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Abstract In this work we propose a method for computing a minimum size training
set consistent subset for the Nearest Neighbor rule (also said CNN problem) via
SAT encodings. We introduce the SAT–CNN algorithm, which exploits a suitable
encoding of the CNN problem in a sequence of SAT problems in order to exactly
solve it, provided that enough computational resources are available. Comparison of
SAT–CNN with well-known greedy methods shows that SAT–CNN is able to return
a better solution. The proposed approach can be extended to several hard subset
selection classification problems.

1 Introduction

Most useful classification tasks can be formulated as subset selection problems
[6, 17, 12, 26, 28]. Subsets to be singled out have to posses certain properties guar-
anteeing that they represent a model of the whole training set, according to the
specific classification rule. Often the number of potential models is exponential in
the training set size and, among all the training set subsets, the optimal model is that
composed of the minimum number of objects. Indeed, a small model improves both
response time and (according to the Occam’s razor) generalization.
For example, a sample compression scheme [12] is defined by a fixed rule ρ : T 7!

ρ(T ) for constructing a classifier from a given set of data T . Given a training set T ,
it is compressed by finding the smallest subset S µ T for which the classifier ρ(S)
correctly classifies the whole set T . It is known that the size of a sample compression
scheme can be used to bound generalization.
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Unfortunately, minimum cardinality subset selection problems often turn out to
be intractable (e.g., [27]). Consequently, authors provide greedy heuristics (e.g.,
[18]) or attempt to search for near optimal solutions using non exhaustive search
methods (e.g., [7]) or semi-naive enumeration methods (e.g., [23]) .

Nearest neighbor condensation. The Nearest Neighbor (NN rule for short) decision
rule [6] is a widely employed classification rule. The NN rule assigns to an unclas-
sified sample point the classification of the nearest of a set of previously classified
points. For this decision rule, no explicit knowledge of the underlying distributions
of the data is needed. A strong point of the NN rule is that, for all distributions,
its probability of error is bounded above by twice the Bayes probability of error
[6, 24, 10].
Naive implementation of the NN rule requires storage of all the previously clas-

sified data, and then comparison of each sample point to be classified to each stored
point. In order to reduce both space and time requirements, several techniques to
reduce the size of the stored data for the NN rule have been proposed (see [28] and
[25] for a survey) referred to as training set condensation algorithms. In particular,
among these techniques, training set consistent ones, aim at selecting a subset of the
training set that classifies the remaining data correctly through the NN rule.
According to the discussion above, using a training set consistent subset, instead

of the entire training set, to implement the NN rule, has the additional advantage
that it may guarantee better classification accuracy. Indeed, [19] showed that the
VC dimension of an NN classifier is given by the number of reference points in
the training set. Moreover, computing a minimum cardinality training set consistent
subset for the NN rule has been shown to be intractable [27].
A number of greedy training set condensation algorithms have been proposed

that extract a consistent subset of the overall training set, namely CNN, RNN,
MCNN, NNSRM, FCNN, and others [18, 15, 19, 9, 1, 3]. Approximate optimiza-
tion methods, such as tabu search, gradient descent, evolutionary learning, and oth-
ers, have been used to compute subsets close to the minimum cardinality one: [20]
provides a comparison of a number of these techniques. However, none of these
algorithms guarantees that the solution returned is of minimum size.

SAT Encodings. The SAT Problem [5] consists in deciding whether for a given
Boolean formula there exists a truth value assignment to its variables that makes
the formula true. SAT is the archetypical problem for the NP complexity class [14]
and, therefore, many problems of practical interest in, among other examples, ar-
tificial intelligence, operations research, and electronic design engineering, can be
SAT encoded, that is translated in suitable instances of SAT.
SAT solver technology is emerging, as witnessed by the annual conference de-

voted to this theme (the International Conferences on Theory and Applications of
Satisfiability Testing are the primary annual meetings for researchers studying the
SAT problem1), by several SAT solver implementations (e.g., [11, 21, 22]), and by

1 See http://www.satisfiability.org/.
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the annual competition (the international SAT Competitions identify new challeng-
ing benchmarks, promote new solvers for the SAT problem as well as compare them
with state-of-the-art solvers2).

