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Abstract. A key problem in environmental monitoring is the spatial 
interpolation. The main current approach in spatial interpolation is 
geostatistical. Geostatistics is neither the only nor the best spatial interpolation 
method. Actually there is no “best” method, universally valid. Choosing a 
particular method implies to make assumptions. The understanding of initial 
assumption, of the methods used, and the correct interpretation of the 
interpolation results are key elements of the spatial interpolation process. A 
powerful alternative to geostatistics in spatial interpolation is the use of the 
soft computing methods. They offer the potential for a more flexible, less 
assumption dependent approach. Artificial Neural Networks are well suited for 
this kind of problems, due to their ability to handle non-linear, noisy, and 
inconsistent data. The present paper intends to prove the advantage of using 
Radial Basis Functions (RBF) instead of geostatistics in spatial interpolations, 
based on a detailed analyze and modeling of the SIC2004 (Spatial 
Interpolation Comparison) dataset. 

1 Introduction 

A key problem in many fields (including environmental monitoring) is spatial 
interpolation (sometimes referred as “surface modeling”). It consists of estimating 
the values of z variable at any location, based on set of (xi, yi, zi) samples, which 
usually have a non-uniform distribution. Input data represent z values samples at 
given (x, y) locations, usually called control points. The problem occurs in geology, 
geophysics, meteorology, environmental sciences, agriculture, engineering, 
economy, medicine, social sciences, etc. [9], [19], [22], [23].  
Two classes of methods are generally used in spatial interpolations: (1) triangulation, 
and (2) gridding. Triangulation requires a tessellation by an optimal network of 
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triangles, with control points at all apices. The triangles set represents an 
approximation of the surface. A regular array of data is generated by gridding, z 
parameter being estimated on the grid nodes, based on a set of control points. 
Gridding offers at least two major advantages over triangulation: (1) it is not 
necessary to sample the extreme points of the surface to be estimated, and (2) 
subsequent operations on grid data are facilitated. Usually gridding is not an aim by 
itself; it is a preliminary step for further processing. 

2 Geostatistics in Spatial Interpolations 
 
The main current approach in spatial interpolation nowadays is geostatistical. 
Geostatistics was originated by the application of statistical methods to the study of 
geological phenomenon. A complex theory was later developed, being applied not 
only to earth sciences, but also to many other areas: natural, economic, social 
phenomenon, among others. Geostatistics use regionalized variables, which values 
are not random; neither are exactly describable by a function. A regionalized variable 
may consist of a drift component and residual. A third error component has to be 
considered.   
Geostatistical interpolation estimates values by kriging. Kriging is an exact 
interpolator which uses geostatistical techniques to calculate the autocorrelation 
between data points, and produce a minimum variance unbiased estimate, taking in 
consideration the spatial configuration of the underlying phenomenon.  
Geostatistics is neither the only nor the best spatial interpolation method. Actually 
there is no “best” method, universally valid [3], [12], [19], [24]. The choice of 
interpolation method may vary, mainly according to the type and nature of data, and 
the aim of modeling. Choosing of a particular method implies to make assumptions. 
The understanding of initial assumptions, of the used methods, and the correct 
interpretation of the interpolation results are key elements of the spatial interpolation 
process. Comparison between methods can be made based on criteria as goodness of 
representation (errors in honoring control points), dependency on data distribution, 
number of control points that can be handled, ease of implementation, speed of 
computation. 

3 Soft Computing Methods in Spatial Interpolations 

3.1 Soft Computing Methods 

Soft computing methods offer the potential of a more flexible, less assumption 
dependent approach in spatial interpolations. Even if their validness as spatial 
interpolation methods was proved by many authors, their use in practice is still 
limited [2], [5], [8], [10], [20], [25]. Soft Computing differs from conventional (hard) 
computing in that, unlike hard computing, it is tolerant of imprecision, uncertainty, 
partial truth, and approximation [11].  
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3.2 Artificial Neural Networks in Spatial Interpolations 

Artificial Neural Networks (ANNs) are information processors, trained to represent 
the implicit relationship and processes that are inherent within a data set [1], [6], [7], 
[15], [16]. Sometimes spatial relationship between inputs has to be found (like in 
geology, for instance). Other areas require the identification of both spatial and 
temporal relationships (meteorology, environmental sciences, etc.).  
The original inspiration for ANN was biological; so much of the terminology of 
ANN reflects this biological heritage. The basic structure of an ANN consists of a 
number of simple processing units, also known as neurons (nodes). The basic role of 
each node is to take the weighted sum of the inputs and process this through an 
activation function. A connection joins the output of one node to the input of 
another. Each link has a weight, which represents the strength of the connection. The 
values of all the weights in a network represent the current state of learning of the 
network, in a distributed manner. These weights are altered during the training 
process to ensure that the inputs produce an output that is close to the desired value.  
A learning function or algorithm is used to adjust the weights of the network during 
the training phase. Training can be supervised or unsupervised. Hybrid training 
techniques and reinforcement learning are also used. During the learning period both 
the input and output vector are supplied to the network. The network then generates 
an error signal based on the difference between the actual output and the target 
vector. The error is used to adjust the weights of the network adequately. Following 
training, input data are then passed through the trained network in its non-training 
(recall) mode, where they are transformed within the hidden layers to provide the 
modeling output values. 
ANNs have emerged as an option for spatial data analysis approximately a decade 
ago. Training data are the observation samples used to derive the predictive model. 
The independent (predictor) variables are known as the input variables, and the 
dependent variables (response) are known as the output variables. In supervised 
learning, an ANN makes use of the input variables and their corresponding output 
variables to learn the relationship between them. Once found, the trained ANN is 
then used to predict values for the output variables given some new input data set. 
For unsupervised learning, an ANN will only make use of the input variables and 
attempts to arrange them based on their properties, hopefully in a way that is 
meaningful to the analyst.  

3.3 Radial Basis Functions in Spatial Interpolations 

Radial Basis Functions (RBF) have various applications in practice, due to their 
simplicity, generality and fast learning stage [11], [13], [14]. RBF are unidirectional 
ANNs, of hybrid learning (incorporating both supervised and unsupervised learning).  
Usually RBF have a three layers’ architecture: (1) input layer – sends the input 
information to the hidden layer, (2) hidden layer – composed by non-linear neurons 
(usually gaussian), and (3) output layer – composed by linear neurons. 
The hidden layer’s neurons work based on the distance between the input vector and 
the synaptic vector of each neurons (centroid). Therefore they offer a localized 
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response, which will have a significant intensity only if the input vector will be 
located near the centroid. Thus, a radial basis neuron acts as a detector that produces 
1 whenever the input is identical to its weight vector, meaning that the input pattern 
was recognized. The output layer’s neurons only compute the weighted sum of the 
output of the hidden layer. 
The radial functions are usually symmetric, but asymmetric (ellipsoidal) functions 
may also be used. They will then have preferential search directions of the control 
points used in the interpolation, for a specific grid node. The gaussian functions are 
not the only type of radial functions that can be used. The type of the radial functions 
and their parameters are chosen based on the specific problem to solve and the 
characteristics of the input data. 
Some of the reasons to use RBF in spatial interpolations are the following: 
• depending on the radial functions type, the RBF model may offer a localized 

response (therefore is able to identify the local characteristics of the surface to be 
modeled), or a global response (identifying this way the global characteristics of 
the surface to be modeled), 

• RBF are exact interpolators, honoring the control points when the point coincides 
with the grid node being interpolated,  

• smoothing factors can be employed in order to reduces the effects of small-scale 
variability between neighboring data points. 

4 RBF Versus Geostatistics 
 
The progress made in spatial interpolation is usually presented only in journals or 
scientific meetings dedicated to statistics, mining, environmental etc. Users who 
have a different technical background often do not have in-depth knowledge of 
spatial interpolation methods. That is why the use of new techniques is often 
discouraging for newcomers. When spatial interpolation methods are integrated in 
software tools, they are often implemented in such a rigid way that users have no real 
choice in selecting the best possible method, according to the true nature of data to 
process, and the aim of modeling. Moreover, many required parameters are fixed, 
without any possible way to modify them.  
The following is a comparison between RBF and geostatistics, at theoretical, 
correctness and efficiency levels, with special emphasis on method’s usability.   

4.1 Common Characteristics 

The basis kernel of RBF is somehow analogous to variogram in geostatistics. The 
basis kernel functions define the optimal set of weights to apply to the data points 
when interpolating a grid node.  
Both RBF and geostatistics (kriging) can be used as exact interpolators or smoothing 
interpolators. RBF will act like a smoothing interpolator when a smoothing factor 
will be incorporated to the basis function. Kriging will be a smoothing interpolator 
when an error nugget effect will be specified. 
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Both RBF and geostatistics are powerful and flexible methods, and are useful for 
gridding almost any type of data set. They generate quite similar results for most data 
sets. Computing time increases significantly when using large data sets. Precision of 
estimation is quite similar, excepting for small data sets, when a proper variographic 
study is difficult or impossible to perform, and therefore RBF give better results. 

4.2 Problems with RBF 

RBF architecture is actually imposed by the input data set itself. It is natural to use a 
number of RBF neurons equal to the number of the available control points, and to 
center the basis functions on the control point’s locations. So a challenging problem 
when using ANN, the choose of the right architecture, is implicitly solved when 
using RBF in spatial interpolations. 
Another problem to solve is the adequate choose of the type of the radial function to 
be used, as gaussian function is not always the best choice in spatial interpolation. 
Some alternative function may be multiquadric, multilog, inverse multiquadric, or 
natural cubic spline, among others. All these options where tested for real data sets 
(as the section 5 shows). 
Once the radial function was chosen, setting the working parameters is by far less 
challenging then using geostatistics. Basically only smoothing factors have to be 
specified.    

4.3 Problems with Geostatistics 

Before actually performing the kriging, a variographic study has to be done. This 
may be quite a challenge, especially for inexperienced users. Based on the 
experimental variogram (obtained from the input data set), appropriate variogram 
model and adequate parameters have to be chosen. Moreover, many times different 
theoretical models have to be mixed in a complex all-in-one model.  
The variogram is a measure of how quickly things change on the average. The 
underlying principle is that, on the average, two observations closer together are 
more similar than two observations farther apart. Because the underlying processes 
of the data often have preferred orientations, values may change more quickly in one 
direction than another. As such, the variogram is a function of direction. The 
variogram is a three dimensional function. There are two independent variables (the 
direction q, the separation distance h) and one dependent variable (the variogram 
value g(q,h)). The experimental variogram is a curve that displays the groups of 
variogram pairs on a plot of separation distance versus the estimated variogram. 
Variogram modeling is not an easy or straightforward task. The development of an 
appropriate variogram model for a data set requires the understanding and 
application of advanced statistical concepts and tools. In addition, the development 
of an appropriate variogram model for a data set requires knowledge of the tricks, 
traps, pitfalls, and approximations inherent in fitting a theoretical model to real world 
data. An inappropriate variogram model can lead to completely false gridding 
results.  
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The development of an appropriate variogram model requires numerous decisions. 
These decisions can only be properly addressed with an intimate knowledge of the 
data at hand, and a competent understanding of the data genesis (i.e. the underlying 
processes from which the data are drawn).  
The variogram model mathematically specifies the spatial variability of the data set 
and the resulting grid file. The interpolation weights, which are applied to data points 
during the grid node calculations, are direct functions of the variogram model. When 
the variogram is specified for kriging, the following parameters have to be set: sill, 
range, and nugget, but also the anisotropy information. 

