

An Intelligent CASE Tool for Porting

Mobile Java Applications

Ioannis T. Christou
1
, Sofoklis Efremidis

1
, Aikaterini Roukounaki

1
,and

Marios Anapliotis
2

1 Athens Information Technology, 19.5 km. Markopoulou Ave.

19002 Peania, Greece

{ichr,sefr,arou}@ait.edu.gr

WWW home page: http://www.ait.edu.gr

2 INTRALOT S.A., 64 Kifissias Ave., Maroussi 15125, Greece

anapliotis@intralot.com

WWW home page: http://www.intralot.com

Abstract. Today, many mobile device vendors offer their own versions of the

Connected (Limited) Device Configuration (CLDC 1) and Mobile Information

Device Profile (MIDP 2, 3) of the Java 2 Mobile Edition (J2ME 4). In

addition, depending on the device characteristics they offer device-specific or

series-specific libraries and APIs extending or complementing those specified

in the standard CLDC and MIDP. As a result, porting a Java application

written for one device to another is often a very tedious and time-consuming

task for the developers. We present SeqFinder, an intelligent CASE tool for

assisting the porting of Java mobile applications. SeqFinder eases the porting

task by automatically generating all minimal method invocation sequences that

lead to an object of a specific type, thus relieving the programmer of the effort

to manually search the manufacturer-provided SDK Java archives to find how

to accomplish a particular task, for example, how to initiate data transfer

through a socket or an HTTP connection.

1 Introduction

It is an unfortunate fact that the promise of Java 5 as a “write once, run everywhere”

language proved to be overly optimistic in the mobile phone market-place. This is by

no means a criticism on the language itself, as Java is probably the best-suited

language for writing applications for mobile phones and mobile information devices

in general, but rather a realization that the extreme variation in those devices’

characteristics necessitated different versions of the language specifically tailored to

these devices. Undoubtedly, the area with the most variations in the offered APIs is

the Graphical User Interface, but as different devices support different features and

262 Ioannis T. Christou1, Sofoklis Efremidis1, Aikaterini Roukounaki1,and Marios

Anapliotis2

offer the corresponding APIs for developers to take advantage of, there is a wide

range of capabilities of different devices and, correspondingly, of the APIs

supporting them.

Less known is the fact that even standardized APIs such as the connectivity API

that allows access to the Internet and servers and services available over HTTP or

socket protocols are often poorly implemented by the device manufacturers and

cause serious porting problems to application developers. As an example, consider

the trivial standard code snippet for connecting from a Mobile Information Device

applet (MIDlet) via HTTP to an HTTP server.

// mMessageItem defined before

HttpConnection hc = null;

InputStream in = null;

String url = getAppProperty("URL");

try {

 hc = (HttpConnection)Connector.open(url);

 in = hc.openInputStream();

 int contentLength = (int)hc.getLength();

 byte[] raw = new byte[contentLength];

 int length = in.read(raw);

 in.close();

 hc.close();

 // Show response to the user

 String s = new String(raw, 0, length);

 mMessageItem.setText(s);

}

catch (IOException ioe) {

 mMessageItem.setText(ioe.toString());

}

In certain phone models the previous code will not work, as their virtual machine

does not implement the openInputStream method of the HttpConnection

class that returns null instead, effectively not conforming to the MIDP

specification. Instead, the method openDataInputStream is implemented,

which works as expected.

To further complicate things, many (early) phone models that claimed to support

the MIDP specification had serious bugs in the built-in Kilobyte Virtual Machine

(KVM) especially regarding synchronization issues, thread management, and

memory management. These defects combined make writing complex applications

for such devices at times a daunting task.

Porting of existing applications from one device type to another (of the same or

different vendor) is an equally complicated process. The particularities of the APIs as

well as the KVM and MIDP implementations of the concerned device types have to

be taken into account, making porting a time consuming and tedious process.

Typically, application developers and/or application porters need to try several

alternative sequences of object constructions and method invocations for establishing

a successful connection. Any tools that could assist to the (semi)automatic

lrt0

lrt0

lrt0

lrt0

An Intelligent CASE Tool for Porting Mobile Java Applications 263

generation of such alternative code fragments will be of immense help to the

application porters.