Proposed approach. In this work we investigate the possibility of computing a mini-
mum size training set consistent subset for the NN rule (the CNN problem) via SAT
encoding. The CNN problem is NP-hard [27] and belongs to the complexity class
FPNP[O(logn)], that is, loosely speaking, the class of the problems that can be solved
in polynomial time by invoking at most a logarithmic number of times a procedure
able to solve a problem in NP and which is assumed to reply instantaneously.
Basing on this property, we introduce the SAT–CNN algorithm, which exploits

a suitable encoding of the CNN problem in a sequence of SAT problems in order
to exactly solve it, provided that enough computational resources are available. The
proposed approach can be extended to several intractable subset selection classi-
fication problems, such as SNN [23], k-NN [13], k-center [17], CNNDD [2], and
others.
The rest of the work is organized as follows. In Section 2 some preliminary defi-

nitions are provided. Section 3 describes the SAT–CNN algorithm. Section 4 reports
some experimental results. Finally, Section 5 depicts conclusions and future works.

2 Preliminary Definitions

In the following by T a labelled training set from a space S with distance d is
denoted.
Let x be an element of T . By nn(x,T ) the nearest neighbor of x in T according to

the distance d is denoted. By `(x) the label associated to x is denoted.
Given a labelled data set T and an element y of S , the nearest neighbor rule

NN(y,T ) assigns to y the label of the nearest neighbor of y in T , i.e. NN(y,T ) =
`(nn(y,T )) [6].
A subset S of T is said to be a training set consistent subset of T if, for each

x 2 T , `(x) = NN(x,S) [18].
Given a training set T , the Minimum Training Set Consistent Subset Problem (or

CNN problem) hT i is as follows: return a training set consistent subset S§ of T such
that, for any other training set consistent subset S of T , |S§| ∑ |S|.
Given a training set T and a positive integer number k, the Training Set Consis-

tent Subset Problem (or k-CNN problem) hT,ki is as follows: return a training set
consistent subset S of T such that |S| ∑ k, if at least one exists, and the empty set,
otherwise.
Given a training set T and a positive integer number k, the decision version

hT,kiD of the problem hT,ki is as follows: return “no” if the answer of hT,ki is
the empty set, and “yes” otherwise.

2 See http://www.satcompetition.org/.
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3 The SAT–CNN Algorithm

The algorithm SAT–CNN computes a minimum size training-set consistent subset
of the input training set T . It accomplishes its task by encoding the problem of
computing a training set consistent subset in a sequence of suitable instances of
the SAT problem. Without loss of generality the Boolean formula is in conjunctive
normal form (CNF), that is it is the conjunction of one or more clauses. A clause
is the disjunction of one or more literals. A truth value assignment σ to the set of
variables X = {x1, . . . ,xn} is a function σ : X 7! {true, f alse}.

3.1 SAT Encoding

Given a labelled training set T = {o1, . . . ,on} and a positive integer number k, in the
followingΨ k(T ) denotes the SAT encoding of the decision problem hT,kiD.
More precisely,Ψ k(T ) is a Boolean formula in conjunctive normal form3 defined

on the set of variables x1,x2, . . . ,xn and on some others auxiliary variables that will
be introduced next. In particular, each variable xi is associated with the object oi of
the training set T (1 ∑ i ∑ n). Indeed, if a truth value assignment for the variables
in the formulaΨ k(T ) makes the formula true, then the variables x1, . . . ,xn encode a
training set consistent subset S of T . In particular, the variable xi being true (false,
resp.) means that the corresponding object oi belongs (does not belong, resp.) to S.
The formulaΨ k(T ) consists of two sets of clauses, namelyΨcons(T ), also called

constraint clauses, andΨ k
size(T ), also called cardinality clauses.