5 Study Case: SIC 2004 
 
The Radioactivity Environmental Monitoring (REM) Group of the Institute for 
Environment and Sustainability at the Joint Research Center (JRC) of the European 
Commission has organized Spatial Interpolation Comparison Exercises (SIC97 and 
SIC2004). Participants were invited to estimate values of a variable observed at N 
locations with the help of a subset of n observed measurements. Once the 
participants have made their estimates, REM disclosed the true values observed at 
the N-n locations, so that the participants may assess the accuracy of their approach. 
The main objective of SIC97 and SIC2004 was to present the diversity of approaches 
taken by participants facing a problem that is identical for everyone, and to present 
the latest developments in the field of spatial statistics [3], [4], [17]. They offered an 
excellent occasion to test methods, compare results, and further orient research in the 
field of spatial interpolations.   
The data used in SIC2004 were daily mean values of gamma dose rates measured in 
South West Germany, in an area of approximately 400 x 700 km, which includes 
1008 monitoring stations. Participants were invited to estimate values of gamma 
dose rates variable at 808 locations, with the help of a subset of 200 observed 
measurements. Later on, the true 808 values where published. Additionally, 10 
smaller data sets (of 200 observed measurements each one) where published, in order 
to allow the calibration of the methods and parameters [4]. The location of the 200 
input data and the output 808 estimations are shown in fig. 1. All available SIC 2004 
data sets where processed by the authors of the present paper, using various gridding 
methods [18], [21]. Only the results obtained by RBF and geostatistics will be shown 
and discussed here. 
The interpolation results where compared with the real 808 values. The following 
statistics where used: Mean Error - ME, Mean Absolute Error - MAE, Percentage 
Mean Error - PMAE, Minimum Error - MIN, Maximum Error - MAX, Percentage 
Minimum Error - PMIN, Percentage Maximum Error - PMAX, Pearson’s 
Coefficient of Correlation between the estimated and true values - PEAR.  
The modeling results obtained by RBF are presented in a 3D view in fig. 1. The 
modeling results obtained by kriging are presented in a 3D view in fig. 2. Examining 
the two drawings, one could think that kriging brings more details, but the small 
differences are due, in fact, only to a different level of smoothness.  
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Fig. 1. Modeling results obtained by RBF 

 
Fig. 2. Modeling results obtained by kriging 
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Table 1 shows the values of the above-mentioned indicators for RBF and kriging 
(KRG). RBF and kriging have got similar results, with a slight advantage for RBF 
over kriging, considering the most significant indicators (MAE, PMAE, PEAR).  

Table 1. Statistics of RBF and kriging interpolation results 

 ME MAE PMAE MIN MAX PMIN PMAX PEAR 
RBF -1,41 9,15 9,20 -61,14 44,53 0,00 53,91 0,78 
KRG -1,31 9,28 9,34 -58,39 47,28 0,06 55,82 0,77 
 
Various type of RBF where tested. Table 2 compares the results of applying the 
following functions: multiquadric - MQ, multilog - MLOG, inverse multiquadric - 
INVMQ, natural cubic spline - SPLINE. 

Table 2. Statistics of interpolation results using various RBF types 

 ME MAE PMAE MIN MAX PMIN PMAX PEAR 
MQ -1,41 9,15 9,20 -61,14 44,53 0,00 53,91 0,78 
MLOG -1,19 9,82 9,94 -71,82 34,15 0,00 45,30 0,77 
INVMQ -12,18 199,40 190,78 -2017 1446 0,42 2004 -0,01 
SPLINE -2,94 53,23 54,59 -635,54 704,15 0,03 706,15 0,17 
 
MQ and MLOG functions give the best results, but INVMQ and SPLINE should not 
be used in this particular case. The importance of choosing the right type of function 
is now obvious. Multiquadric-type radial functions offer a more global response than 
the gaussian-like type, so their use is particularly justified for rather sparse data, like 
SIC2004 data sets. 
The results and the execution time are quite similar for RBF and kriging, but the easy 
of use of RBF is overwhelming, comparing to the use of kriging. When using RBF, 
user has to choose only the radial functions type and the smoothing parameter. When 
using kriging, a complex variogram modeling has to be done. 

6 Conclusions 

As we saw, spatial interpolation is a key problem in many fields, including 
environmental monitoring. Even if the main current approach is geostatistical, it is 
neither the only nor the best spatial interpolation method. There is no “best” method, 
universally valid. Choosing a particular method implies to make assumptions. The 
understanding of initial assumption, of the methods used, and the correct 
interpretation of the interpolation results are key elements of the spatial interpolation 
process. 
A powerful alternative to geostatistics in spatial interpolation is the use of the soft 
computing methods. They offer the potential for a more flexible, less assumption 
dependent approach. ANNs are well suited for this kind of problems, due to their 
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ability to handle non-linear, noisy, and inconsistent data. Particularly useful prove to 
be RBF.  
Both RBF and geostatistics are powerful and flexible methods, and are useful for 
gridding almost any type of data set. They generate quite similar results for most data 
sets. Precision of estimation is quite similar, excepting for small data sets, when a 
proper variographic study is difficult or impossible to perform, and RBF give better 
results. RBF and geostatistics (kriging) can be used both as exact interpolators and 
smoothing interpolators. 
Using RBF is easier than using geostatistics, even for inexperienced users. As 
section 4 shows, the geostatistics problems in spatial interpolations are far more 
complicated than the RBF problems. The development of an appropriate variogram 
model for a data set requires the understanding and application of advanced 
statistical concepts and tools. In addition, the development of an appropriate 
variogram model for a data set requires knowledge of the tricks, traps, pitfalls, and 
approximations inherent in fitting a theoretical model to real world data. An 
inappropriate variogram model can lead to completely false gridding results. 
Variogram modeling is especially difficult for relatively small data sets. 
The above-mentioned conclusions where proved based on a detailed analyze and 
modeling of the SIC2004 (Spatial Interpolation Comparison) dataset, as the 6th 
section shows. That is way we strongly recommend the use of RBF in spatial 
interpolations. 
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Abstract. This paper presents a time-delayed neural network (TDNN) model
that has the capability of learning and predicting the dynamic behavior of
nonlinear elements that compose a wireless communication system. This model
could help speeding up system deployment by reducing modeling time. This pa-
per presents results of effective application of the TDNN model to an amplifier,
part of a wireless transmitter.

1 Introduction

In new generation wireless communications - i.e. third generation (3G) stan-
dards such as WCDMA (Wideband Code Multiple Division Access) and UMTS
(Universal Mobile Telecommunications System) towards which most of the cur-
rent cellular networks will migrate - system component modeling has become a
critical task inside the system design cycle, due to modern digital modulation
schemes [1].

New standards may introduce changes in the behavior of the devices that are
part of the system (e.g. mobile phones and their internal components) mainly
due to the modulation schemes they use, generating nonlinearities in the be-
havior and memory effects (when an output signal depends on past values of an
input signal). Memory effects in the time-domain cause the output of an elec-
tronic device to deviate from a linear output when the signal changes, resulting
in the deterioration of the whole system performance since the device begins
behaving nonlinearly. In this work we are interested in modeling the nonlinear
behavior that an amplifier can have inside a wireless transmission.

Amplifiers are a major building block of modern RF digital wireless trans-
mitters (i.e. cellular phones). Figure 1 shows a simplified block diagram of what
a cellular phone communication would be. The voice coming from the phone
speaker (analog signal) has to be digitalized to be transmitted through the wire-
less network, and this is the task of an Analog/Digital converter. The digitalized
voice then has to be compressed to reduce bit rate and bandwidth. It is also
codified, to format the data so the receiver can detect and minimize errors by
doing the reverse operation. After that, a modulator adds the carrier signal to
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the data signal. The signal has to reach an antenna from the cellular phone with
enough strength to guarantee the communication. But the signal suffers from
attenuation and needs amplification before that. Therefore, the final element of
the chain is a power amplifier (PA) which amplifies the signal before it travels
to the nearer antenna and to the receiver side of the communications chain.

Fig. 1. Simplified block diagram of a digital wireless transmitter.

An amplifier works by increasing the magnitude of an applied signal. Am-
plifiers can be divided into two big groups: linear amplifiers, which produce an
output signal directly proportional to the input signal, and power amplifiers
which have the same function as the first ones, but their objective is to obtain
maximum output power. A PA can work in different ”classes”: in Class A if
it arrives at the limit of the linearity; and class B when it works in nonlinear
regime. Moreover, in wireless communications, the transmitter itself introduces
nonlinearities when operating near maximum output power [2].

Nonlinear behavior modeling has been object of increasing interest in the last
years [3][4] since classical techniques that were traditionally applied for modeling
are not suitable anymore. That is why new techniques and methodologies have
been recently proposed, as for example neural network (NN) based modeling
applied to PA modeling[5].

Neural networks, as a measurement-based technique, may provide a compu-
tationally efficient way to relate inputs and outputs, without the computational
complexity of full circuit simulation or physics level knowledge [6], therefore
significantly speeding up the analysis process. No knowledge of the internal
structure is required and the modeling information is completely included in
the device external response.

Although the NN approach has been largely exploited for static simulation,
their application to dynamic systems modeling is a rather new research field.
In this paper we present a new NN model for modeling nonlinear elements that
belong ro a communications chain, using a network which takes into account
device nonlinearity and memory effects. In particular, this paper presents the
results of the proposed model to nonlinear PA modeling.

The organization of the paper is the following: in the next Section, NN-based
modeling of electronic components is presented. Section 3 explains the neural
network model presented in this paper and shows its architecture and parame-
ters. In Section 4, measurements and validation results are shown. Finally, the
conclusions are reported in Section 5.
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2 Neural network-based modeling

Neural network-based models are nowadays seen as a potential alternative for
modeling electronics elements having medium-to-strong memory effects along
with high-order nonlinearity. NNs are preferred over traditional methods (i.e.
equivalent-circuit, empirical models) because of their speed in implementation
and accuracy. A NN model can be used during the stage of system design for a
rapid evaluation of its performance and main characteristics. The model can be
directly trained with measurements extracted from the real system, speeding
up the design cycle. NN models can be more detailed and rapid than traditional
equivalent-circuit models, more exact and flexible than empirical models, and
easier to develop when a new technology is introduced. By profiting from their
potential to learn a device behavior based on simulated or measured records of
its input and output signals, they were used in nonlinear modeling and design
of many microwave circuits and systems [7].

The increasing number of electronic devices models proposed using NNs that
have appeared in the last years [8][13][10] shows their importance and interest.
Many topologies of NNs are reported in the literature for modeling different
types of circuits and systems, with different kinds of linear and nonlinear be-
havior [11]. However, until very recently, NNs for modeling were applied almost
exclusively to instantaneous behavior of the input variables alone. Although
this approach has been largely exploited for static simulation, their application
to dynamic system is a rather new research field. Recently have appeared NN-
based models taking into account the dynamic phenomena in RF microwave
devices [12].

For representation of a system which has a nonlinear behavior and is dy-
namic, intending by dynamic not only that the device characteristic varies over
time but also that it depends on past values of its controlling input variables, not
any NN topology can be used. A neural model which includes time-dependence
into the network architecture is the time-delayed neural network (TDNN), a
special type of the well-known multilayer-perceptron (MLP). TDNNs have been
successfully applied for solving the temporal processing problems in speech
recognition, system identification, control and signal modeling and processing
[13]. They are suited for dynamic systems representation because the contin-
uous time system derivatives are approximated inside the model by discrete
time-delays of the model variables.