To reduce developer time for porting applications to a new mobile device type

we have developed SeqFinder, a tool that automatically generates all possible code

sequences that lead to a specified target, i.e., an object of a certain type as specified

by the developer, for example the initiation of a successful data transfer. Note that by

code sequences we mean sequences of constructor and method invocations and/or

retrievals of field values. The tool generates a separate MIDlet for each sequence of

Java statements that leads to a reference to such an object. Each sequence element is

either a declaration and initialization of a primitive type such as int i1 = 0; or a

(possibly static) method invocation such as

Connection o1 = Connector.open(s1, i1, b1);

For any method invocation that requires references to class objects, the generated

sequence includes a valid such reference in a previous line. This is accomplished by

recursively generating objects of the type of the calling object and the parameters of

the target method.

The automatic generation of all such sequences and their embedding in

appropriately wrapped Java code so as to be compile-able and testable MIDlets can

help the developer quickly find how to use the APIs provided by the manufacturer in

order to accomplish a particular task, such as reading data from the network or

sending data to a server.

1.1 Related Work

Several tools and environments for targeting of applications for various families of

mobile devices have been proposed and a number of them are in widespread use. All

of them focus on the targeting chores from a given code base but do not provide

support for developing such a code base at first place.

J2MEPolish 6, 7 is a freely available, powerful toolset that heavily relies on a

database of devices containing their specific characteristics, which are taken into

account in the targeting process. The mechanism used for targeting is based on the

same kind of pre-processing as C. The approach taken by J2MEPolish is feature-

driven, i.e., application targeting is governed as specified by the pre-processing

directives that take into account the characteristics of the device of interest as

recorded in the device database. Otherwise, the tools do not provide functionalities

for dynamically developing sequences of “winning” method invocations which will

lead to a successful target, e.g., successful transfer of data over an HTTP connection.

The j2me-device-db 8 project started out as a project aiming to create a database

of mobile phone characteristics and even bugs, but developed to a set of tools for

developing mobile applications via the use of pre-processor directives very similar in

nature to J2MEPolish.

Tira Jump 9 (latest release 3) is another software solution that simplifies project

planning and, in addition, enables the efficient deployment of content across a range

of diverse mobile devices. It employs an extensive knowledge-base that registers

most device specificities. The integrated workflow and robust digital asset

management systems create an end-to-end solution that simplifies the process,

enhances consistency, quality and controls mobile content deployment on a global

264 Ioannis T. Christou1, Sofoklis Efremidis1, Aikaterini Roukounaki1,and Marios

Anapliotis2

scale. The Jump Developer Desktop (JDD) manages the adaptation and optimization

of reference applications to support new handsets. The tool is available in two

versions:

– The JDD Java Edition (based on Eclipse) provides the key interface to the

Jump Transformation Engine (JTE) when adapting Java applications.

– The JDD BREW Edition is a Microsoft Visual Studio .NET add-in and

adapts BREW 10 applications.

Tira Jump 3 is built around the concept that between any two mobile devices

there exists a finite set of differences. Consequently, the platform makes use of a

reference device and contains, maintains and updates differences between every

supported target device and the reference device. For each difference it provides a

series of adaptation instructions to convert content from one device format to the

other.

The Jump Transformation Server supplies the device plug-ins and performs the

conversion of the Java or BREW application or the ringtone, screensaver or

wallpaper. Similar to J2MEPolish, the Tira Jump tools allow for targeting of mobile

applications to a range of mobile devices but do not provide methodological support

for developing sequences of “winning” method invocations leading to a successful

target.

Relevant to the SeqFinder algorithm development is perhaps work on hyper-

graph shortest paths 11, for indeed it is possible to model the problem domain as a

hypergraph in the following way: every type in the SDK of the mobile device can be

considered as a node, and every public method or field of the SDK can be considered

as a Back-feed arc connecting the type of the class declaring the method and the

types of each argument of the method to the type of the object the method returns.

The problem is then one of computing all minimal different paths of reaching a

desired object in this graph starting from primitive types. This model does not take

into account inheritance and polymorphism issues but may yield fruitful results in

the near future.

2 System Description

SeqFinder operates on a data repository (e.g., a relational database) that contains all

the necessary information about the classes that are available on a specific mobile

device. SeqFinder takes as input the type of an object that the developer wishes to

construct and returns all minimal code sequences targeted for this specific device

that produce such a reference in the format of valid Java code that can be

automatically compiled and executed for testing purposes. The generated Java code

sequences contain tool-default values for variables and arguments of primitive types

and for the construction of any intermediate objects.

