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Abstract. A classifier induced from an imbalanced data set has a low error 

rate for the majority class and an undesirable error rate for the minority class. 

This paper firstly provides a systematic study on the various methodologies 

that have tried to handle this problem. Finally, it presents an experimental 

study of these methodologies with a proposed wrapper for reweighting training 

instances and it concludes that such a framework can be a more valuable 

solution to the problem.  

1 Introduction 

Classifiers are often faced with imbalanced data sets for various reasons; the 

latest can cause the classifier to be biased towards one class. This bias is the outcome 

of one class being seriously under represented in the training data in favor of other 

classes. It can be qualified to the way in which classifiers are designed. Inductive 

classifiers are normally designed to minimize errors over the training examples. 

Learning algorithms  on the other hand ignore classes containing few examples [11]. 

For a number of application domains, a massive disproportion in the number of cases 

belonging to each class is common. For example, in detection of fraud in telephone 

calls and credit card transactions. Moreover, in direct marketing, it is frequent to 

have a small response rate (about 1%) for most marketing campaigns.  

The machine learning community has mostly addressed the issue of class 

imbalance in two ways. One is to give distinct costs to training instances [6] while 

the other is to re-sample the original dataset, either by oversampling the minority 

class and/or under-sampling the majority class [12], [9]. Although many methods for 

coping with imbalanced data sets have been proposed, there are still several open 

questions. One open question is whether simply changing the distribution skew can 

improve predictive performance steadily. To handle the problem, we developed a 
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wrapper for reweighting training instances. The effectiveness of our approach is 

evaluated over eight imbalanced datasets using the C4.5 [15], Naive Bayes [5] and 

5NN [1] as classifiers and the geometric mean of accuracies as performance measure 

[12]. 

In the following section we review the attempts for handling imbalanced data sets, 

while section 3 presents the details of our approach. Section 4 presents experimental 

results comparing our approach to other approaches. Finally, section 5 discusses the 

results and suggests directions for future work. 

2   Review of existing techniques for handling imbalanced data sets 

A simple method that can be used to imbalanced data sets is to reweigh training 

examples according to the total cost assigned to each class [4]. The idea is to change 

the class distributions in the training set towards the most costly class. In [8] the 

effect of imbalance in a dataset is discussed. Two main strategies are evaluated: 

Under-sampling and Resampling. Both the two sampling approaches were helpful, 

and is observed that sophisticated sampling techniques does not give any clear 

advantage in the domain considered. 

Another approach is presented in [13]. They combined over-sampling of the 

minority class with under-sampling of the majority class. However, the over-

sampling and under-sampling combination did not provide significant improvement. 

In [3] an over-sampling approach is presented according to which the minority class 

is over-sampled by creating “synthetic” instances rather than by over-sampling with 

replacement with better results. 

Changing the class distribution is not the only technique to improve classifier 

performance when learning from imbalanced data sets. A different approach to 

incorporating costs in decision-making is to define fixed and unequal 

misclassification costs between classes [8].  

An alternative to balancing the classes is to develop a learning algorithm that is 

intrinsically insensitive to class distribution in the training set. An example of this 

kind of algorithm is the SHRINK algorithm [12] that finds only rules that best 

summarize the positive instances (of the small class), but makes use of the 

information from the negative instances. MetaCost [6] is another method for making 

a classifier cost-sensitive. The procedure begins to learn an internal cost-sensitive 

model by applying a cost-sensitive procedure, which employs a base learning 

algorithm. Then, MetaCost procedure estimates class probabilities using bagging and 

then re-labels the training instances with their minimum expected cost classes, and 

finally relearns a model using the modified training set. 

In [16] different weights for false positives and false negatives are used to apply 

AdaBoost than bagging in text-filtering. AdaBoost uses a base classifier to induce 

multiple individual classifiers in sequential trials, and a weight is assigned to each 

training instance. At the end of each trial, the vector of weights is adjusted to reflect 

the importance of each training instance for the next induction trial. This adjustment 

effectively increases the weights of misclassified examples and decreases the 

weights of the correctly classified examples. A similar technique is proposed in [7].  
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3 Proposed Technique 

The problem of determining which proportion of positive/negative examples is 

the best for learning is an open problem of learning from imbalanced data sets. The 

proposed technique is based on the previous referred reweighting technique; 

however, we do not apply a single cost matrix for reweighting training instances. We 

did not only examine the relationship between false negative and false positive costs 

to be the inverse of the assumed prior to compensate for the imbalanced priors. We 

examine all the cost matrixes:  

Where x takes the values from [(Number of Instances of the Majority Class)/ 

(Number of Instances of the Majority Class)-1] to [(Number of Instances of the 

Majority Class)/ (Number of Instances of the Majority Class)+1], with step 0.1. The 

cost-matrix with the best performance using 10-fold cross validation is then applied 

for the classification of new instances. The proposed technique (WRTI) is presented 

in Fig. 1. A key feature of our method is that it does not require any modification of 

the underlying learning algorithm.  

