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A CLOUD COMPUTING PLATFORM FOR
LARGE-SCALE FORENSIC COMPUTING
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Abstract  The timely processing of massive digital forensic collections demands
the use of large-scale distributed computing resources and the flexi-
bility to customize the processing performed on the collections. This
paper describes MPI MapReduce (MMR), an open implementation of
the MapReduce processing model that outperforms traditional forensic
computing techniques. MMR provides linear scaling for CPU-intensive
processing and super-linear scaling for indexing-related workloads.
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1. Introduction

According to FBI statistics [4], the size of the average digital forensic
case is growing at the rate of 35% per year — from 83 GB in 2003 to 277
GB in 2007. With storage capacity growth outpacing bandwidth and
latency improvements [9], forensic collections are not only getting bigger,
but are also growing significantly larger relative to the ability to process
them in a timely manner. There is an urgent need to develop scalable
forensic computing solutions that can match the explosive growth in the
size of forensic collections.

The problem of scale is certainly not unique to digital forensics, but
forensic researchers have been relatively slow to recognize and address
the problem. In general, three approaches are available to increase the
processing performed in a fixed amount of time: (i) improving algorithms
and tools, (ii) using additional hardware resources, and (iii) facilitating
human collaboration. These approaches are mutually independent and
support large-scale forensics in complementary ways. The first approach
supports the efficient use of machine resources; the second permits ad-
ditional machine resources to be deployed; the third leverages human
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expertise in problem solving. In order to cope with future forensic col-
lections, next generation forensic tools will have to incorporate all three
approaches. This paper focuses on the second approach — supporting
the use of commodity distributed computational resources to speedup
forensic investigations.

Current forensic tools generally perform processing functions such as
hashing, indexing and feature extraction in a serial manner. The result
is that processing time grows as a function of the size of the forensic col-
lection. An attractive long-term solution is to deploy additional compu-
tational resources and perform forensic processing in parallel. A parallel
approach is more sustainable because storage capacities and CPU pro-
cessing capabilities increase at approximately the same rate as predicted
by Moore’s law and as observed by Patterson [9]. In other words, as the
average collection size doubles, doubling the amount of computational
resources maintains the cost of the expansion constant over time. Fur-
thermore, the widespread adoption of data center technologies is making
the logistic and economic aspects of the expansion of computational re-
sources even more favorable.

The data center approach is clearly a long-term goal. The first step is
to leverage existing computational resources in a forensic laboratory. For
example, a group of hosts in a local area network could be temporarily
organized as an ad hoc cluster for overnight processing of large forensic
collections. The main impediment is the lack of a software infrastructure
that enables forensic processing to be scaled seamlessly to the available
computing resources. This paper describes a proof-of-concept software
infrastructure that could make this vision a reality.

2. Related Work

Early applications of distributed computing in digital forensics demon-
strated that it is possible to achieve linear speedup (i.e., speedup propor-
tional to the number of processors/cores) on typical forensic functions
[11]. Furthermore, for memory-constrained functions, it is possible to
achieve super-linear speedup due to the fact that a larger fraction of the
data can be cached in memory.

Several efforts have leveraged distributed computing to address dig-
ital forensic problems. ForNet [12] is a well-known project in the area
of distributed forensics, which focuses on the distributed collection and
querying of network evidence. Marziale and co-workers [7] have lever-
aged the hardware and software capabilities of graphics processing units
(GPUs) for general-purpose computing. Their approach has the same
goals as this work and is, in fact, complementary to it. Clearly, using
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CPU and GPU resources on multiple machines will contribute to more
speedup than using CPUs alone.

Recently, AccessData started including support for multi-core pro-
cessors under its FTK license. It currently offers limited distributed
capabilities for specialized tools (e.g., for password cracking). FTK also
includes a database back-end that can manage terabytes of data and
utilizes CPU and memory resources to perform core forensic functions.

