
Image Compression with Competitive Networks

and Pre-fixed Prototypes∗

Enrique Mérida-Casermeiro1, Domingo López-Rodŕıguez1, and Juan M.
Ortiz-de-Lazcano-Lobato2

1 Department of Applied Mathematics, University of Málaga, Málaga, Spain;
{merida,dlopez}@ctima.uma.es

2 Department of Computer Science and Artificial Intelligence, University of Málaga,
Málaga, Spain; jmortiz@lcc.uma.es

Abstract. Image compression techniques have required much attention
from the neural networks community for the last years. In this work we
intend to develop a new algorithm to perform image compression based
on adding some pre-fixed prototypes to those obtained by a competitive
neural network. Prototypes are selected to get a better representation
of the compressed image, improving the computational time needed to
encode the image and decreasing the code-book storage necessities of the
standard approach. This new method has been tested with some well-
known images and results proved that our proposal outperforms classical
methods in terms of maximizing peak-signal-to-noise-ratio values.

1 Introduction

The storage or transmission of images are tasks demanding either large ca-
pacity and/or bandwidth. Thus, image compression is key in the development
of various multimedia computer services and telecommunication applications,
such as medical imaging [?], satellite transmission, teleconferencing, pattern
recognition [?], etc. The goal of image coding is to reduce both the distortion
introduced in the coding process and the bit rate (or, equivalently, the com-
pression rate) to an acceptable level.

Recent publications show a substantial increase in the use of neural networks
for image compression and coding. For a review in neural techniques for image
compression, refer to [?].

Vector Quantization (VQ) is a lossy compression technique that can achieve
high compression rates with good visual fidelity, see for example [?]. VQ is a
coding method designed to represent a multidimensional space by means of
a finite number of vectors, called representatives, prototypes or code-vectors.
A vector quantizer statistically encodes data vectors in order to quantize and
compress the data, by mapping each input vector in the p-dimensional Euclidean
space Rp into one of the K prototypes.

∗ This work has been partially supported by Junta de Andalućıa project number
P06-TIC-01615.

340 Enrique Mérida-Casermeiro et al.

According to Shannon’s rate distortion theory, VQ can always achieve better
compression performance than any conventional coding technique based on the
encoding of scalar quantities [?].

Linde, Buzo and Gray [?] proposed the well-known LBG algorithm for VQ
which made no use of differentiation, and it is the standard approach to compute
the codebook (the set of prototypes).

Competitive networks are designed to cluster the input data. Thus, by us-
ing VQ techniques in this type of networks, tasks such as data coding and
compression can be performed.

The basic structure of a network of this type is as follows: given an input vec-
tor from a p-dimensional space, K neurons compute the VQ code-book in which
each neuron relates to one code-vector via its coupling weights. The weight
wi = (wi,1, . . . , wi,p) associated with the i-th neuron is eventually trained to
represent the code-vector ci in the code-book. As the network is being trained,
all the weights will be optimized to represent the best possible partition of all
the input vectors.

The aim of this paper is to present a new technique for image compression
based on competitive neural networks. This technique allows to reduce the num-
ber of code-vectors needed to achieve a high quality code-book. This method
is based on the use of a combination of multiple prototypes to store one input
vector, achieving a better representation of the input dataset.

2 The Standard Approach

Let us consider an image I(i, j). In order to compress the image by means of VQ
competitive networks, the image is subdivided into N × M square sub-images
of size k×k, called windows. These windows are our input patterns with p = k2

components (these patterns are obtained by arranging the pixel values row by
row from top to bottom).

The compression process consists in selecting a reduced set of K represen-
tative windows (corresponding to the solution prototypes) and replacing each
window of the original image with the closest representative window among the
prototypes. Thus, the compressed image I ′ is built.

In this work we have used the standard competitive learning (SCL) rule to
build the code-book. Let X = {x1, . . . , xn} be the set of input patterns, and let
{w1, . . . ,wK} represent the code-book. The algorithm is as follows:

1. Choose an input pattern, xi.
2. Compute the winning prototype (the closest to xi), wc, verifying

∥xi − wc∥
2 = min

j=1,...,K

∥xi − wj∥
2

3. Update the vector wc according to

wc(t + 1) = wc(t) + α(t) · (xi − wc(t))

Image Compression with Competitive Networks 341

where α(t) is the learning rate parameter, usually convergent to 0 as the
number of iterations t tends to infinity. A typical value for α(t) is given by
a linear decrease from 0.9 to 0 along the iterations.