These sequences are fed into a specially designed GUI for fine tuning by the

developer. The GUI allows the developer to quickly and intuitively interact with

each of the above sequences to fill out the placeholders that contain the generated

tool-default values and, as a result, to generate a set of Java files that can be executed

directly on the Java-enabled mobile device. Among the generated Java programs

An Intelligent CASE Tool for Porting Mobile Java Applications 265

those that succeed in successfully transferring data though a connection are tagged as

the “winners”.

In this section, we present a recursive algorithm that produces all possible

sequences of method invocations that, eventually, result in an object of a given type

starting from primitive Java type variables.

Input to the Algorithm: The algorithm presented below takes as input

– the type of an object to be constructed by a sequence of method

invocations, and

– a unique key that identifies the devices, at which these code sequences

are targeted.

Output of the Algorithm: Vector of all minimal distinct sequences of steps

leading to a reference to an object of the requested type (specified target by the

developer). The produced reference can be of the requested type or of any of its

subtypes or its supertypes (in this case casting is necessary). These sequences are

invariant with respect to values given to primitive types (e.g., int variables’ values do

not matter in this program, and each primitive type is assumed to have a unique

default value to be assigned whenever such a variable is created). To avoid looking

for all the infinite sequences of code segments that arise when multiple objects from

the same type can be constructed, we introduce the constraint that only one object of

each non-primitive type can be constructed in any given sequence. We also ignore

any methods or fields whose type belongs in the same class hierarchy with the class,

in which they belong (i.e. is any of the supertypes or subtypes of this specific type).

Finally, the developers are able to impose two kinds of limitations on the

generated code sequences. First, they can limit the maximum length of the code

sequences that SeqFinder generates. Second, they can exclude certain packages,

classes and members from the generated code sequences, meaning that they can

force SeqFinder to ignore any member that involves in any way the use of these

packages, classes of members.

2.1 Auxiliary Data Structures

Our algorithm makes use of auxiliary data structures and methods as described in

this subsection.

1. A method newName is provided that receives the name of a type (e.g. int or

java.lang.Integer) as a parameter and returns

a. the argument with the '1' appended to it, if the type is not a primitive

type

b. a new (unique) name, otherwise.

2. Java source-code-level object definitions and initializations of the form

 T o1 = (TT) o2.m(a1, .., an);

are represented by the following data structure:

Command {

 String objType;

 String objName;

 String realType;

 String CCOName; // called class obj. name

 String CCType; // called class type

266 Ioannis T. Christou1, Sofoklis Efremidis1, Aikaterini Roukounaki1,and Marios

Anapliotis2

 String memberName; // called class member name

 Vector<Parameter> paramList;

 // paramList has the name-type pairs of method’s

args

}

where

a. type T is represented by objType,

b. object o1 is represented by objName,

c. type TT is represented by realType

d. object o2 is represented by CCOName,

e. the type of o2 is represented by CCType,

f. method m is represented by memberName, and

g. the names and types of the parameters are represented by paramList.

In case method m is a static method, the value of CCOName member is equal to

CCType. If m is a field and not a method, then paramList is null. If m is a

constructor, then CCOName is null.

3. Method descriptions are represented by the following data structure

CommandStruct {

 boolean isStatic;

 String type;

 String CCType;

 String memberName; // type of each method parameter

 Vector<String class_type> PTypes;

}

where

a. isStatic is true, if the member is static,

b. type is the member’s type,

c. CCType is the type of the object on which the method is invoked or

whose field is accessed,

d. memberName is the name of the member,

e. PTypes is the types of the parameters

In case the member is actually a field, PTypes is null.

4. A method findAllMembersOfType is provided that, given a type C,

returns all members (fields, methods, constructors) of classes contained in the data

repository that return an object of the requested type or of any of its supertypes or

subtypes. This method returns also members whose type is an array type with

elements of the required type.

5. A method findIncomplete is provided that, given a vector of Commands

v and an initially empty vector of strings tv, returns the first Command object in v

that is incomplete. An incomplete Command is one, whose called object or one of its

parameters have not already been defined in any of the Command objects that appear

before v is not of primitive type or string This is determined by searching through

the Command objects before v for an objType that belongs to the class hierarchy

of the type of the specific object.