A TDNN is based on the feedforward MLP neural network with the addi-
tion of tapped delay lines (Z−1) which generate delayed samples of the input
variables. They are used to add the history of the input signals to the model,
needed for memory effects modeling. The TDNN entries include not only the
current value of the input signal, but also its previous values, as illustrates figure
2. The memory depth M of the element or system analyzed is reflected on the
length of the taps. The strategy followed to set the system memory is dictated
by the bandwidth accuracy required.
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Fig. 2. Time-Delayed neural network (TDNN) model and its corresponding input
data.

In this paper we propose the application of a TDNN model for modeling
nonlinear and dynamic behavior of devices or elements, parts of a communica-
tion system. The model proposed is explained in detail in the next Section.

3 TDNN model

The proposed model has the classical three layers topology for universal approx-
imation in a MLP: the input variable and its delayed samples, the nonlinear
hidden layer and a linear combination of the hidden neurons outputs at the
output neuron. The architecture of the TDNN is shown in figure 3.

Fig. 3. Time-Delayed neural network (TDNN) to model a communications chain
component.

The input layer has as inputs the samples of the independent variable, to-
gether with its time-delayed values. The model here presented shows a one-input
variable dependence (x) of one output variable (y), but the model can be easily
extended to more input/output variables. The variable can have a delay tap
between 0 and N , then the total number of input neurons is M (M = N + 1).
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In the hidden layer, the number h of hidden neurons varies between 1 and
H. The hidden units have a nonlinear activation function. In general, the hy-
perbolic tangent (tanh) will be used because this function is usually chosen in
the electronics field for nonlinear behavior. In our model we have used H =
10, but if necessary, the number of neurons in the hidden layer can be changed
to improve the network accuracy. The hidden neurons receive the sum of the
weighted inputs plus a corresponding bias value for each neuron bh. All the neu-
rons have bias values. This fact gives more degrees of freedom to the learning
algorithm and therefore more parameters can be optimized, apart from weights,
to better represent a nonlinear system.

The weights between layers are described with the usual perceptron no-
tation, where the sub-indexes indicate the origin and the destination of the
connection weight, e.g. wj,i means that the weight w relates the destination
neuron j with the origin neuron i. However, a modification in the notation
was introduced, adding a super-index to the weights, to more easily identify to
which layer they belong. Therefore, w1 means that the weight w belongs to the
connection between the inputs and the first hidden layer, and w2 means that
the weight w belongs to the connection between the first hidden layer and the
second one (in our particular case, the second hidden layer happens to be the
output layer). In this second group of connections weights, the sub-index which
indicates the destination neuron has been eliminated because there is only one
possible destination neuron (the output).

This unique output neuron has a linear activation function which acts as
a normalization neuron (this is usual choice in MLP models). Therefore, the
output of the proposed TDNN model is calculated as the sum of the weighted
outputs of the hidden neurons plus the corresponding output neuron bias (b0),
yielding equation 1.

yNN (t) = b0 +

[
H∑

h=1

w2
h tanh

(
bh +

N∑
i=0

w1
h,i+1x(t− i)

)]
(1)

Network initialization is an important issue for training the TDNN with the
back-propagation algorithm, in particular in what respects speed of execution.
In this work the initial weights and biases of the model are calculated using
the Nguyen-Widrow initial conditions [14] which allow reducing training time,
instead of a purely random initialization.

Once the TDNN model has been defined, it is trained with time-domain
measurements of the element output variable under study (yout(t)), which is
expressed in terms of its discrete samples. To improve network accuracy and
speed up learning, the inputs are normalized to the domain of the hidden neu-
rons nonlinear activation functions (i.e for the hyperbolic tangent tanh, the
interval is [−1;+1]). The formula used for normalization is shown in equation
2.

xnorm =
2 (x−min{x})

(max{x} −min{x})
− 1 (2)
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During training, network parameters are optimized using a backpropaga-
tion algorithm such as the Levenberg-Marquardt [15], chosen due to its good
performance and speed in execution. To evaluate the TDNN learning accuracy,
the mean square error (mse) is calculated at each iteration k of the algorithm,
using equation 3, where P is the number of input/output pairs in the training
set, yout is the output target and yNN is the NN output.

mse =
1
P

P∑
k=1

E(k)2 =
1
P

P∑
k=1

(yout(k)− yNN (k))2 (3)

The good generality property of a NN models says that it must perform
well on a new dataset distinct from the one used for training. Even a excessive
number of epochs or iterations on the learning phase could make performance
to decrease, causing the over-fitting phenomena. That is why, to avoid it, the
total amount of data available from measurements is divided into training and
validation subsets, all equally spaced. We have used the ”early-stopping” tech-
nique [16], where if there is a succession of training epoch in which accuracy
improves only for the training data and not for the validation data, over-fitting
has occurred and the learning is terminated. The obtained results are shown in
the next section.

4 Measurements and validation results

For training the neural model, a dedicated test-set for accurate PA charac-
terization has been used. It provides static and pulsed DC characterization,
scattering parameter measurements, real-time load/source-pull at fundamen-
tal and harmonic frequencies, and gate and drain time-domain RF waveforms.
The measurements are carried out with a Microwave Transition Analyzer and
a large-signal Vector Network Analyzer.

Complete characterization was performed for different input power levels
and different classes of operation at 1 GHz on a 2 ns window, as shows figure 4.
Class A is biased at 50% IDSS, and class B with IDS = 0. A 1 mm total gate
periphery GaN HEMT based on SiC with IDSS = 700 mA, has been measured
at 1 GHz. The power sweep ranged from -21 to +27 dBm. Only the first 4
harmonics are taken into account.

The basic idea to characterize the nonlinear models for IDS is to collect
input-output data with different tuned-load terminations, mapping the widest
region in the I-V characteristic. Time-domain data have been collected only
for load-pull characterization results in this case, that is three tuned-loads,
50 ohm, the best output power (Pout) and the best output efficiency (PAE).
The dynamic load curves corresponding to the selected loads are rather close
in class A operation, whereas they are fairly open in class B operation. This
suggested to use the all three selected loads from class B characterization, and
only 50 ohm load data from class A. The other characterization data will be
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Fig. 4. Time-domain waveforms at 1 GHz at increasing power for class A (top), and
B (bottom) at 50 Ohm load used for training.

used for model validation. In principle, however, this method does not need full
load-pull characterization, but only to map gate and drain nonlinear models
for different generic tuned-loads, in order to concern the widest region in the
I-V characteristic. Input data vectors of VGS and VDS for each load and power
level have been first copied and delayed as many times, to represent the network
inputs, as necessary to account for memory, and then joined together to train
the TDNN model with all the working classes, the selected load terminations
and the power levels, simultaneously. This is shown in figure 5.

Fig. 5. TDNN model training data organization.

We report here some results for class A and B, at VDS=30V. The validation
test includes the best Pout load, that has not been used for model training, and
some intermediate points for input power levels not included in the training
set. Results obtained show a rather good agreement between experimental and
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modelled data, in fact the relative mean square error is lower than 1e-04 (figure
6).

Fig. 6. TDNN model performance.

Figure 7 reports the output PA time-domain waveforms at increasing output
power at 50 Ohm load: the upper plots are relative to a class A condition, while
the bottom ones refer to class B operations. The left figures report the measure-
ments, while the right ones show the TDNN simulation result. Figure 8 shows
the comparison between the training (left) and validation (right) measurement
data used for class A operation and the TDNN model response.

Fig. 7. Time-domain waveforms at 1 GHz at increasing power for class A (top), and
B (bottom). Measurements (left), TDNN output (right). The pointed arrow waveform
refers to a validation data subset.

From the comparison between measurements and model output, the wave-
forms good agreement in general. Also for the power levels excluded from the
training data, used only for model validation. This is a key result to prove the
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model predictive capabilities. The model is also capable of recognizing the class
in which the device is working and in consequence give a reasonable output
response.

Fig. 8. Time domain waveforms at 1 GHz at increasing power for class A at 50 Ohm
(used for training), and optimum Pout (used for validation). Measurements (left),
TDNN output (right).

5 Conclusions

In this paper, a model that has the capability of learning and predicting the
dynamic behavior of nonlinear PAs, based on a Time-Delayed Neural Network
(TDNN), has been proposed. Validation and accuracy of the TDNN model in
the time-domain showed good agreements between the TDNN model output
data and measurements.

The TDNN model can be trained with input/output device measurements
or simulations, and a very good accuracy can be obtained in the device char-
acterization easily and rapidly. These properties make this kind of models spe-
cially suitable for new wireless communications components modeling, which
are mostly nonlinear and require speed, accuracy and simplicity when design-
ing and building the model.
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Abstract. This article introduces an approach to anomaly intrusion detection 
based on a combination of supervised and unsupervised machine learning 
algorithms. The main objective of this work is an effective modeling of the 
TCP/IP network traffic of an organization that allows the detection of 
anomalies with an efficient percentage of false positives for a production 
environment. The architecture proposed uses a hierarchy of Self-Organizing 
Maps for traffic modeling combined with Learning Vector Quantization 
techniques to ultimately classify network packets. The architecture is 
developed using the known SNORT intrusion detection system to preprocess 
network traffic. In comparison to other techniques, results obtained in this 
work show that acceptable levels of compromise between attack detection and 
false positive rates can be achieved. 

1 Introduction 

Nowadays, Information Technology (IT) constitutes a necessity in most 
organizations. Actually, companies of all sizes have their vital infrastructure based 
on IT for all their activities. This strong dependence has its risks, e.g. an interruption 
of the IT services can cause severe problems, endangering the company's assets and 
image or even worse, its clients as well [1]. 

The stability of an IT platform may be affected in several ways. The main 
sources of instability are the following: problems related to hardware; application 
problems; inadequate personal training and Information Security [2]. 

In the last years we have seen a steep rise in the importance of the Information 
Security as a main issue for companies and consequently, the amount of resources 
invested in technological solutions to this problem has increased accordingly. Table 
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1, taken from CERT [3], shows the increasing risks associated to Information 
Security since 1990. 

Table 1. Number of security incidents reported to CERT annually. 

Year 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 
#Incidents 252 406 773 1,334 2,340 2,412 2,573 2,134 3,734 9,859 

           
Year 2000 2001 2002 2003 2004 

#Incidents 21,756 52,658 82,094 137,529 204,625 
 
The growth showed in security incidents makes the development of efficient 

techniques for intrusion detection a necessity. Mainly, there are two ways to 
approach the development of an Intrusion Detection System (IDS): Misuse Detection 
(MD) and Anomaly Detection (AD) [4]. 

Techniques based on Misuse Detection work with patterns, usually called 
Signatures, which are configured to match attacks based on some known system 
vulnerability. Most IDS available today correspond to the MD type, since they are 
easier to implement. However, MD has some important drawbacks that affect its 
effectiveness: first, they are somewhat rigid, only able to detect those attacks for 
which a signature is available. Secondly, a signature database has to be available and 
maintained regularly and manually since signatures can only be created once a type 
of attack has been detected and therefore has compromised several systems already. 
Finally, an intruder with sufficient knowledge of signatures may modified the attacks 
slightly to avoid known signatures, cheating the IDS based on them.  

The Anomaly Detection approach uses Machine Learning (ML) algorithms [5] to 
model normal activity in an organization. In this way it may detect deviations that 
can be considered abnormal or suspicious. Most of the drawbacks attributed to MD 
systems can be overcome by the use of an anomaly detection IDS, which may be 
able to adapt dynamically and automatically to the relevant characteristics of an 
organization's activities. In this way, it would not be necessary to know the attacks 
beforehand to detect them, improving the response time to a security attack. 
Consequently, the majority of the recent research in the Intrusion Detection area is 
focused in this direction as can be seen in [6,7,8]. 

