID Bo2k Port Hidden Data
Hacker Defender Found Found Not Found Found
AFX Found Found Not Found Found
Vanquish N/A N/A N/A Found
FU Not Found Found Not Found N/A
FUto Not Found Found Not Found N/A

Table 1 summarizes the experimental results.

The principal result

is that Back Orifice was detected for all the user-level and kernel-level

Molina, et al. 147

rootkits tested. However, the rootkit detection tool was unable to locate
Back Orifice’s open ports.

6. Conclusions

Evidence collected during live analysis of systems can be compromised
by active rootkits. Digital forensic investigators need automated tools
that can detect rootkits during live response investigations of computer
systems. The rootkit detection tool described in this paper has proved
to be relatively effective in tests. Specifically, the tool was able to iden-
tify the PIDs of the Hacker Defender, AFX, and Vanquish rootkits, the
PIDs of their backdoors and the folders they were attempting to hide.
Tests against the FU and FUto rootkits were not as successful; the only
evidence obtained was the name of the executable FU. exe in the prefetch
folder. On the other hand, the PID and file name of Back Orifice were
easily detected although FU and FUto were attempting to hide this
information.

Topics for future research include performing experiments with other
rootkits and backdoors, conducting an exhaustive examination of the
Windows API to identify all the alternative ways for obtaining system
information, and investigating rootkit detection in UNIX environments.

Acknowledgements

This research was supported by the Anti-Tamper Software Protec-
tion Initiative Technology Office, Sensors Directorate, U.S. Air Force
Research Laboratory. The views expressed in this paper are those of the
authors and do not reflect the official policy or position of the U.S. Air
Force, U.S. Department of Defense or the U.S. Government.

References

[1] M. Boelen, Rootkit Hunter (www.rootkit.nl/projects/rootkit_hunt
er.html).

[2] A. Chuvakin, An Overview of Unix Rootkits, iIALERT White Paper,
iDefense Labs, Chantilly, Virginia, 2003.

[3] K. Dillard, What are user-mode vs. kernel-mode rootkits? (search
windowssecurity.techtarget.com /original Content /0,289142,sid45_gc
11086469,00.html), 2005.

[4] J. Evers, Microsoft will wipe Sony’s rootkit, CNET News.com,
November 13, 2005.

[5] F-Secure, The Threat — Rootkits, Helsinki, Finland (www.virus.f
/blacklight /rootkit.shtml).

148

[6]
[7]
8]
[9]

[10]

[11]

ADVANCES IN DIGITAL FORENSICS 1V

J. Heasman, Implementing and Detecting a PCI Rootkit, Next Gen-
eration Security Software, Sutton, United Kingdom, 2006.

G. Hoglund and J. Butler, Rootkits: Subverting the Windows Kernel,
Addison-Wesley, Boston, Massachusetts, 2005.

Holy_Father, Hacker Defender (hxdef), 2005.

S. King, P. Chen, Y. Wang, C. Verbowski, H. Wang and J. Lorch,
SubVirt: Implementing malware with virtual machines, Proceedings
of the IEEE Symposium on Security and Privacy, pp. 314-327, 2006.

J. Levine, B. Culver and H. Owen, A methodology for detecting
new binary rootkit exploits, presented at the IEEFE SouthEastCon
Technical Conference, 2003.

J. Levine, J. Grizzard and H. Owen, Detecting and categorizing
kernel-level rootkits to aid future detection, IEEE Security € Pri-
vacy, vol. 4(1), pp. 24-32, 2006.

K. Mandia, C. Prosise and M. Pepe, Incident Response and Com-
puter Forensics, McGraw-Hill/Osborne, Berkeley, California, 2003.

S. McClure, J. Scambray and G. Kurtz, Hacking FExposed: Net-
work Security Secrets and Solutions, Osborne/McGraw-Hill, Berke-
ley, California, 2001.

Rootkit.com, AFX Rootkit (www.rootkit.com).
Rootkit.com, FU Rootkit (www.rootkit.com).
Rootkit.com, FUto Rootkit (www.rootkit.com).
Rootkit.com, Vanquish Rootkit (www.rootkit.com).

J. Rutkowska, Introducing Stealth Malware Taxonomy, Techni-
cal Report, COSEINC Advanced Malware Labs (invisiblethings.org
/papers/malware-taxonomy.pdf), 2006.

Sourceforge.net, Back Orifice 2000 (www.bo2k.com).

Tech Support Alert, Rootkit Detection and Removal (www.pcsupp
ortadvisor.com/rootkits.htm), 2006.

A. Todd, J. Benson, G. Peterson, T. Franz, M. Stevens and R.
Raines, Analysis of tools for detecting rootkits and hidden pro-

cesses, in Advances in Digital Forensics III, P. Craiger and S. Shenoi
(Eds.), Springer, Boston, Massachusetts, pp. 89-105, 2007.