The clauses in the setΨcons(T ) serve the purpose of guaranteeing that the subset S
encoded by the truth assignment for the variables xi is indeed a training set consistent
subset of T . These clauses do not depend on the positive integer k.
The clauses in the setΨ k

size(T ) serve the purpose of guaranteeing that the size of
subset S encoded by the truth assignment for the variables xi does not exceed the
value k.
Next we describe the structure of the two above introduced set of clauses. We

assume that the training set T consists of m∏ 2 class labels l = 1,2, . . . ,m, and that
nl represents the number of objects belonging the the class l (clearly, n1+n2+ . . .+
nm = n).

3.1.1 Constraint clauses.

Before describing the constraint clauses, the following preliminary definition is
needed.

3 In the following we will use the terms boolean formula in conjunctive normal form and set of
clauses interchangeably .
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Given a labelled training set T and two objects oi and o j of T , having different
class labels, by c(oi,o j) we denote the set of objects of T which have the same class
label of oi and whose distance from oi is not greater than the distance from oi to o j,
that is

c(oi,o j) = {o 2 T | `(o) = `(oi)^d(o,oi)∑ d(o j,oi)}.

In order to guarantee that the truth value assignment for the set of variables
x1,x2, . . . ,xn encodes a training set consistent subset S of T , it must be the avoided
that there exist two objects oi and o j having different class labels, such that o j be-
longs to S and o j misclassifies oi. The object oi is not misclassified by the object o j
if there exists an object oh in the set S, having the same class label of oi and whose
distance from oi is less than the distance from oi to o j. As a whole the following
property must be verified:

(8o j)(8oi)(`(o j) 6= `(oi)^o j 2 S)!
(9oh 2 S)(`(oh) = `(oi)^d(oi,oh)∑ d(oi,o j)),

that can be encoded through the following set of clauses

r(1)i, j ¥ x j!

0

@ _

oh2c(oi,o j)
xh

1

A¥ ¬x j _

0

@ _

oh2c(oi,o j)
xh

1

A , (1)

where i and j are such that 1 ∑ i ∑ n, 1 ∑ j ∑ n, and `(oi) 6= `(o j). The number
of clauses (1) is ∑ml=1 nl(n°nl) = O(n2) and each of them is composed of at most
1+maxml=1 nl = O(n) literals. Thus, overall, clauses (1) are composed of at most
O(n3) literals.
Note that the truth value assignment which assigns false to every variable xi sat-

isfies clauses (1). Nonetheless, the empty set is not a valid training set consistent
subset. Thus, the following set of clauses is needed in order to enforce nonempty-
ness of the solution set S:

r(2)l ¥
_

oi:`(oi)=l
xi, (2)

where l 2 {1,2, . . . ,m}. The number of clauses (2) is m and, as a whole, they are
composed of exactly n literals. In particular, clauses (2) require that for each class
label at least one object of that class belongs to S. Clauses (1) and (2) form the set
Ψcons(T ), which guarantees that S is a training set consistent subset of T .
Before concluding the description of the constraint clauses, it is important to

point out that the truth value assignment which assigns true to every variable xi,
trivially satisfies all the clauses inΨcons(T ). As a matter of fact, T is always a train-
ing set consistent subset of itself. Cardinality rules, described in the following, will
take care of upper bounding the size of the subset S.

313



Fabrizio Angiulli and Stefano Basta

3.1.2 Cardinality clauses.

The formulaΨ k
size(T ) is defined on the n variables x1,x2, . . . ,xn and also on the nk

auxiliary variables ei, j, i= 1, . . . ,n, j = 1, . . . ,k. In particular, the variable ei, j being
true (false, resp.) encodes the fact that the object oi of T is (is not, resp.) the j-th
element of the set S.
The clauses composing the setΨ k

size(T ) are detailed next.
First of all, it must be guaranteed that if oi is the j-th element of S then xi belongs

to S (nk clauses of size 2):

r(3)i, j ¥ ei, j ! xi ¥ ¬ei, j _ xi, (3)

where i= 1, . . . ,n and j = 1, . . . ,k.
Furthermore, if oi belongs to S then it must exists a value ji 2 {1,2, . . . ,k} such

that xi is the ji-th element of S (n clauses of size k+1):

r(4)i ¥ xi!
√

k_

j=1
ei, j

!
¥ ¬xi_

√
k_

j=1
ei, j

!
, (4)

where i= 1, . . . ,n.
Given Boolean variables y1, . . . ,yn, the at-most-one constraint

at-most-one(y1, . . . ,yn)

is a set of clauses which is satisfied if and only if at most one of the variables
y1, . . . ,yn is true.
The two following sets of clauses are needed to complete the cardinality clauses.