One of the main issues with AD systems is a high percentage of false positive 
detections (Normal cases classified as Attacks). This is a very important issue to 
resolve for practical purposes. In a typical system the percentage of normal traffic is 
considerably larger than abnormal traffic, therefore, an IDS with a high percentage 
of false positives could potentially generate an alert file with most of its records due 
to false positives instead of real anomalies. 

Several methods that use ML techniques such as Support Vector Machines 
(SVM) or K-Nearest Neighbor (KNN) to build an AD system. They have shown a 
high rate of detection but also a high percentage of false positives as well, making 
them very difficult to implement in a real system [8]. Recently, some other works 
have made use of Self Organizing Maps (SOM) [9] to address the issue of false 
positives. They show a comparable detection rate with a significant decrease in the 
number of false positive detections [10, 11]. In these works the SOMs are trained 
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using information at packet and connection levels obtained with the IDS called Bro 
[12]. Although the results are positive, the percentage of false positives is still large 
to use such a detection system in a real situation. There may be a better way to 
exploit the information acquired by the SOMs to classify the incoming traffic. 

In this work a new architecture aiming to solve the AD problem is presented. It is 
based on a hierarchy of SOMs combined with LVQ [9] to reduce the percentage of 
false positives. Only packet level information is used to analyze its contribution in 
the detection process. The system is implemented using the IDS Snort [13]. 

1.1 Self Organizing Maps 

A SOM [9] is a type of neural network with a competitive unsupervised learning 
algorithm that performs a transformation of the input space. In general, it consists of 
a 2D dimensional map of neuron-like units. Each unit has an n-by-1 weight vector mi 
associated, with n the dimension of the input space. That structure also determines a 
neighborhood relationship between the units. The basic SOM has a fix structure and 
number of units. The number of units determines the granularity of the 
transformation affecting the overall sensitivity and generalization ability of the map. 

During the iterative training process, the unit weights will be adjusted to find 
common features, correlations and categories within the input data. Because of this, 
it is usually said that the neurons self organize themselves. Actually, the map tends 
to approximate the probability density of the input data. Weight vectors tend to zones 
where there is more input data and few units will cover zones of the input space 
where there is less information. 

During a training step an input vector x is randomly chosen and the unit weight 
vector closer to x is found. That defines a winner unit c, such that 

 
          (1) 
 

where the symbol ||.|| refers to a norm, usually the Euclidean. The weight vectors of 
the unit c and its neighboring units are adjusted to get closer to the input data vector. 
A common update rule is given by 

    
 (2) 

 
with k denoting the training step, x(k) is the input vector chosen from the input data, 
Nc(k) is the neighborhood set of unit c and α(k) is the learning rate at step k. The 
learning rate α(k) goes between 0 and 1 and decreases with k. Training evolves in 
two phases. During the first phase “big” values of α are used (from 0.3 to 0.99) 
while the second phase sees smaller values of α (below 0.1). Nc(k) is usually fixed. 
Bigger neighborhoods are sometimes used in the first training phase. 

1.2 Learning Vector Quantization 

Learning Vector Quantization (LVQ) may also be considered a type of neural 
network like the SOM architecture [9]. An LVQ network has a set of units and 
weight vectors mi associated to them. There are several training algorithms for LVQ. 
The algorithm used in this paper, LVQ1, is a supervised learning algorithm for 
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classification, i.e. each input vector has a class assigned to them that the network 
would like to learn. Initially, each unit is assigned to a class. At step k, given a vector 
x randomly chosen from the input data, we find the weight vector closer to it mc, with 
c given by (1). The vector mc is updated in the following way: 

 
(3) 

 
 

where α(k), the learning rate, is bound between 0 and 1 and can be constant or 
decrease monotonically with each time step. 

1.3 Fundamentals of TCP/IP 

Transmission Control Protocol (TCP) and Internet Protocol (IP) refers to the 
most widely used protocols to send and receive data through a network system. 
Because they work together at different levels of the system (transport and network 
layers respectively), they are usually named together as TCP/IP. 

TCP/IP specifies how to establish and close a connection between processes in 
different parts of the network and how to send and receive messages between them. 
A TCP entity accepts messages from a process and breaks them up in pieces up to 
64K bytes to send as datagrams by the corresponding IP entity. It is up to TCP to 
guarantee that all datagrams are received and the original message reassembled 
correctly. TCP datagrams have header and data sections. The minimum TCP header 
is 20 bytes long. It mainly contains source and destination addresses, packet 
sequence number for reassembly, several flags for connection purposes (URG, ACK, 
EOM, RST, SYN and FIN), a header checksum, some optional parameters and its 
own length. 

An IP entity takes TCP datagrams, add its own IP header to generate what is 
called network packets and sends them to its destination. The IP header, which is 
also 20 bytes minimum, contains source and destination addresses, header and total 
length, protocol, type of service, flags, checksum and other attributes. In particular, 
type of service (1 byte) allows the user to select the quality of service it wants, from 
speed for voice connections to reliability for file transfer uses. 

This is a very brief overview of TCP/IP, interested readers should refer to [14] 
for a complete explanation of computer networks and protocols. In this paper the 
information contained in the TCP and IP headers of the network packets is used to 
detect anomalies in network traffic. 

2 Anomaly Detection based on SOM/LVQ 

The three-layer architecture proposed is shown in Figure 1. The input to the 
classifier proposed is a vector comprising the main attributes of a window of 
predefined length of network packets. The output gives the class to which the input is 
classified: Normal or Attack. 

The first layer examines the variation of each attribute over the time window 
separately. The second layer correlates the information from the first layer between 
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attributes and makes a three-class decision: Normal, Attack or Indefinite. The class 
Indefinite introduced refers to the vectors that are close to the Normal class but have 
some Attack elements. The third layer decides whether the vectors in class Indefinite 
should be in Normal or Attack using a larger SOM network. 

Fig. 1. Main architecture proposed. 

2.1 First Level - Feature Clustering 

The first level is composed of eleven SOMs, one per attribute selected to 
characterize TCP traffic. Each SOM takes an input vector of dimension twenty, 
given by a time window of length twenty of the selected attribute as shown in Figure 
2. The goal at this level is to identify the main features of each attribute to obtain a 
model of the traffic analyzed. Once these SOMs are trained, six units per SOM are 
selected to reduce the dimensionality of the information to be passed to the second 
layer. The criteria used to select which units to select are two: the use of a Potential 
Function [10], or the selection of three units associated to normal traffic and three 
units associated to attack traffic. 

2.2 Second Level - Aggregation and Classification 

The second level of the architecture, shown in Figure 3, consists in a 6-by-6 
SOM and a set of LVQs, one per SOM unit. The input vector to this SOM is 
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composed of the distances of the input vector to the first layer, to all the units 
selected in the first level SOMs. Therefore, the dimension of the input vector to the 
second level is 6 times 11. The objective of this SOM is to capture the correlations 
between the features found by the SOMs of the first level, in order to make a better 
characterization of the traffic being studied. 

 

Fig. 2. Attributes extracted and information flow at the first level. 

Once the SOM is trained, each LVQ associated to each unit is tuned in a 
supervised manner using the subset of inputs to the SOM that makes the unit 
associated to the LVQ the winner in the SOM sense. The label used to train the 
LVQs for each input is defined as: 

 
          (4)  
 

where the number is computed over the time window of the input vector. 
 It is possible to train the LVQ network in two ways: using the values of 

MyLabel as defined or discretizing the values of MyLabel in Normal, Attack and 
Indefinite, where: 0 < MyLabel(Indefinite) < Attack_threshold. In tests, the value of 
Attack_threshold  used was 30 %. In the last case, the system is making a 3-class 
decision at this level, leaving the final classification of the packets labeled in the 
Indefinite class to the next level. 
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Fig 3. Second level processing. 

2.3 Third Level - Indefinite Class Processing 

At this level the architecture proposed analyses those input windows that have a 
relatively low percentage of attack packets, i.e. lower than Attack_threshold. Each 
LVQ from the second layer is associated to a 10-by-10 SOM that is trained with the 
packets linked to the windows classified as Indefinite by that particular LVQ. A 
LVQ network is assigned to each SOM to make the final classification using as input 
the distances of each packet to all the units in the associated SOM. The overall 
processing is shown in Figure 4. 

Fig. 4. Third level processing. 
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LVQi        <Normal>   <Attack>   <Indefinite>
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1 i 36

... ...
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<Attr1-Samplej,..,Attri-Samplej,..,Attr11-Samplej> 

 <d1, d2, ..., di, ..., d100> 

           O O O O O O O O O 
        O O O O O O O O O 
      O O O O O O O O O 
    O O O O O O O O O 
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3 Experimental Results 

The main objective in this work is to find an acceptable compromise between the 
Detection Rate (DR) and False Positive Rate (FPR) defined by: 

AttacksofNumber  Total
Detected Attacks#    DR = ,   

 Normals ofNumber Total
Positives False of #  FPR =  

Data for experiments is taken from the DARPA 1998 Intrusion Detection 
Problem [15]. Two sets were built: the training set contains 1:514,848 records while 
the test set has 765,029 records. Results shown are computed over the test sets for 
networks trained using the training set. Training and test sets were generated from 
DARPA data using SNORT to extract the TCP/IP attributes selected. Only 
information at the packet level is used. The preprocessor developed works as a 
plugin to SNORT. It is also able to extract attributes at other levels (e.g. TCP 
connection) and protocols (e.g. UDP and ICMP). The implementation of SOM and 
LVQ is based on the package SOM_PAK [16]. Some modifications to this package 
were necessary to handle large data files as required for this application.  

The packet attributes used, shown in Figure 2, were selected by its relevance in 
the TCP/IP protocol and hence its importance to model network traffic. The 
attributes that may have several values in the same packet, such as the TCP flags, 
were coded to reduce the dimensionality of the problem. 

Tables 2, 3 and 4 summarize the results obtained with the most relevant 
experiments run on the architecture proposed. They use the following notation: 

Classification: Refers to the amount of classifications performed by the system. 
Correct: Represent the number of correct classifications per class made. 
Deviations: Show the number of incorrect classifications of each type made. 
The initials N, I and A are used for Normal, Indefinite and Attack respectively. In 

the case of deviations we use, for example, N-I to indicate the packets belonging to 
the Normal class but classified as Indefinite. 

It should be noted that, at the third level the Indefinite class is sorted between 
Normal and Attack. At this level the SOM is not trained with a time window but with 
each of the twenty individual packets that composed each window. Due to this, each 
pattern at the second level is transformed into twenty patterns at the third level. 

Table 2. Use of Potential function and My Label for training. 

 Classification Correct Deviations 
 N I A N I A N-I N-A I-N I-A A-N A-I 

Level 2 396674 132355 236000 227250 7657 208396 41845 14382 28584 13222 140840 82853 
Level 3 522269 0 71111 481170 0 50926 0 20185 0 0 41099 0 

Table 3. Use of Potential function and My Label discretized for training. 

 Classification Correct Deviations 
 N I A N I A N-I N-A I-N I-A A-N A-I 

Level 2 648290 66580 50159 239197 11238 33256 36754 7526 28848 9377 380245 18588 
Level 3 859386 0 429934 701701 0 112103 0 317831 0 0 157685 0 
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Table 4. Use of 3 centers associated to Normal and 3 to Attack, and My Label discretized. 