Effectively, the findIncomplete method identifies the first use of a yet

undefined object in the sequence of Commands under construction; such an object

An Intelligent CASE Tool for Porting Mobile Java Applications 267

has to be eventually defined and initialized. The method also fills vector tv with two

strings, the first is the type name of the object that has been identified in v (the value

of CCType in Command or the value of the PType member in the Pair<., .> in

paramList), and the second is the name of the object itself (the value of

CCOName or PName in the Pair<., .>). If no Command object has a name in the

command that is not defined below in vector v, then null is returned.

3 The Generator Algorithm

The output of the algorithm is a vector of vectors of Commands. Each one of these

vectors of commands describes a sequence of steps that lead to an object of the

requested type. The algorithm assumes that the user may have specified a set of

packages, classes and members that should be ignored, as well as the maximum

length (maximumLength) of the generated code sequences.

vector SEQ(Commands, ObjectType, ObjectName) {

 CommandStructs=findAllMembersOfType (ObjectType);

 create new empty vector called result;

 foreach CommandStruct in CommandStructs {

 if CommandStruct has excluded packages,

 clases or members

 continue;

 create the corresponding Command c;

 create a new vector v containing all the Commands + c;

 add v to the result;

 }

 foreach v in result {

 incompleteCommand=findIncomplete (v,tv);

 if incompleteCommand is NOT null {

 if v.size == maximumLength {

 remove v from result;

 do not move forward in result;

 }

 type = tv[0];

 name = tv[1];

 result’ = SEQ(v, type, name);

 if result’ is NOT empty {

 replace v in result with result’;

 do not move forward in result;

 }

 }

 }

 return result;

}

Each Command object represents a Java statement of the form int i1 = 0;

or more complex statements such as

268 Ioannis T. Christou1, Sofoklis Efremidis1, Aikaterini Roukounaki1,and Marios

Anapliotis2

 java.util.Hashtable java_util_Hashtable1 =

 new java.util.Hashtable();

or A A1=SomeObjectRef.someMethod(C c1); and so on. Static methods

of the form

javax.microedition.io.Connection

 javax_microedition_io_Connection1=

 javax.microedition.io.Connector.open(s1);

are of course also expressible.

A Command object captures in its objType data member the name of the class

A in the statement above. The name of the object reference A1 is captured in

objName. The name of the type of the object reference SomeObjectRef is

captured in CCType, while the name SomeObjectRef itself is stored in

CCOName. The name of the method invocation someMethod is stored in the

memberName data member and similarly the name of the type and reference of each

argument is stored in the data member paramList.

The algorithm accepts as an input a partially incomplete sequence of Commands

and it attempts to locate all the possible ways to complete it (in terms of the specific

object type that it receives as a parameter). For this reason, it locates all Java

statements that return an object of the desired type (or of any of its supertypes or

subtypes) and creates a separate vector of Commands for each one of them, which

consists of the received code sequence followed by the new Command. The

algorithm then computes recursively for each name that appears in each of the newly

generated code sequences and that has not been defined already in this sequence all

code sequences that will define this name, and prefixes them with the current

sequence. It then replaces the current sequence in the result vector with the expanded

code sequences, resulting in all code sequences that can be used to obtain a reference

to the requested type.

It is important to notice the way newName(type) works according to its

specification. This method always returns the same name when the input is a non-

primitive type. This limits the code sequences constructed to sequences that create

only one object for each different type considered. This is not a serious limitation of

the program and it avoids the otherwise almost inevitable infinitude of different

possible code sequences. To clarify why this is the case consider two classes A and

B. Class A has a unique constructor A(B b) and there is no other way in the

program to obtain a reference to an A object. Class B on the other hand has two

constructors, B(int i) and B(A a). Now if we want to find all code sequences

leading to an A object, the last line of each such sequence has to be A A1 = new

A(B1) where B1 is an object of type B. Apparently, there are two ways to obtain an

object B. One is by having a statement of the form B B1 = new B(i); where i

is an int variable and the other is by having a statement of the form B B1 = new

B(A2); where A2 is an object of type A. If the name A2 is not “unified” with A1,

then we must find all ways of creating an A object again and add them to our current

code sequences, which leads to infinitely long object creations of the following form

in reverse:

A A1 = new A(B1);

B B1 = new B(A2);

An Intelligent CASE Tool for Porting Mobile Java Applications 269

A A2 = new A(B2);

B B2 = new B(A3);

...