The object oi may occur at most one time in the subset S, that is, for each i= 1, . . . ,n,

r(5)i ¥ at-most-one{ei,1, . . . ,ei,k}, (5)

and the j-th element of S may be at most one of the elements of T , that is, for each
j = 1, . . . ,k,

r(6)j ¥ at-most-one{e1, j, . . . ,en, j}. (6)

Note that the formulaΨ k
size(T ) enforces the set S to have at most k elements, hence

S could be composed of less than k elements.
The at-most-one constraint can be formulated in different ways. Here we make

use of the formulation known as ladder encoding [16, 4]. The ladder encoding of
the at-most-one constraint at-most-one(y1, . . . ,yn) is the Boolean formula, defined
on the variables y1, . . . ,yn and also on n novel variables z1, . . . ,zn, composed of the
following O(n) clauses: the ladder validity clauses, for i= 2, . . . ,n,

c0i ¥ zi! zi°1 ¥ ¬zi_ zi°1,

and the channeling clauses, for i= 1, . . . ,n,
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Algorithm SAT–CNN
Input: a training set T and a timeout τ
Output: a training set consistent subset Sopt of T

1. Compute the constraint clausesΨcons(T )
2. Optionally use a greedy method to find a seed cardinality training-set consistent
subset Sseed , having size kseed ; otherwise set Sseed to T and kseed to the size n of
T

3. Set kmax = kseed , kmin = m, kopt = kseed , Sopt = Sseed , and approx to false
4. If kmin > kmax then goto 12
5. Set kcurr = (kmin + kmax)/2
6. Compute the cardinality clausesΨ kcurr

size (T )
7. Solve the SAT problemΨ kcurr (T ) =Ψcons(T )[Ψ kcurr

size (T )
8. If the answer toΨ kcurr (T ) is “yes”, then determine the size ksol of the assign-
ment σkcurr found, that is the number of variables xi which evaluate to true in
σkcurr , and set kmax = ksol , Sopt = {oi | σkcurr (xi) = true}, and kopt = ksol

9. If the answer toΨ kcurr (T ) is “no”, then set kmin = kcurr +1
10. If the answer toΨ kcurr (T ) is “unknown”, then set kmin = kcurr + 1 and approx

to true
11. Goto 4
12. Return the training set consistent subset Sopt and its size kopt . If approx is set

to true than the solution is approximate

Fig. 1 The Algorithm SAT–CNN.

c00i ¥ yi$ (zi^¬zi+1)¥ (yi_¬zi_ zi+1)^ (¬yi_ zi)^ (¬yi_¬zi+1).

Intuitively, clauses c0i impose that each truth value assignment for the variables
z1, . . . ,zn is of the form

(z1, . . . ,zt ,zt+1, . . . ,zn) = (true, . . . , true, f alse, . . . , f alse),

where the number t of variables which evaluates to true can be zero, one, or more
than one, while clauses c00i guarantee that yt is true (if t is zero then no variable yi is
true).

3.2 SAT–CNN Algorithm

The algorithm SAT–CNN is a binary search based method enhanced with a greedy
initialization step and exploiting the size of the current solution in order to accelerate
convergence.
The algorithm is reported in Figure 1. Step 1 computes the constraint clauses

Ψcons(T ). During the main cycle (steps 4-11) the minimum cardinality subset is
searched for by adaptively adjusting the value of cardinality kcurr and then solving
the SAT problem Pkcurr =Ψcons(T )[Ψ kcurr

size (T ).
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Other than the training set T , the algorithm receives in input a timeout τ , denoting
the maximum amount of time allowed to the SAT solver to solve the current instance
Ψ kcurr(T ). If the solver does not return an answer toΨ kcurr(T ) within time τ , then it
is stopped and its answer is assumed to be “unknown” (see step 10). Note that the
solver may return the answer “unknown” also because either the memory is over
or it is not able to answer to the given instance (the latter situation may occur only
when the solver is not complete).