 Classification Correct Deviations 
 N I A N I A N-I N-A I-N I-A A-N A-I 

Level 2 413132 44929 306968 272431 3922 301335 6591 4455 44363 1178 96338 34416 
Level 3 637367 0 261213 246029 0 233798 0 27415 0 0 391338 0 
 

It can be observed that the best results are achieved when the selection of units to 
represent level one information is based on the classes to discriminate, in this case 
three for each class. The performance of this option is then: 

72%   
3441696338301335

233798/20301335  DR =
++

+
=   %2

44556591272431
20/274154455  FPR =

++
+

=  

With respect to the results achieved in [10], the value of FPR is improved by 
73% while DR decreased by only 19 %. In general, Table 5 resumes some results 
obtained in previous works where ML techniques were used for AD [8, 10]. 

Table 5.  Results of other works using AD methods 

Method Detection Rate False Positive Rate 
Clustering 93% 10% 
K-NN 91% 8% 
SVM 98% 10% 
SOM Hierarchy 89% 7.6% 

 
It can be noted that the DR achieved here is below the ones obtained in the works 

presented in Table 5. A better inspection of the experiments also show that: 
• An important percentage of the attacks presented in the data sets used 

corresponds to the user to root type. This type of attacks are quite difficult to 
model using TCP/IP protocol characteristics only. 

• The prototype implemented is classifying TCP/IP packets up to now. Since a 
connection usually consists of hundreds of packets, it is expected that the DR 
may improve once the connection information is added to the system. 

4 Conclusions 

The AD method developed in this work introduces an efficient mechanism to 
reduce the false positives getting closer to generate sufficiently reliable alerts to be 
able to use an AD based IDS in a production environment. 

It can also be observed that packet information is an important component in the 
detection of attacks. This work serves as a guide as to which packet information to 
use to model traffic for this purpose. However, the need to use connection level 
information is pointed out as well to reach an efficient DR with low FPR.  

This investigation is based on a priori knowledge of traffic packets combined 
with ML techniques to set up the model and pattern recognition techniques for traffic 
classification. However, many steps are developed in an empirical manner which 
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limits the conclusions that can be made. Therefore, there is the need to develop 
formal ways to obtain bounds on rates and efficiency of the AD methods. 

From the results of this work we are following this research in two directions. 
First, we are exploring more efficient ML techniques for the intrusion detection 
problem. Besides, we are developing a theoretical framework to obtain a deeper 
understanding of the problem which may allow us to get robust models that are 
feasible to implement in the real world. 
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Abstract. Recently, novel learning algorithms such as Support Vector 
Regression (SVR) and Neural Networks (NN) have received increasing 
attention in forecasting and time series prediction, offering attractive 
theoretical properties and successful applications in several real world problem 
domains. Commonly, time series are composed of the combination of regular 
and irregular patterns such as trends and cycles, seasonal variations, level 
shifts, outliers or pulses and structural breaks, among others. Conventional 
parametric statistical methods are capable of forecasting a particular 
combination of patterns through ex ante selection of an adequate model form 
and specific data preprocessing. Thus, the capability of semi-parametric 
methods from computational intelligence to predict basic time series patterns 
without model selection and preprocessing is of particular relevance in 
evaluating their contribution to forecasting. This paper proposes an empirical 
comparison between NN and SVR models using radial basis function (RBF) 
and linear kernel functions, by analyzing their predictive power on five 
artificial time series: stationary, additive seasonality, linear trend, linear trend 
with additive seasonality, and linear trend with multiplicative seasonality. 
Results obtained show that RBF SVR models have problems in extrapolating 
trends, while NN and linear SVR models without data preprocessing provide 
robust accuracy across all patterns and clearly outperform the commonly used 
RBF SVR on trended time series.  

1 Introduction  

Support Vector Regression (SVR) and Artificial Neural Networks (NN) have found 
increasing consideration in forecasting theory, leading to successful applications in 
time series and explanatory forecasting in various domains, including business and 
management science [1, 2]. Methods form computational intelligence promise 
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attractive features to business forecasting, being data driven, semi-parametric 
learning machines, permitting universal approximation of arbitrary linear or 
nonlinear functions from examples without a priori assumptions on the model 
structure, often outperforming conventional statistical approaches of ARIMA- or 
exponential smoothing- methods. 
 

Despite their theoretical capabilities, NN as SVR are not established forecasting 
methods in business practice. Recently, substantial theoretical criticism of NN has 
raised skepticism regarding their ability to forecast even simple time series patterns 
of seasonality or trends without prior data preprocessing [3]. While all novel 
methods must ultimately be evaluated in an objective experiment using a number of 
empirical time series, adequate error measures and multiple origins of evaluation [4], 
the fundamental questions to their ability to approximate and generalize basic time 
series patterns must be evaluated beforehand. Time series can generally be 
characterized by the combination of basic regular patterns: level, trend, season and 
residual errors. For trend, a variety of linear, progressive, degressive and regressive 
patterns are feasible. For seasonality, an additive or multiplicative combination with 
level and trend further determines the shape of the final time series. Consequently, 
we evaluate SVR and NN on a set of artificially created time series derived from 
previous publications. We evaluate the comparative forecasting accuracy of each 
method to reflect their ability of learning and forecasting fundamental time series 
patterns relevant to empirical forecasting tasks. 

 
This paper is organized as follows. First, we provide a brief introduction to SVR 

and NN in forecasting time series of observations. Section three presents the 
artificially generated time series and the experimental design. This is followed by the 
experimental results and their discussion. Conclusions are given in section 4. 

2 Modelling SVR and NN for Time Series Prediction 

2.1 Support Vector Regression 

We apply the common Support Vector Regression (SVR) algorithm as proposed by 
Vapnik [5], which uses an ε-insensitive loss function for predictive regression 
problems. This function allows a tolerance degree to errors not greater than ε. The 
description is based on the terminology used in [6, 7]. Let {(x1,y1),….., (xℓ,yℓ)}, 
where xi є Rn and yi є R, be the training data points available to build a regression 
model. The SVR algorithm applies a transformation function Φ to the original data 
points from the initial Input Space, to a higher-dimensional Feature Space F. In this 
new space, we construct a linear model, which corresponds to a non-linear model in 
the original space1: 

 
1 When Φ is the identity function, the Feature Space is equivalent to the Input Space, and the 

model constructed is linear in the original space. 
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The goal when using the ε-insensitive loss function is to find a function that fits 
current training data with a deviation less or equal to ε, and at the same time is as flat 
as possible. This means that one seeks for a small weight vector w; one way to do 
that is e.g. by minimizing the quadratic norm of the vector w [6]. As this problem 
could be infeasible, slack variables ξi, ξi* are introduced to allow error levels greater 
than ε, arriving to the formulation proposed in [5]: 
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This is known as the primal problem of the SVR algorithm. The objective 
function takes into account generalization ability and accuracy in the training set, and 
embodies the structural risk minimization principle [8]. Parameter C measures the 
trade-off between generalization ability and accuracy in the training data, and 
parameter ε defines the degree of tolerance to errors. To solve the problem stated 
above, it is more convenient to represent the problem in its dual form. For this 
purpose, a Lagrange function is constructed, and once applying saddle point 
conditions, it can be shown that the following solution is obtained [8]: 
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Here, αi and αi
* are the dual variables, and the expression K(xi,x) represents the 

inner product between Φ(xi) and Φ(x), which is known as the kernel function [8]. The 
existence of such a function allows us to obtain a solution for the original regression 
problem, without explicitly considering the transformation Φ(x) applied to the data. 
In our experiments we use radial basis functions (RBF) and linear kernel functions.  

 
Limited research has been conducted to investigate the ability of SVR for 

predicting different time series patterns. Experiments performed by Hansen et. al [9] 
compare SVR performance with 3 statistical methods (e.g. ARIMA) on predicting 9 
different patterns present in real world time series. Among other patterns, they tried 
trends, seasonality, cycles, and combinations of them. Their experiments show SVR 
models outperforming the other methods on 8 of the 9 patterns; particularly, they 
obtained very good results using SVR for extrapolating linear and non linear trends. 
Guajardo et al. [10] compared SVR with ARMAX models for predicting seasonal 
time series in a weekly sales forecasting domain for 5 different products. Their 
experiments show that SVR were slightly better than ARMAX models, succeeding 
in extrapolating seasonal patterns (without trends) with SVR.  
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2.2 Neural Networks 

Forecasting with non-recurrent NN may encompass prediction of a dependent 
variable ŷ from lagged realizations of the predictor variable t ny − , 1 or i explanatory 
variables ix of metric, ordinal or nominal scale as well as lagged realizations thereof, 

,i t nx − . Therefore, NNs offer large degrees of freedom towards the forecasting design, 
permitting explanatory or causal forecasting through estimation of a functional 
relationship of the form ( )1 2ˆ , ,..., zy f x x x= , as well as general transfer function 
models and simple time series prediction. Following, we present a brief introduction 
to modelling NN for time series prediction; a general discussion is given in [11, 12]. 

 
Forecasting time series with NN is generally based on modelling the network in 

analogy to a non-linear autoregressive AR(p) model [2, 13]. At a point in time t, a 
one-step ahead forecast 1ˆ +ty  is computed using p=n observations 11 ,,, +−− nttt yyy K  
from n preceding points in time t, t-1, t-2, …, t-n+1, with n denoting the number of 
input units of the NN. This models a time series prediction as of  

( )111 ,...,,ˆ
+−−+ = ntttt yyyfy  .  

The architecture of a feed-forward Multilayer Perceptron (MLP), a well 
researched NN paradigm, of arbitrary topology is displayed in figure 1.  
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ˆt hy +

 
Fig. 1.  Autoregressive MLP application to time series forecasting with a MLP of arbitrary topology, using 
n input neurons for observations in t, t-1, t-2, …, t-n-1, m hidden units, h output units for time periods t+1, 
t+2, …, t+h and a two layers of trainable weights. The bias is displayed within the units. 

Data is presented to the MLP as a sliding window over the time series 
observations. The task of the MLP is to model the underlying generator of the data 
during training, so that a valid forecast is made when the trained NN is subsequently 
presented with a new input vector value.  
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The network paradigm of MLP offers extensive degrees of freedom in modelling 
for prediction tasks. Structuring the degrees of freedom, each expert must decide 
upon the selection and sampling of datasets, the degrees of data preprocessing, the 
static architectural properties, the signal processing within nodes and the learning 
algorithm in order to achieve the design goal, characterized through the objective 
function or error function. For a detailed discussion of these issues and the ability of 
NN to forecast univariate time series, the reader is referred to [2]. 

3 Experiments and Results 

3.1 Description of the Artificial Time Series  

We evaluate a set of five artificial time series of monthly retail sales motivated from 
Pegel’s original classification, later extended by Gardner to incorporate degressive 
trends. Time series are composed of regular patterns of different forms of linear, 
progressive, degressive or regressive trends T, additively or multiplicatively 
combined with seasonality S, a constant level L and residual noise E. In addition, 
empirical time series are impacted by irregular patterns such as level shifts and 
pulses, which are disregarded. To evaluate the ability of different computational 
intelligence methods we create a set of benchmark time series for the most common 
regular time series patterns: linear trend and different forms of seasonality. 
Consequently, we create individual time series patterns and combine them 
accordingly, overlaying each with additive noise.  
 No  

Seasonality (E) 
Additive  

Seasonality (SA) 
Multiplicative 

Seasonality (SM) 
No  
Trend 
(L) 

 
Linear  
Trend 
(TL) 

Fig. 2. Basic time series patterns of artificial time according to the Pegels- and Gardner-
classification, combining Level, Trend and Seasonality with a medium additive noise level. 