4. Increase t, and repeat steps 1-4 until convergence is detected.

The bottleneck of this algorithm is the computation of the closest proto-
type, since it involves the calculation of K distances. Thus, the time spent by
this algorithm to build the code-book when the whole set of input patterns is
presented to the net is proportional to n · K.

Though many other learning rules have been developed to obtain quasi-
optimal code-books [?, ?, ?, ?, ?], we have used the SCL algorithm since its
performance is very well-known and allows us to compare our technique to the
standard approach.

3 Pre-fixed Prototypes

Our proposal differs from the standard approach in several points:

– Some of the prototypes used in the compression are a priori known by the en-
coder (transmitting the image) and decoder (receiving the image). Thus, with
some prototypes pre-fixed in advance, the size of the code-book is reduced
considerably.
So, if, for example, we have K = 32 prototypes, and we fix K ′ = 16 of them,
then the encoder only has to transmit K − K ′ = 16 prototypes after the
encoding phase.

– In addition, since not all prototypes need to be computed, the encoding al-
gorithm (the competitive neural network) will spend less time in computing
the code-book.

Thus, with our proposal, we achieve a high quality compression by reduc-
ing computational time as well as the code-book storage space. Our technique
maintains the same compression rate as the standard approach for the given
number of prototypes.

This means that the transmission of the image from the encoder to the
decoder (receiver) is improved, since the codebook storage space is halved.

The encoding algorithm is based in applying the standard competitive learn-
ing rule (SCL) mentioned above, but with the restriction of the pre-fixed pro-
totypes:

1. Choose an input pattern, xi.
2. Compute the winning prototype (the closest to xi), wc, verifying

∥xi − wc∥
2 = min

j=1,...,K

∥xi − wj∥
2

3. If the winning unit wc represents one of the fixed prototypes, it does not
learn. Otherwise, update the vector wc according to

wc(t + 1) = wc(t) + α(t) · (xi − wc(t))

where α(t) is the learning rate parameter.

342 Enrique Mérida-Casermeiro et al.

4. Increase t, and repeat steps 1-4 until convergence is detected.

It seems reasonable to use K ′ = K

2
, that is, to fix half the prototypes, since

it allows an easy codification of each input pattern: if b bits m0, . . . , mb−1 are
used to encode a pattern, then m0 will indicate whether the corresponding
prototype is a priori known by both encoder and decoder (m0 = 0) or not
(m0 = 1). The other b − 1 bits are used to encode the prototype number, from
0 to K ′. So, the decoder, when a sequence of bits arrives, studies m0 and looks
for the prototype in the corresponding part of the code-book (the fixed or the
transmitted, depending on m0).

The intuitive idea behind the utilization of pre-fixed prototypes is that these
prototypes are designed to fit in areas of the image in which there is little detail
(sky, rivers, etc.), whilst the learnt prototypes focus on the areas of great detail.

4 Experimental Results

In this section we compare the efficiency of our proposal in image compression
with respect to the standard approach.

We have considered a test set of images formed by 4 images (the well-known
Lenna image plus 3 images from MatLab Image Processing Toolbox, see Fig.
1). Each image in our experiments has 256 × 256 pixels, and window size is
4×4. So, the number of input patterns for the standard algorithm is 4096. The
number K of representative windows varies in the set K = {32, 64}.

Two measures has been used in this work to compare the efficiency of our
technique

– The peak-signal-to-noise-ratio (PSNR), defined as:

PSNR = 20 log10

(
255

RMSE

)

and measured in decibels (dB), where the image has 256 gray levels and
RMSE is the root mean square error between two images (the original and
the compressed). Ideally, a value of PSNR = ∞ is the goal to attain, since it
corresponds to a lossless compression. Thus, one tries to obtain the maximum
value possible for PSNR.