4 Experimental Results

We interfaced SAT-CNN with the RSat 2.0 SAT solver [22]. RSat is a DPLL-based
[8] complete SAT solver that employs many modern techniques such as those used
in MiniSat [11] and Chaff [21]. It won gold medals from the SAT’07 competition in
the industrial category.
We compared the cardinality of the solution computed by the SAT–CNN algo-

rithm with the cardinality of the solutions returned by well-known greedy algo-
rithms, namely CNN, MCNN, NNSRM, and FCNN [18, 19, 9, 1, 3].
In the experiments, Sseed was always set to the whole training set (see step 2 in

Figure 1), while the timeout τ was set to 500 seconds. We employed a Core 2 Duo
based machine having 2GB of main memory.
The next table reports the data set employed in the experiments (data sets are

from the UCI Machine Learning Repository4), together with the size of the solu-
tion computed by SAT–CNN compared with the best size returned by the greedy
algorithms.

Data Set Size Dims Classes SAT–CNN Greedy Ratio
Bupa 345 6 10 145 168 86%
Colon Tumor 62 2,000 2 13 17 76%
Echocardiogram 61 11 2 2 5 40%
Iris 150 4 3 10 13 77%
Ionosphere 351 34 2 45 55 82%
Pima 768 8 2 300 316 95%
SPECT Heart 349 44 2 75 93 81%
Vehicle 846 18 4 348 382 91%
Wine 178 13 3 51 62 82%

The last column shows the ratio between the size of the SAT–CNN solution and
the size of the best greedy solution. The SAT-CNN algorithm improved over greedy
methods in all cases. Moreover, it reported that the solution is exact on the Iris and
Echocardiogram data sets.

4 See http://mlearn.ics.uci.edu/MLRepository.html.
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Data Set Time 1 Time 2 Clauses Max. Clauses Max. Vars
Bupa 3,021 64 3,811,018 593,440 178,882
Colon Tumor 1,140 7 49,984 19,304 5,920
Echocardiogram 6 3 20,432 18,210 5,642
Iris 665 31 220,825 116,849 34,124
Ionosphere 2,529 43 1,683,093 610,929 185,152
Pima 39,169 717 19,827,074 2,925,278 886,655
SPECT Heart 2,151 38 2,149,965 596,190 183,050
Vehicle 3,661 623 29,753,120 3,768,274 1,078,225
Wine 2,564 10 709,579 164,147 47,970

Finally, we report in the table above some statistics concerning SAT–CNN, that
are the total execution time (column Time 1, in seconds), the rewriting time (column
Time 2, in seconds), the total number of clauses evaluated (column Clauses), and the
maximum number of clauses (column Max. Clauses) and variables (column Max.
Vars) included in a single SAT instance.

5 Conclusions and Future Work

This work introduces the SAT–CNN algorithm, which exploits a suitable encoding
of the CNN problem in a sequence of SAT problems in order to exactly solve it.
As future work we plan to extend experiments in order to study how the size of

the solution varies with the timeout, to take into account other training sets, to inves-
tigate testing accuracy, and to compare with approximate optimization approaches.
We also plan to run our method with other state of the art SAT solvers, and to pro-
vide encodings for other families of solvers, such as pseudo-boolean solvers and
stable models engines. We will also investigate alternative rewritings for the cardi-
nality clauses and methods to reduce the number of constraint clauses. Finally, we
will extend the method here presented to other classification tasks that can be for-
malized as hard subset selection problems, as SNN [23], k-NN [13], k-center [17],
CNNDD [2], and others.
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