3. MapReduce

MapReduce [3] is a distributed programming paradigm developed by
Google for creating scalable, massively-parallel applications that process
terabytes of data using large commodity clusters. Programs written us-
ing the MapReduce paradigm can be automatically executed in parallel
on clusters of varying size. 1/O operations, distribution, replication, syn-
chronization, remote communication, scheduling and fault tolerance are
performed without input from the programmer, who is freed to focus on
application logic.

After the early success of MapReduce, Google used the paradigm to
implement all of its search-related functions. This is significant because
of Google’s emphasis on information retrieval, which is also at the heart
of most forensic processing. Conceptually, information retrieval involves
the application of a set of n functions (parsing, string searching, calcu-
lating statistics, etc.) to a set of m objects (files). This yields n x m
tasks, which tend to have few, if any, dependencies and can, therefore,
be readily executed in parallel.

Phoenix [10] is an open-source prototype that demonstrates the viabil-
ity of the MapReduce model for shared memory multi-processor /multi-
core systems. It provides close to linear speedup for workloads that are
relevant to forensic applications (e.g., word counts, reverse indexing and
string searches). The main limitation is that it executes on a single
machine and has no facilities to scale it to cluster environments.

Hadoop [1] is an open-source Java implementation of the MapReduce
model that has been adopted as a foundational technology by large In-
ternet companies such as Yahoo! and Amazon. The National Science
Foundation has partnered with Google and IBM to create the Cluster
Exploratory (CluE), a cluster of 1,600 processors that enables scientists
to create large-scale applications using Hadoop. One concern about the
Java-based Hadoop platform is that it is not as efficient as Google’s
C-based platform. This may not be a significant issue for large deploy-
ments, but it can impact efficiency when attempting to utilize relatively
small clusters. Another concern is that Hadoop’s implementation re-



204 ADVANCES IN DIGITAL FORENSICS V

quires the deployment of the Hadoop File System (HDFS), which is im-
plemented as an abstraction layer on top of the existing file system. This
reduces 1/0 efficiency and complicates access to raw forensic images.

4. MPI MapReduce

MapReduce is a powerful conceptual model for describing typical
forensic processing. However, the Hadoop implementation is not effi-
cient enough for deployment in a forensic laboratory environment. To
address this issue, we have developed MPI MapReduce (MMR) and use
it to demonstrate that the basic building blocks of many forensic tools
can be efficiently realized using the MapReduce framework. Note how-
ever that an actual tool for use in a forensic laboratory environment
would require additional implementation effort.

Our MMR implementation leverages two technologies, the Phoenix
shared-memory implementation of MapReduce [10] and the Message
Passing Interface (MPI) distributed communication standard [8]. Specif-
ically, it augments the Phoenix shared-memory implementation with
MPI to enable computations to be distributed to multiple nodes.

MPI is designed for flexibility and does not prescribe any particular
model of distributed computation. While this is generally an advantage,
it is also a drawback because developers must possess an understand-
ing of distributed programming and must explicitly manage distributed
process communication and synchronization.

MMR addresses this drawback by providing a middleware platform
that hides the implementation details of MPI, enabling programmers
to focus on application logic and not worry about scaling up computa-
tions. Additionally, MMR automatically manages communication and
synchronization across tasks. All this is possible because MMR, engages
MapReduce as its distributed computation model.

4.1 MapReduce Model

The MapReduce computation takes a set of input key/value pairs and
produces a set of output key/value pairs. The developer expresses the
computation using two functions, map and reduce. Function map takes
an input pair and produces a set of intermediate key/value pairs. The
runtime engine then automatically groups together all the intermediate
values associated with an intermediate key I and passes them to the
reduce function. The reduce function accepts the intermediate key I
and a set of values for the key, and uses them to produce another set of
values. The I values are supplied to the reduce function via an iterator,
which allows arbitrarily large lists of values to be passed.
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Figure 1. MMR data flow.

As an example, consider the Wordcount problem: given a set of text
documents, count the number of occurrences of each word. In this case,
the map function uses the word as a key to construct pairs of the form
(word, 1). For n distinct words in the document, the runtime system
creates n pairs and feeds them to n different instances of the reduce
function. The reduce function counts the number of elements in its
argument list and outputs the result.