In contrast to Pegel’s classification, a time series with multiplicative seasonality 
L+SM+E cannot display an increasing seasonality in the absence of level changes, it 
equals the pattern of additive seasonality and was consequently omitted from further 
analysis. Consequently, we create a set of five time series including a stationary time 
series L+E (E), seasonality without trend L+SA+E (SA), linear trend L+TL+E (TL), 
linear trend with additive seasonality L+TL+SA+E (TLSA) and linear trend with 
multiplicative seasonality depending on the level of the time series L+TL*SM+E 
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(TLSM). The residual error term follows a Gaussian distribution ( )2,0 σN  applying a 
medium level of noise 2 25σ = . The original time series data was taken from the 
experiments of [3] and represent monthly retail sales. All time series considered an 
additive noise term to allow an estimation of final forecasting accuracy in 
relationship to the original noise level. Each time series consists of 228 observations. 

3.2 Experimental Design 

This research investigates whether the five patterns described above can be 
accurately predicted with RBF SVR, Linear SVR and NN models. For each series, 
we defined a lag structure including the 13 previous observations as attributes for 
predicting the next series value (one period ahead prediction); thus, a total of 215 
data points remain to build and parameterize models. Data was sequentially divided 
into training, validation and test sets using 119, 48 and 48 observations respectively; 
training data is used to build the model, validation data for parameter selection 
purposes, and test data to evaluate the accuracy on a hold-out data set. All models are 
parameterized using only training and validation data, withholding all information in 
the test set (also for scaling etc.) to assure valid ex ante testing. Data was 
transformed only by applying linear scaling into a [-0.5, 0.5] interval to avoid 
saturation effects, using minimum and maximum values only from the training and 
validation data. No other preprocessing procedures such as deseasonalization or 
detrending were carried out. 
 

As mentioned in section 2.1., SVR models require setting of two parameters: C 
and ε. In addition, one needs to select an appropriate kernel function to carry out the 
transformation to a higher dimensional feature space. The RBF kernel function, 
which is the kernel function most widely utilized for regression (see e.g. [6, 14, 15]), 
requires the definition of an additional parameter σ. Our heuristic approach for RBF 
SVR parameter selection can be summarized as follows: 

 
- First, we determine starting values for the C and ε parameters on each time 

series by using the empirical rules proposed by Cherkassky and Ma [14], leading 
to E {C=0.67538; ε=0.020373}, SA {C=0.86224; ε=0.0056657}, 
TL {C=0.70709; ε=0.0043011}, TLSA {C=0.74641; ε=0.0064901} and 
TLSM {C=0.76968; ε=0.0064652}. 

- Second, we search for ‘good’ values of the RBF kernel parameter σ using the 
predetermined parameters C and ε, and evaluate 45 different alternatives for 
σ={0.001; 0.01; 0.03; 0.05; 0.08; 0.1; 0.3; 0.5; 0.8; 1; 1.3; 1.5; 1.8; 2; 2.3; 2.5; 
2.8; 3; 3.3; 3.5; 3.8; 4; 4.3; 4.5; 4.8; 5; 5.3; 5.5; 5.8; 6; 7; 8; 9; 10; 15; 20; 25; 50; 
80; 100; 200; 300; 400; 500; 1000}. The value of σ which generates the model 
with the lowest mean absolute error (MAE) in the validation set is defined as the 
base parameter for the kernel function. As result, we now have heuristic starting 
values for the three parameters of the SVR model, C’, ε’ and σ’. 

- Third, we define a grid around base parameters C’, ε’ and σ’, and retain the best 
combination of parameters to be the final values used in the SVR model. In our 
experiments, we tried five different values for each parameter C, ε, σ (factors 
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0.5, 0.75, 1, 1.25 and 1.5 over the initial values), thus creating a grid of 125 
possible parameter settings. The parameter candidate of the grid is selected by 
using the lowest MAE on the validation set as before. 

The scheme for Linear SVR is very similar, but without considering parameter σ. 
Thus, second step for base parameter σ is not carried out, and the third step involves 
only 25 different combinations for C and ε. (for additional details see [10]). 

For NN models, we used the backpropagation algorithm to train multiple 
candidates of multilayer perceptron (MLP) networks. The network topology was 
obtained using a grid search of different hidden nodes {0, 2,…, 20} and activation 
functions {sigmoid; tanh} with fixed number of input and output nodes, selecting the 
architecture with the lowest MAE on the validation set. The final model was 
initialized 20 times using an (13-8-1) architecture comprised of 13 input nodes, 8 
hidden nodes and a single output node for t+1 predictions, applying a sigmoid 
transfer function between the input and hidden layers, and a linear function between 
hidden and output layers. As for SVR models, we selected the network with the 
lowest validation mean absolute error (MAE) to calculate the test error results.  

3.3 Experimental Results and Discussion 

To evaluate our models we used the root mean squared error (RMSE), mean absolute 
error (MAE), and mean absolute percentage error (MAPE). Test set errors obtained 
using SVR and MLP models for each one of the five series analyzed in this paper are 
shown in Table 1. As can be seen from Table 1, RBF SVR has the best performance 
(denoted in bold) on a level time series superimposed with white noise (E) and 
additive seasonality (SA) patterns across all error measures. Linear SVR is the best 
method for predicting linear trend (TL) and linear trend with multiplicative 
seasonality patterns (TLSM), while MLPs provide best results for linear trends with 
additive seasonality (TLSA) pattern.  

Table 1. Forecasting accuracy on the test set for RBF and linear SVR models and MLP 

RBF SVR Linear SVR MLP Series 
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE 

Series E 4.670 3.776 1.387 5.036 4.108 1.496 4.851 3.946 1.264 
Series SA 4.746 3.739 0.039 6.961 5.637 0.058 5.787 4.766 0.048 
Series TL 11.501 10.408 0.046 5.876 4.811 0.021 6.058 4.966 0.022 
Series TLSA 21.267 17.678 0.075 7.915 6.280 0.028 7.083 5.878 0.027 
Series TLSM  14.758 10.842 0.043 7.927 6.305 0.029 7.673 6.454 0.030 
Sum 56.942 46.443 1.590 33.715 27.141 1.632 31.452 26.010 1.391 

 
Since we evaluated artificially constructed time series we can estimate the part of 

the forecasting errors caused by the artificially created noise, which due to its 
random nature cannot be forecasted. This permits an analysis to what extent each 
method was capable of separating noise from structure of varying complexity on the 
unbiased error measure of MAE. In applying the true mean of the Gaussian residuals 
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as an optimal forecast, we estimate a MAE of 3.801 as a lower bound forecast error 
for all time series on the test set. It becomes apparent, that RBF SVR exceeds even a 
‘perfect’ forecast for series E and SA, which can be attributed to the randomness of 
the data inherent in all ex ante evaluations of forecasting experiments. In contrast, 
RBF SVR significantly underperform on trended time series patterns, indicating 
inadequacies of the chosen kernel function. On the contrary, linear SVR shows a 
more robust prediction of all time series patterns. As the forecasts deviates only 
slightly from the lower bound in comparison to the level of the time series, as would 
be reflected in the MAPE, SVR with linear kernel functions may be considered a 
robust method in forecasting arbitrary time series patterns without preprocessing. 
Similarly, MLPs forecast all time series patterns robustly and without preprocessing 
with a comparative high accuracy close to linear SVR and the lower bound. 

In summarizing over all time series, applying an equal weight to each of the time 
series patterns, MLPs robustly outperform RBF SVR on all three error measures of 
MAE, MAPE and RMSE, whereas MLPs also moderately outperform linear SVR. 
This indicates that while particular kernel functions enable the SVR to outperform 
alternative parameterizations, MLPs or linear SVR may prove a more robust 
alternative in using a single method to forecast a set of time series of different 
patterns. In addition to these distance based error measures, we evaluate the relative 
performance by ranking each method by the individual error measure, provided in 
Table 2. 

Table 2. Forecasting accuracy measured by ranks of methods for each error measure 

 Rank by RMSE Rank by MAE Rank by MAPE 
 SVR 

RBF 
SVR 
linear

MLP SVR 
RBF 

SVR 
linear

MLP SVR 
RBF 

SVR 
linear 

MLP 

Series E 1 3 2 1 3 2 2 3 1 
Series SA 1 3 2 1 3 2 1 3 2 
Series TL 3 1 2 3 1 2 3 1 2 
Series TLSA 3 2 1 3 2 1 3 2 1 
Series TLSM  3 2 1 3 1 2 3 1 2 
Sum of Ranks 11 11 8 11 10 9 12 10 8 
 

The findings by ranked error measures confirm little differences between linear 
SVR and MLPs, with MLPs providing the best results for the limited test design 
provided across all error measures. SVR with RBF kernel, the most frequently used 
implementation in time series prediction with SVR to date, performs significantly 
worse than the other methods. 

As must be expected, different error measures identify different ‘best’ methods. 
In particular, RMSE and MAPE are considered to be biased error measures. To limit 
biases in the absence of a true objective function which could motivate the use of a 
particular error measure, we assume equal weight to each error and focus our 
conclusions on the MAE. To confirm the results of model accuracy from a statistical 
point of view, we performed a paired-samples t test on the absolute values of the 
residuals over the test set data points. Results obtained show that differences between 
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model errors are statistically significant when comparing RBF SVR to Linear SVR 
(t=7.337; df=239; p<0.001), and RBF SVR to NN (t=6.999; df=239; p<0.001), 
although not when comparing NN to Linear SVR (t=-0.989; df=239; p=0.324). This 
indicates that no significant difference in forecasting accuracy between the methods 
of linear SVR and MLP may be derived from these experiments. Consequently, we 
need to extend this evaluation on additional time series and variations of MLPs. 
Results suggest that RBF SVR can predict seasonal patterns but no trends, while 
linear SVR and NN seem to be able to extrapolate trend as well as seasonal patterns 
accurately and without preprocessing. By examining the residuals of the models, it 
can be observed that RBF SVR systematically underestimate hold-out sample 
observations for trended series, which corresponds to saturation effects.  

4 Conclusion 

We have examined the ability of RBF SVR, linear SVR and MLP for predicting five 
basic artificial time series patterns: stationary, seasonality, linear trends, linear trend 
with additive seasonality, and linear trend with multiplicative seasonality. Results 
obtained using multiple error measures show that while RBF SVR outperform other 
methods on non-trended data, they do not provide robust results across all patterns. 
For time series with trend components, linear SVR and MLP significantly 
outperform RBF SVR models, which severely underestimate out-of-sample 
observations, consistently lagging behind upward trends. RBF SVR errors have 
shown to be statistically significantly higher than linear SVR and NN errors. MLP 
demonstrate robust performance, providing the highest overall forecasting accuracy 
in across time series and different statistical error measures and rank based metrics. 
 

Our results confirm previous findings by Guajardo et. al [10], demonstrating 
accurate forecasts of seasonal time series without trends using RBF SVR, even 
outperforming established statistical methods such as ARIMAX. Also, they confirm 
results by Hansen et. al [9], who accurately predicted both linear and nonlinear 
trends using SVR, outperforming other methods such as ARIMA on several patterns. 
We assume that Hansen et al. also used linear kernels, as they did not fully document 
the kernel functions applied. A preliminary hypothesis for our poor results obtained 
with RBF SVR in extrapolating trend patterns lies in the linear nature of this trend. 
Previous publications report similar problems of closely related RBF-neural 
networks in predicting trends and instationary time series. While SVR with linear 
kernel functions and MLP with linear activation functions in the output units may be 
particularly suited to extrapolate linear trends, we did not conduct experiments as to 
their ability to extrapolate non-linear trends.  