– The 1-norm (∥ · ∥
1
) of the difference between the original image I and the

compressed image I ′, defined as:

∥I − I ′∥
1

= max
j

∑

i

|I(i, j) − I ′(i, j)|

where I(i, j) represents the value of the pixel (i,j) in the image I.
A lower value of this norm indicates a better approximation of the compressed
image to the original one.

Some of the test images are shown in Fig. 1. The compressed images are
shown in Figs. 2 and 3. In these figures, we can observe that our compressed
images obtain higher visual fidelity than the standard approach.

Image Compression with Competitive Networks 343

Fig. 1. Sample images from the test set: lenna (top left), cameraman (top right), rice
(bottom left) and kids (bottom right).

For our proposal, K

2
fixed prototypes were built by considering vectors of the

form wi = (ci, . . . , ci) ∈ {0, . . . , 255}k
2

, that is, all components are equal, each
prototype representing a window with a constant grey-level in all its pixels. ci

values (i = 1, . . . , K

2
) were equally spaced in {0, . . . , 255}. The same pre-fixed

prototypes were used for every test image.
In Table 1, there are represented the PSNR values of the compressed images

using both the standard and our approach. It can be noted that if our method
is used with K ′ = K/2 fixed prototypes, where K is the number of the standard
approach, the PSNR value obtained is at least comparable, and better in some
cases, to that of the standard approach.

This surprising fact may be explained as follows: since K ′ = K

2
prototypes

are pre-fixed, the dimensionality of the problem is reduced to half. As the dimen-
sion is reduced, the number of possible local minima of the distortion function is
also reduced. So, the learning phase can avoid certain bad local minima present
when all K prototypes are considered.

This is also possible since prototypes with a constant gray-level in all its
components are usually present in wide regions of most images (regions with
little detail).

I can also be observed that the 1-norm of our proposal is lower in most cases
than the corresponding of the standard approach.

344 Enrique Mérida-Casermeiro et al.

Table 1. PSNR and ∥ ·∥1 results for the considered compressed images. The quotient

∆t is defined by ∆t =
tnew

told

.

Standard Approach Prop.
Image K PSNR ∥ · ∥1 told PSNR ∥ · ∥1 tnew ∆t

cameraman 32 23.94 23.6 33.65 24.13 20.1 31.38 0.93
rice 32 28.00 11.8 33.31 28.47 10.5 32.01 0.96

lenna 32 25.41 16.9 33.46 25.39 16.0 31.12 0.93
kids 32 27.18 12.1 33.56 26.79 13.8 31.17 0.93

cameraman 64 25.32 19.3 53.40 25.16 18.9 45.64 0.85
rice 64 29.41 8.6 45.54 30.33 7.6 43.50 0.95

lenna 64 26.73 13.6 46.31 26.48 15.7 43.00 0.93
kids 64 27.92 11.8 53.73 27.87 11.24 42.18 0.78

The time spent by our algorithm to build the code-book is also lower than
the standard, as shown in the last column of Table 1, where ∆t indicates the
quotient between the time spent by the standard approach and the time used
by our proposal.

5 Conclusions

In this work we have presented a new algorithm to perform image compression
based on combining fixed prototypes with the solution prototypes obtained by
a competitive learning rule.

This new method is able to represent compressed images with higher visual
fidelity than the standard approach, at the same time that achieves greater
PSNR values in many cases. In addition, with this method, the computation of
the code-book is less time-consuming, since fixed prototypes are never updated.

We have tested our approach using the standard competitive learning rule.
Better results are expected if learning rules as [?, ?, ?] are used instead.

Our future work covers the study of new algorithms taking advantage of
combining fixed and variable prototypes to form different windows in the com-
pressed image. The development of a competitive learning rule to optimize the
code-book is also an issue of research.

The application of this technique to specific scenarios or groups of images
(biomedical images, satellite images, etc.) can improve their processing, seg-
mentation, compression and transmission.

Image Compression with Competitive Networks 345

Fig. 2. Compressed images (from top to bottom): standard approach with 32 pro-
totypes, our proposal with 32 prototypes, standard approach with 64 prototypes and
our proposal with 64 prototypes.

346 Enrique Mérida-Casermeiro et al.

Fig. 3. Compressed images (from top to bottom): standard approach with 32 pro-
totypes, our proposal with 32 prototypes, standard approach with 64 prototypes and
our proposal with 64 prototypes.