There are several possibilities for data parallelism in this solution. In
the case of the map function, it is possible to create as many independent
instances as there are documents. Large documents could be split into
pieces to achieve better load balance and higher levels of concurrency.
The reduce computation is also parallelizable, allowing for as many
distinct instances as there are distinct words. The only major parallelism
constraint is that all the map instances must complete their execution
before the reduce step is launched. Note that the programmer does not
have to be concerned about the size of the inputs and outputs, and the
distribution and synchronization of the computations. These tasks are
the responsibility of the runtime environment, which works behind the
scenes to allocate the available resources to specific computations.

4.2 MPI MapReduce Details

Figure 1 presents the data flow in an MMR application. A single data
file is used as input to simplify the setup and isolate file system influence
on execution time. A file splitter function splits the input into N equal
blocks, where N is the number of available machines (nodes).
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Fach node reads its assigned block of data and splits the block into M
chunks according to the number of mapper threads to be created at each
node. M is typically set to the level of hardware-supported concurrency.
This is based on the number of threads that the hardware can execute
in parallel and the cache space available for the mappers to load their
chunks simultaneously without interference.

After the threads are created, each thread receives a chunk of data
and the programmer-defined map function is invoked to manipulate the
data and produce key/value pairs. If the programmer has specified a
reduction function, the results are grouped according to keys and, as
soon as the mapper threads complete, a number of reducer threads are
created to complete the computation with each reducer thread invoking
the programmer-defined reduce function. After the reduction, each node
has a reduced key/value pair list, which it sends to the master node. The
master receives the data and uses a similar reduce function to operate
on the received key/value pairs and output the final result.

Figure 2 illustrates the MMR flow of execution at each node and the
basic steps to be performed by a developer. Note that the functions with
an mmr prefix are MMR API functions supplied by the infrastructure.

The first step is to invoke the system-provided mmrInit() function,
which performs a set of initialization steps, including MPI initialization.
Next, mmrSetup() is invoked to specify arguments such as file name,
unit size, number of map/reduce threads at each node and the list of
application-defined functions (e.g., key comparison, map and reduce).

Many of the mandatory arguments have default values to simplify
routine processing. By default, Setup() automatically opens and maps
the specified files to memory (this can be overridden if the application
needs access to the raw data). After the data is mapped into memory,
the splitData() function calculates the offset and length of the data
block at a node; and setArguments() sets all the arguments for map,
reduce and MPI communication.

After the initialization steps are done, the application calls mmr () to
launch the computation. The final result list is generated at the master
node and is returned to the application. More complicated processing
may require multiple map/reduce rounds. In such an instance, MMR
invokes mmrCleanup() to reset the buffers and state information, and
may setup and execute another MapReduce round using mmrSetup()
and mmr ().

The mmr () function invokes mmrMapReduce () to perform map/reduce
at a node. If the node is not the master, it packs the result (key/value
pairs) into an MPI buffer and sends it to the master node. Since MMR
does not know the data types of the keys and values, the developer must
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Figure 2. MMR flowchart.
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write functions to pack and unpack the data. If the node is the master,
after mmrMapReduce() is invoked, a hash table is generated to store
hashed keys. The hash table is used to accelerate the later reduction of
values on the same keys. The master receives byte streams from each
node, unpacks them into key /value pairs, aggregates them into a list, and
returns them to the nodes for the reduction step. If an application does
not need each node to send its partial result to the master, it can short
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Table 1. Hardware configuration.

Cluster 1 Cluster 2
Intel Core 2 Intel Core 2
CPU 6400 Extreme QX6850
Clock (GHz) 2.13 3.0
Number of Cores 2 4
CPU Cache (KB) 2048 2 x 4096
RAM (MB) 2048 2048

circuit the computation by calling mmrMapReduce () instead of mmr ().
The mmrMapReduce () function performs map/reduce at each node and
returns a partial list of key/value pairs. If there is no need to further
reduce and merge the lists, then each node uses its own partial list.