 
These issues will be evaluated in an extended set of experiments currently under 

investigation by the authors, increasing the number of time series patterns and 
considering additional kinds of trend patterns, also evaluating results against 
established statistical forecasting methods as benchmarks. Additionally, we will 
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evaluate the influence of preprocessing procedures such as deseasonalization to 
evaluate alternative perspectives on the problem of extrapolating time series patterns.  

Acknowledgement: This work has been supported in part by the Millennium 
Nucleus “Complex Engineering Systems” (www.sistemasdeingenieria.cl).  
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Abstract. This paper presents a novel type of artificial neural network, called 
neural plasma, which is tailored for classification tasks involving few 
observations with a large number of variables. Neural plasma learns to adapt 
its classification confidence by generating artificial training data as a function 
of its confidence in previous decisions. In contrast to multilayer perceptrons 
and similar techniques, which are inspired by topological and operational 
aspects of biological neural networks, neural plasma is motivated by aspects of 
high-level behavior and reasoning in the presence of uncertainty. The basic 
principles of the proposed model apply to other supervised learning algorithms 
that provide explicit classification confidence values. The empirical evaluation 
of this new technique is based on benchmarking experiments involving data 
sets from biotechnology that are characterized by the small-n-large-p problem. 
The presented study exposes a comprehensive methodology and is seen as a 
first step in exploring different aspects of this methodology.  

1 Introduction 
Recent experimentation techniques in biology are probing deeper and deeper into 
biological phenomena. These so-called high-throughput technologies (measuring 
thousands of systems parameters in a single experiment) are heralding a paradigm 
shift (a) from traditional hypothesis-driven to data-driven research in molecular 
biology and (b) to a systems or systemic, as opposed to reductionistic, approach, 
attempting to model entire systems in order to understand study their holistic 
properties and dynamic properties. However, the noisy and high-dimensional data 
sets generated by these methods present considerable analytical and computational 
challenges. This study addresses this problem by analyzing high-dimensional gene 
expression data obtained from DNA microarray experiments investigating cancer. 
DNA microarrays are a high-throughput technology facilitating the simultaneous 
measurement of activity and interaction of thousands of genes in a single experiment 
[1]. This technology has led to the discovery of new biomarkers for disease diagnosis 
and prognosis, promoted the development of novel drugs for cancer therapy, and has 
provided new insights into the genesis and progression of multiple types of cancer. 
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Because of its importance to diagnostic and prognostic analysis, automated 
classification has attracted considerable interest in the context of microarray data 
analysis. For example, cancer types could be successfully classified based on the 
specific expression signatures [2,3,4]. However, microarray data classification 
presents substantially new challenges. First, microarray data exhibit high levels of 
noise due to various sources of systematic and random errors, including missing 
values. Second, microarray data are beset by a double ‘curse’ consisting of high 
dimensionality and data set sparsity [5]. Such data usually contain few (in the order 
of 102) observations (samples) and many (in the order of 104) parameters (genes). 
Many genes contain redundant or irrelevant information. Further, many data sets 
contain a relatively high number of classes but few cases per class. The curse of 
dimensionality in microarray data is commonly addressed by feature selection and 
dimension reduction techniques. However, the number of remaining genes that are 
significantly differently expressed in different classes can still be immense compared 
to the relatively small number of cases per class. This poses severe problems to an 
inductive learning of a classification function from such data. A desirable solution to 
the dimensionality problem would be to increase the number of cases. However, this 
is often not feasible because of (i) the limited number of available patients or 
specimens, and (ii) the relatively high costs of microarray experiments in terms of 
money and time.  

Confidence values convey information about the class membership of the cases 
and are used in model fusion approaches such as bagging and boosting. Bagging 
involves a repeated random sampling (with replacement) of the original training set 
to generate m bootstrapped data sets. In noisy bagging, the bootstrapped data sets are 
disturbed by random noise and have shown to improve the generalization ability of 
ensembles of neural networks [6]. Adaptive boosting (Adaboost) creates several 
different models and combines their predictions using a weighted voting scheme 
(e.g., majority voting). Here, k different training set replicas are sampled adaptively 
(with non-uniform sampling probabilities and replacement) from the learning set. 
The predictions of the combined model are generated using a weighted voting 
scheme. The adaptive sampling procedures increase the probability of a hard-to-
classify case to be sampled based on the performance of the classifier in the previous 
iteration. Cases that are most often misclassified are assigned an increased 
probability for being sampled in the next round.  

The study presented in this paper is necessarily and intentionally comprehensive 
as it attempts to expose and discuss various elements of a full methodology rather 
than only a single method. As a consequence, not all parts of the presented 
methodology are discussed and evaluated in detail. It is our plan to explore and 
investigate different aspects of this comprehensive methodology in more detail in the 
future. This paper focuses on how the confidence values computed in the learning 
phase can be used for optimization of a single classifier in the context of the small-n-
large-p problem. We present a model that calibrates its confidence in classification 
processes. In the learning phase, the model generates artificial training data as a 
function of its confidence in previous decisions and uses these data for calibrating its 
confidence in subsequent classifications. These artificial data play a pivotal role in 
determining the model’s form or structure and performance, and have led to the 
model’s name. (The Greek word plasma means ‘to be formed’ or ‘molded’.)  
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2 Confidence in Classification 
In practical applications without precise definition of costs for false positives and 
false negative classifications, exact characterization of the reward and penalty 
associated with a given prediction is not possible. Information-theoretic approaches 
typically translate a classifier’s confidence into reward and penalty scores. This is 
based on the following rationale: Misclassification with high confidence is more 
severe than misclassification with low confidence. Let C be the real class associated 
with case x and p̂ (C | x) be the model’s confidence that the case belongs to C. Then, 
a reward-penalty function R( p̂ ) can be defined as follows [7].  

R( p̂ ) = 1 + log2 p̂ (C | x) (1) 

Key properties of this function are that it is not symmetrical with respect to 
rewards and penalties, and that the discrepancy becomes larger for higher confidence 
values. Extreme confidences that entail a misclassification, p̂ (¬C | x ∈ C) = 1, lead 
to a penalty of −∞, whereas the maximum reward for a correct classification is only 
1. To avoid extreme confidences, we force the minimum and maximum confidences 
towards p̂ min = 0.5/(N + 1) and p̂ max = (N + 0.5)/(N + 1), where N is the number of 
cases in the learning set [8]. For example, if a training set contains n = 100 cases, 
then the maximum confidence for a single classification is p̂ max = 0.995.  

Korb et al. showed that if a model predicts a class with probability p̂ , and the 
real class will actually occur with frequency f = p̂ , then this model can be expected 
to obtain the highest reward [7]. Such a model is called perfectly calibrated. 
Miscalibration measures how much the probability estimates deviate from the 
frequency of truth of events [7]. Korb et al. proposed to measure a model’s 
miscalibration by partitioning the range of a model’s confidence values into cells, so 
that each cell contains at least ten confidence values and as few as possible above ten 
[7]. Then, the frequency of truth within the cells is compared with the confidence 
values that they contain. The miscalibration is defined as follows: 
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where n is the number of partitions of the range of confidence values; m is the 
number of confidence values in the ith cell; k is the index of confidence values in the 
ith cell; fik is 1 if the kth prediction in the ith cell is correct, 0 otherwise; and p̂ ij is the 
jth confidence value in the ith cell. Korb’s measure of miscalibration can be used to 
derive a measure to quantify the model’s timidity by considering only those 
confidence values p̂ ij that lead to a correct classification.  

3 Jittering 
Jittered data (jitter) refers to data that is deliberately corrupted by artificial noise. 
Several studies have demonstrated that the generalization ability of neural networks 
can be significantly improved by injecting jitter into the data, particularly when the 
size of the training set is small [9,10]. The concept of jittering has been successfully 
applied to tasks that are characterized by the curse of dimensionality. Van Someren 
et al. followed this strategy to model robust genetic networks from time-course gene 
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expression data [11]. Provided that the noise amplitude is small, jittering is 
equivalent to Tikhonov regularization [12]. Adding jitter can lead to an increased 
classification error in the training phase, but to a decreased error in the test phase. 
Chawla et al. investigated classification problems that involve imbalanced classes, 
i.e., data sets with classification categories that are not (approximately) equally 
balanced [13]. They presented the method of SMOTE, an approach for over-
sampling the minority class using synthetic training cases. The generation of these 
synthetic cases is effectively a jittering approach that improves the classification 
performance in the context of skewed class distributions [13]. Empirical results have 
shown that SMOTE performs better than over-sampling with replacement of the 
minority class; it also performs better than under-sampling of the majority class [13]. 

Consider the classification problem that involves the learning of the mapping 
from a vector x to a class label y, where x is a p-dimensional vector of gene 
expression data and y is a discrete variable (e.g., a cancer class). The jittered version 
of this vector is x  = x + ε, and x  has class label y. The noise vector 
ε = (ε1, ε2, …, εp) has a distribution of mean mε and standard deviation sε.  

For cancer microarray data sets, we often observe that genes exhibit a similar 
expression profile in samples of the same cancer type. We propose that the 
magnitude of the noise level takes into account the magnitude of the actual 
expression levels; otherwise, the class-discriminatory effect of low-level expressed 
genes might vanish.  

Let the ith original expression profile be xi = (xi1, xi2, …, xip). The jittered version 
of this vector, x i, is given by Equation 3 as follows: 

1 2( , ,..., )i i i ipx x x=x , with ( 1)ik ik ik ik ikx xβ α ρ= +  (3) 

where βik, αik, and ρik are random variables, and βik ∈ {1, 0}, αik ∈ {−1, 1}, and 
ρik ∈ [ρmin, ρmax], with ρmin, ρmax ∈ ]0, 1[. The values 1 and 0 are equally likely for 
βik, so that βik controls the number of variables (i.e., genes) to be jittered. If βik = 0, 
then the kth component of the ith jittered expression profile is identical to the kth 
component of the ith original profile. If βik = 1, then the kth component of the ith 
jittered expression profile is a jittered version of the kth component of the ith original 
profile. This noise is determined by both αik and ρik. 

4 Calibration Using Jittering 
Equation 3 provides a general means for generating a jittered expression profile. 
When adding jittered duplicates to a data set, three questions need to be answered: 
(1) How many jittered cases should be added?, (2) Which cases are candidates for 
jittering?, and (3) Which distribution (type and parameters) of distortion noise should 
be chosen? 

We can distinguish two situations: (i) all confidence values within a cell lead to a 
correct classification, and (ii) at least one confidence value leads to a 
misclassification. Consider the latter case first. If a cell contains a value that leads to 
a misclassification, then we decide that the respective training case should be 
jittered. If all confidence values in a cell lead to a correct classification, and if all 
cases were classified with confidence 1, then the contribution to the timidity 
component of the miscalibration would be zero, but such extreme confidences are 
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not allowed (see above). Suppose that each probability in a cell is relatively high, for 
instance, each confidence is p̂  = 0.95. Then this cell’s contribution to (the square 
root of) the timidity is 10×(1 − 0.95)2

 / 9 = 0.003, which may be deemed sufficiently 
small. If the confidence values are all relatively small, e.g., 0.70, then the cell’s 
contribution to (the square root of) the timidity is 0.10, which can be considered 
rather large. The confidence values might be too small to be judged valuable. 
Therefore, if the contribution to timidity in a cell is greater than a small positive 
threshold δ, then all respective training cases within this cell should be jittered.  