To further simplify the things, SeqFinder allows only for one object from any

class hierarchy to exist in a sequence. In other words, if an object of class A has

been created in a Command of a specific command sequence, then no other object of

this specific type or of any of its subtypes or supertypes will be created in this code

sequence. The already created object can be used in all of the above mentioned

cases.

4 Computational Results

As shown in Table 1, the system is capable of finding all valid sequences of 2 or less

method invocations leading to a java.io.InputStream object reference in less

than 16 minutes on a commodity MACBook laptop running at 2Ghz the MAC OS X

Operating System and Java JDK 1.6. The response times, even though they are not

real-time, still present huge time-savings to developers who previously had to spend

more than two days in order to make a single network-centric Poker game to

establish connections and exchange data with the game server. It is also interesting to

note how the number of different code sequences for obtaining a Connection

object reference jumps from 35 in the case of two-step sequences to 201 different

sequences of length 3. The length 3 sequences of course include the length 2

sequences. The table also shows some other first results of running the system.

Table 1. Experimental Results.

Object Type
Number

of Steps

Response

Time

Number of

Sequences

java.io.InputStream 2 15 min 164

java.io.DataInputStream 2 16 min 292

Javax.microedition.io.Connection 2 5 min 35

Javax.microedition.io.Connection 3 6 min 201

5 Conclusions and Future Directions

We presented SeqFinder, a tool that automatically generates all sequences of Java

method invocations leading to an object reference of a given type (or any of its sub-

types). This tool helps mobile application porting and development tasks as it

relieves its user (application developer) from the cumbersome task of having to

search a manufacturer-specific APIs for functionality described in possibly non-

existing or just poor java-docs. It does so by emulating the actual process by which

developers approach this task (bottom-up), i.e., by letting the user automatically

search for all classes that support a “connect” method, or to directly find all possible

270 Ioannis T. Christou1, Sofoklis Efremidis1, Aikaterini Roukounaki1,and Marios

Anapliotis2

ways to get a java.io.OutputStream object that can use to send data through

the network.

In certain cases, the number of sequences generated can be overwhelming. In

addition, the user currently has to know (or guess) what values to assign to the

primitive data types variables. For these reasons, we are currently experimenting

with machine learning techniques to offer a more intelligent user-interface that will

help the user choose quickly the code sequence (by sorting them in a “likelihood-

index”) and primitive values combination that are most likely to be successful at

performing a particular task. This sorting would be performed by examining

previous test sequences generated and tested. The tests would then have resulted in

“success” or “failure” which, if recorded, can lead to a training set of labeled

examples. Standard supervised classification techniques can then be used to infer the

likelihood of a proposed sequence to be a winning sequence and from this

information any vector of all possible sequences can be “intelligently” sorted.

References

1. Connected Limited Device Configuration (CLDC), JSR 30, JSR 139,

http://java.sun.com/products/cldc/

2. Mobile Information Device Profile (MIDP), JSR 37, JSR 138,

http://java.sun.com/products/midp/

3. Ortiz, C.E. and Giguere, E., Mobile Information Device Profile for Java 2 Micro Edition:

The ultimate guide to creating applications for wireless devices, John Wiley and Sons,

Inc., New York, NY, 2001.

4. The Java ME Platform, http://java.sun.com/javame/index.jsp

5. Gosling, J., Joy, B., Steele, G., and Bracha, G., The Java Language Specification, Second

Edition, Addison-Wesley, Reading, MA, 2000.

6. Virkus, R., Pro J2ME Polish: Open Source Wireless Java Tools Suite, Apress, Berkeley,

CA, 2005.

7. J2MEPolish, http://www.j2mepolish.org/

8. The j2me-device-db project. http://j2me-device-db.sourceforge.net/pmwiki/

9. Tira Jump 3, http://www.tirawireless.com/

10. Binary Runtime Environment for Wireless, http://brewx.qualcomm.com/

11. Gallo, G., Longo, G., Nguyen, S., and Pallottino, S., Directed Hypergraphs and

Applications. Discrete Applied Mathematics, 42:2–3, 177–201, 1993.