To use MMR, the user chooses one of the available nodes as the head
node and starts MMR on it. The remaining nodes are rebooted and use
PXE (Preboot Execution Environment) [6] to remotely boot from the
head node. The head node is responsible for running an NFS server,
which stores the forensic collection and output data.

5. Performance Evaluation

This section compares the performance of MMR and Hadoop with
respect to two criteria, relative efficiency and scalability. The relative
efficiency is evaluated by comparing the performance for three represen-
tative applications. Scalability is evaluated by computing the speedup
vs. serial execution times and comparing them with the raw increase in
computational resources.

5.1 Test Environment

The test environment included a cluster of networked Linux machines
configured with a central user account management tool, gcc 4.2, ssh,
gnumake, OpenMPI and a network file system. The experiments em-
ployed two ad hoc clusters of laboratory workstations, Cluster 1 and
Cluster 2. Cluster 1 comprised three Dell dual-core machines while Clus-
ter 2 comprised three Dell quad-core machines.

Table 1 presents the configurations of the machines in the clusters.
Note that the quad-core machines were run with a 2 GB RAM con-
figuration to permit the comparison of results. All the machines were
configured with Ubuntu Linux 8.04 kernel version 2.6.24-19, Hadoop and
MMR. The network setup included gigabit Ethernet NICs and a Cisco
3750 switch.
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Note that the Hadoop installation uses HDFS whereas MMR uses
NFS. HDFS separates a file into chunks and distributes them among
nodes. When a file is requested, each node sends its chunks to the des-
tination node. Wherever possible, we discounted I/O times and focused
on CPU processing times. However, we found this to be somewhat dif-
ficult with Hadoop because of the lack of control over data caching in
HDFS.

Our first experiment was designed to compare three Hadoop applica-
tions (wordcount, pi-estimator and grep) to their functional equiv-
alents written in MMR. No changes were made to the Hadoop code
except to add a timestamp for benchmarking purposes. The three ap-
plications are representative of the processing encountered in a typical
forensic environment. The wordcount program calculates the number of
occurrences (frequency) of each word in a text file. Word frequency cal-
culations are of interest because they are the basis for many text indexing
algorithms. The pi-estimator program calculates an approximation of
7 using the Monte Carlo estimation method; it involves a pure compu-
tational workload with almost no synchronization/communication over-
head. Many image processing algorithms are CPU-bound so this test
provides a baseline assessment of how well the infrastructure can utilize
computational resources. The grep program searches for matched lines
in a text file based on regular expression matching and returns the line
number and the entire line that includes the match. It is one of the
most commonly used tools in digital forensics. Note that Hadoop grep
only returns the number of times the specified string appears in the file,
which is weaker than the Linux grep command. MMR grep can return
the line numbers and the entire lines (like the Linux grep); however, in
order to permit comparisons, it only returns the counts as in the case of
Hadoop.

5.2 Benchmark Execution Times

We tested wordcount and grep with 10 MB, 100 MB, 1,000 MB and
2,000 MB files, and pi-estimator with 12,000 to 1,200,000,000 points.
The test results were averaged over ten runs with the total number
of map/reduce threads equal to the hardware concurrency factor (note
that the first and last runs are ignored). All the execution runs were
performed on Cluster 2 and the results (in seconds) are shown in Figure
3 (lower values are better).

In the case of wordcount, MMR is approximately fifteen times faster
than Hadoop for large (1 GB or more) files and approximately 23 times
faster for small files. For grep, MMR is approximately 63 times faster
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Figure 3. FExecution times for three applications.

than Hadoop in the worst case. For pi-estimator (which measures the
purely computational workload), MMR is just over three times faster
for the largest point set. Overall, it is evident that Hadoop has higher
start-up costs so the times for the longer runs are considered to be more
representative.