Neural plasma is based on the probabilistic neural network (PNN) [14]. Figure 1 
depicts the topology of neural plasma, illustrated for two classes of three cases each 
and two test cases. 
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Fig 1. The topology of neural plasma. 

The first part of neural plasma – input, pattern, summation, and output layer – is 
identical to the basic PNN. The difference consists in the partitioning layer and the 
calibration layer. The cell partitioning neuron CP receives the computed class 
posteriors and partitions them into cells of approximately equal size in such a way 
that each cell is guaranteed to contain at least ten elements and as few as possible 
above that number. The calibration neuron Cal determines the model’s calibration 
with respect to boldness and timidity and determines which cases are candidates for 
jittering. Then, the calibration neuron generates jittered cases according to 
Equation 3 and feeds these cases back to the pattern layer. Consider the shaded parts 
in Figure 1. The case z2 is a member of class B. This case is assigned to one of the 
classes A or B, depending on which estimated class posterior is the highest. The 
neuron O2 outputs these posteriors for z2. Suppose that ˆ ( |p B z2) is the highest, i.e., 
leading to a correct classification, but ˆ ( |p B z2) is still too small with respect to the 
calibration criterion. Or suppose that ˆ ( |p B z2) is not the highest, leading to a 
misclassification of z2. In both cases, the calibration layer will generate a jittered 
duplicate of this case, z 2, and add it to the pattern layer. We propose a k-fold 
sampling procedure with the sampling methodology as shown in Figure 2. 
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Fig. 2. One pass in the cross-validation procedure. 

The learning set is randomly split in half into a training set and a validation set. 
Using the training set in leave-one-out cross-validation (LOOCV), the model 
determines the optimal kernel bandwidth. To classify the cases of the validation set, 
neural plasma uses that bandwidth that produces the smallest LOOCV error in the 
training set. Based on the performance on the validation set, the model determines its 
miscalibration. Based on the miscalibration, neural plasma generates jittered data. 
For each cell, the candidate cases for jittering are determined as follows. If at least 
one confidence value leads to a misclassification, then the misclassified cases are 
jittered. Otherwise, if all confidence values entail a correct classification, but the 
contribution to the timidity in a cell is greater than the threshold δ = 0.01, then all 
cases in this cell are jittered.  

The amount of jittered data in the ith iteration represents the ith jitter set that is 
added to the learning set in the (i+1)th iteration. Here, the learning cases are 
randomly mixed with the jittered cases of the previous iteration. The learning set for 
iteration #2 comprises now the original learning cases from iteration #1 plus the 
jittered cases.  

In iteration #2, the model constructs the training and the validation set in such a 
way that they both comprise roughly the same number of cases. The jittered cases 
have a three times higher chance of being sampled for the training set than for the 
validation set. Using the training set again in LOOCV, the model optimizes the 
bandwidth and classifies the cases of the validation set. Again, depending on 
miscalibration, the model generates jittered data. The jitter set resulting from 
iteration #2 is mixed with the learning set and split into a training and a validation set 
for the next iteration. As before, jittered cases have a three times higher chance of 
being sampled for the training set than for the validation set. With an increasing 
number of iterations, both the training set and the validation set grow in size. The 
unequal sampling probability for jittered and original cases to be selected for the sets 
guarantees that the model is trained, relatively, on more artificial data and validated 
on more original data.  
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Consider Figure 2 and suppose that the depicted iterations are repeated, with the 
test set being the same. One pass encompasses n iterations with an identical test set. 
The performance – both on the test and the validation set – can vary in the iterations, 
because both the generation and the sampling of the jittered data are stochastic. After 
multiple passes have been performed, one model emerges with the smallest 
miscalibration. Let the number of passes be m. For example, if the model’s 
miscalibration in the 7th iteration in the 10th pass is smaller than the miscalibration of 
the remaining (m × n − 1) models, then this model is selected. The training and the 
validation set – including the jittered data – of this model are merged to one set, the 
best jitter-inflated set. The entire procedure involving m passes of n iterations 
represents one fold in a k-fold cross-validation. Neural plasma uses the best jitter-
inflated set to classify the cases of the test set of the kth fold. For the present study, 
neural plasma uses m = 20 passes with n = 10 iterations each. 

There exists a trade-off between too little and too much noise. In general, too few 
jittered cases will not have the desired regularization effect, whereas too many will 
increase the computational time and, more importantly, result in a ‘blurring’ of the 
data set, i.e., previously separated classes may become overlapping. The effect of the 
jittered cases will also depend on the characteristics of the data set at hand, for 
example, on the amount of measurement noise that the data set already contains. It 
has been suggested to determine the type of the noise distribution and the respective 
parameters using cross-validation procedures [9]. For example, ten-fold cross-
validation can be repeated with different choices for these settings (e.g., uniform 
sampling of ρik from (0, 0.05], (0.05, 15.0], etc.), and those parameters that provide 
for smallest mean classification error are considered optimal for the data set at hand. 
In the present study, we found that a uniform sampling of ρik from (0.15, 0.25] 
provides for an acceptable trade-off between too little and too much noise for the 
three data sets investigated. 

5 Materials and Methods 
The experiments in this study comprise three well-studied, publicly available 
microarray data sets: (i) the NCI60 data set comprising gene expression profiles of 
60 human cancer cell lines of various origins [2]. The data set contains 60 cases from 
nine cancer classes and 1,405 genes. The NCI60 data set is further pre-processed 
using principal component analysis and the first 23 ‘eigengenes’ explaining over 
75% of the total variance are selected. (ii) The ALL data set represents the 
expression profiles of 327 acute lymphoblastic leukemia samples [4]. This data 
comprises ten classes and the expression profiles of a total of 12,600 genes. (iii) The 
GCM data set contains 16,063 gene expression profiles of 198 specimens (190 
primary tumors and eight metastatic samples) of predominantly solid tumors of 14 
cancer types [15]. 

For the ALL and the GCM data set, feature selection was performed as follows. 
Based on the learning set Li only, we determined the signal-to-noise (S2N) weight  
for each gene with respect to each class [16]. Then, we performed a permutation test 
involving a random permutation of the class labels and the re-computation of the 
S2N weights. This procedure was repeated 1,000 times to assess the significance of 
the signal-to-noise weights for the unpermuted class labels [17]. Based on the S2N 
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weights and associated p-values, we selected the top-ranking genes per class; all 
other genes were discarded from further analysis. This approach was repeated ten 
times to generate ten pairs, each consisting of a filtered learning set Li and a test set 
Ti with the corresponding genes. Information contained in the test sets was not used 
in any way for feature selection. 

Neural plasma and boosting are related approaches, but there exist two 
fundamental differences: (i) Neural plasma is trained on jittered duplicates, and (ii) 
boosting is a multi-model approach for generating an ensemble of classifiers. Less 
robust or ‘brittle’ classifiers such as decision trees often benefit from boosting [18]. 
We compare neural plasma with PNN and boosted decision trees C5.0.   

The performance of the models is assessed in a 10-fold repeated random 
sampling procedure. In short, the procedure produces i = 1..10 pairs of learning sets 
Li and test sets Ti with original data. Li comprises ~70% and Ti comprises ~30% of 
the original cases. Notice that the learning and test cases are identical for all models, 
and the test sets are never used for model selection or feature selection to avoid 
feature selection bias [19]. 

6 Results 
Table 1 shows the 95%-confidence intervals for the prediction accuracy of the 
models, averaged over the ten test sets.  

Table 1. 95%-confidence intervals for the true average prediction accuracy (in %). 

 NCI60 ALL GCM 
Neural plasma 79.3 ± 6.4 77.9 ± 2.4 78.9 ± 3.6 

PNN 76.7 ± 6.7 77.4 ± 2.4 79.6 ± 3.6 
2-fold boosted C5.0 64.3 ± 7.6 68.6 ± 2.7 64.5 ± 4.3 
3-fold boosted C5.0 58.5 ± 7.8 71.0 ± 2.7 63.0 ± 4.3 
4-fold boosted C5.0 62.4 ± 7.6 72.6 ± 2.6 66.5 ± 4.2 
5-fold boosted C5.0 62.4 ± 7.6 72.5 ± 2.6 68.0 ± 4.2 

There exist only relatively small differences between neural plasma and PNN for 
the ALL and GCM data sets. However, on the data set comprising the smallest 
number of cases, NCI60, neural plasma achieved a remarkably higher accuracy than 
PNN. Next, we assess whether the differences in performance between neural plasma 
and the best-boosted trees are statistically significant. Let pAi be the observed 
proportion of test cases misclassified by model A and let pBi be the observed 
proportion of misclassified test cases by model B during the ith cross-validation fold. 
Assume that in each fold N cases are used for learning and M cases are used for 
testing. The statistic for the variance-corrected resampled paired t-test is then given 
by Equation 4 as follows [20]. 
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Empirical results show that this corrected statistic drastically improves on the 
standard resampled t-test with respect to Type I error [20].  
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The difference in performance on NCI60 between neural plasma and 2-fold 
boosted C5.0 is significant (P = 0.03). The difference in performance on GCM 
between neural plasma and 5-fold boosted C5.0 is significant (P = 0.003). However, 
the difference in accuracy on the ALL data set (77.9 ± 2.4% for neural plasma vs. 
72.6 ± 2.6% for 4-fold boosted C5.0) is not significant (P = 0.06). 

7 Discussion and Conclusions 
Neural plasma methodology presented in this study involves several elements. Given 
the space limitations, not all aspects of this methodology are discussed in exhaustive 
detail. The neural plasma approach distinguishes itself from other neural networks 
with respect to two critical aspects. First, in contrast to multilayer perceptron and 
similar techniques, neural plasma does not attempt to mimic the topology (neurons, 
synapses, activation potentials, etc.) of biological neural networks. Instead, it focuses 
on characteristics related to intelligent behavior and reasoning, such as timidity (and 
its opposite: boldness). Thus, neural plasma is potentially useful for classification 
problems that require explicit representation of these notions in the decision process. 
Future work on neural plasma will concentrate on further evaluating and interpreting 
these concepts in the context of decision and reasoning theory.  

Second, neural plasma generates artificial training cases as a function of its 
performance and thereby increases the learning set artificially. Within the context of 
high-throughput applications on biology and biotechnology, this is a novel approach 
to tackling the dimensionality problem in classification problems. In contrast to our 
approach, the SMOTE algorithm by Chawla et al. generates synthetic training cases 
only for the minority class [13].  

How could the model’s calibration be computed more effectively and efficiently? 
Neural plasma determines the miscalibration as a function of the frequency of truth 
in the cells. However, the partitioning into cells, each containing approximately ten 
elements, is based only on the empirical results by Korb et al. [7]. Which cross-
validation procedure should be chosen, and which sampling procedure for the 
original and jittered cases should be adopted? The jittered data were sampled for the 
training set with a three times higher probability than the original cases, so that the 
model is trained on more artificial data and validated on more original data; 
however, other sampling ratios need to be investigated. What is considered a ‘timid’ 
classification is clearly context-dependent and can be controlled by the threshold δ, 
which was set to 0.01 in the present study. Future work will focus on the model’s 
sensitivity to overfitting and on how these empirically determined parameters could 
be optimized.  

In summary, we believe that the neural plasma methodology represents an 
interesting framework for exploring classification tasks in the context of faculties 
such as timidity and boldness, which are inherent factors of human reasoning. The 
evaluation presented in this study focuses on a limited set of criteria of a more 
comprehensive framework. As such, this study is seen as a first step in presenting 
and exploring this framework. Future work will explore different aspects in more 
detail.  
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