5.3 Scalability

Figure 4 compares the execution times for the three applications un-
der MMR and Hadoop for each cluster. Since pi-estimator is easily
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Figure 4. Benchmark times on Cluster 1 and Cluster 2.

parallelizable and scales proportionately to hardware improvements of
the CPU, one would not expect caching or faster memory to make any
difference. Note that the processors in Cluster 2 are newer designs com-
pared with those in Cluster 1, and the expected raw hardware speedup
is a function of the differences in the clock rates and the number of cores.
Since Cluster 2 has a 50% faster clock and twice the number of cores,
one would expect a speedup factor of 3 (i.e., three times faster).

The execution times for MMR show the expected improvement factor
of 3 for the pi-estimator benchmark. In contrast, the Hadoop version
only has an improvement factor of 0.5. This is a curious result for which
we have no explanation, especially given the factor of 3 improvement for
the wordcount benchmark. MMR produces a speedup factor of 4.2 in the
case of wordcount, which exceeds the pure CPU speedup factor of 3 due
to faster memory access and larger caches. In the case of grep, which is a
memory-bound application, the speedup is dominated by faster memory
access with a minor contribution from the CPU speedup. Unfortunately,
we could not measure the speedup for the Hadoop version.
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Figure 5. Wordcount: MMR vs. serial execution.

5.4 Super-Linear and Sub-Linear Speedup

In the case of CPU-bound applications, MMR efficiently leverages the
available CPU cycles and delivers speedup close to the raw hardware
improvements. In a real-world setting, we would expect a significant
number of applications not to adhere to this model; consequently, we
must consider the use of MMR in such scenarios. Specifically, we use
Cluster 2 to compare the speedup of two MMR applications, wordcount
and bloomfilter, relative to their serial versions.

The bloomfilter application hashes a file in 4 KB blocks using SHA-
1 and inserts them into a Bloom filter [2]. Then, a query file of 1 GB is
hashed in the same way and the filter is queried for matches. If matches
are found, the hashes triggering them are returned as the result. In the
test case, the returned result is about 16 MB. To isolate and understand
the effects of networking latency, we created two versions: MMR and
MMR Send. MMR completes the computation and only returns a total
count. On the other hand, MMR Send passes the actual hash matches
to the master node.

Figure 5 compares the results of MMR, and serial execution for the
wordcount application. Note that wordcount scales in a super-linear
fashion with 15.65 times the speedup. In fact, the relative speedup
factor (speedup/concurrency) is approximately 1.3, which is close to the
1.4 value mentioned above.

Figure 6 compares the results of MMR, and serial execution for the
bloomfilter application. In the case of the bloomfilter application,
because the computation is relatively simple and the memory access
pattern is random (no cache benefits), memory and I/O latency become
the bottleneck factors for speedup. In the 1 GB and 2 GB experiments,
the MMR, version achieves a speedup factor of 9 whereas MMR, Send
has a speedup factor of only 6. For longer computations, overlapping
network communication with computation would reduce some of the
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Figure 6. Bloom filter: MMR vs. serial execution.

latency, but, overall, this type of workload cannot be expected to scale
as well as it does for the MMR, version.

In summary, the experiments demonstrate that the proof-of-concept
implementation of MMR has superior performance relative to Hadoop,
the leading open-source implementation. MMR also demonstrates excel-
lent scalability for all three types of workloads, I/O-bound, CPU-bound
and memory-bound workloads.

6. Conclusions

Digital forensic tool developers need scalable development platforms
that can automatically leverage distributed computing resources. The
new MPI MapReduce (MMR) implementation provides this capability
while outperforming Hadoop, the leading open-source solution. Unlike
Hadoop, MMR efficiently and predictably scales up MapReduce compu-
tations. Specifically, for CPU-bound processing, MMR. provides linear
scaling with respect to the number of CPUs and CPU speed. For com-
mon indexing tasks, MMR demonstrates super-linear speedup for com-
mon indexing tasks. In the case of I/O-bound and memory-constrained
tasks, the speedup is sub-linear but nevertheless substantial.

Our experimental results indicate that MMR provides an attractive
platform for developing large-scale forensic processing tools. Our fu-
ture research will experiment with clusters containing tens to hundreds
of cores with the ultimate goal of developing tools that can deal with
terabyte-size forensic collections in real time.
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