In the following section, we empirically evaluate the performance of our 

approach with the other well known techniques using a decision tree, an instance 

base learner and a Bayesian model as base classifiers. 

 

RatioA =ClassWithMoreInstances)/ClassWithLessInstances); 

for (s = RatioA - 1.0; s < RatioA + 1.0; s = s + 0.1) 

        { 

            CostMatrix cm; 

for (int i=0; i<2; i++) 

        { 

            for (int j=0; j<2; j++) 

            { 

                if (i == j) 

                    cm.setCell(i, j, 0); 

                if (i == 0 && j == 1) 

                    cm.setCell(i, j, 1); 

                if (i == 1 && j == 0) 

                    cm.setCell(i, j, s); 

            } 

        } 

          CostSensitiveClassifier csc = new 

CostSensitiveClassifier(); 

          csc.setCostMatrix(cm); 

          csc.setClassifier(UsedClassifier); 

          eval.crossValidateModel(csc, data, 10); 

          result = 

eval.truePositiveRate(ClassIndexWithLessInstances) * 
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eval.truePositiveRate(ClassIndexWithMoreInstances); 

                if (result > BestResult) 

                {   BestResult = result; 

                    BestCM = cm; 

                } 

} 

Fig. 1. A wrapper for reweighting training instances  

4 Experiments 

In Table 1, there is a brief description of the data sets that we used for our 

experiments. Except for the “eap” data set, all were drawn from the UC Irvine 

Repository [2]. Eap data is from Hellenic Open University and was used in order to 

determine whether a student is about to drop-out or not [10]. 

 

Table 1. Description of the data sets 

Data sets Instances Categorical 

features 

Numerical 

features 

Instances of 

minority class 

Classes 

breast-cancer 286 9 0 85 2 

credit-g 1000 13 7 300 2 

Diabetes 768 0 8 268 2 

Haberman 306 0 3 81 2 

Hepatitis 155 13 6 32 2 

Ionosphere 351 34 0 126 2 

Eap 344 11 0 122 2 

Sick 3772 22 7 231 2 

 

A classifier’s performance of two class problems can be separately calculated for 

its performance over the positive instances (denoted as α
+
) and over the negative 

instances (denoted as α
-
). The true positive rate (α

+
) or sensitivity is the fraction of 

positive instances predicted correctly by the model. Similarly, the true negative rate 

(α
-
) or specificity is the fraction of negative instances predicted correctly by the 

classifier. In [12] the authors propose the geometric mean of the accuracies: 

a ag
+ !

= "  for imbalanced data sets. Moreover, ROC curves (Receiving Operator 

Characteristic) provide a visual representation of the trade off between true positives 

(α
+
) and false positives (α

-
). These are plots of the percentage of correctly classified 

positive instances α
+
 with respect to the percentage of incorrectly classified negative 

instances α
-
 [14]. The method for plotting a ROC curve is closely related to a method 

for making algorithms cost-sensitive, that we call Threshold method [17]. This 

method uses a threshold so as to maximize the given performance measure in the 

curve. Classification ability of the learning methods in our experiments was 

measured with geometric mean of the accuracies. For the examined cost models, the 

relationship between false negative and false positive costs was chosen to be the 

inverse of the assumed prior to compensate for the imbalanced priors. In the 

following Tables, win (v) indicates that the proposed method along with the learning 

algorithm performed statistically better than the other classifier according to t-test 



A Wrapper for Reweighting Training Instances for Handling Imbalanced Data Sets 

 

33 

 

with p<0.05. Loss (*) indicates that the proposed method along with the learning 

algorithm performed statistically worse than the other classifier according to t-test 

with p<0.05. In all the other cases, there is no significant statistical difference 

between the results. 

In Table 2, one can see the comparisons of the proposed technique with other 

attempts that have tried to obtain the best performance of a given imbalance data set 

using Naive Bayes (NB) as base classifier. Five well-known algorithms were used 

for the comparison: Threshold method [17], Reweighting and Cost Sensitive method 

[4], Adaboost cost sensitive method [16], and Metacost algorithm [6]. We also 

present the accuracy of the simple Bayes algorithm as borderline. It must be 

mentioned that we used the free available source code for these methods [17] for our 

experiments. In the Table 2 except for geometric mean we also present the true-

positive rate, and true-negative rate. The positive class for our experiments is the 

majority class. In the last row of the Table 2, the average value of the geometric 

means is also calculated in all data sets. 

 

Table 2. Accuracy on majority class (α+), accuracy on minority class (α-) and geometric mean 

(g) with NB as base classifier  

Data sets  WRTINB ReWNB ThresNB CostNB AdabcosNB MetacostNB NB 

g 0.67 0.66 0.63* 0.66 0.63* 0.65 0.6* 

α+ 0.66 0.74 v 0.62 * 0.74 v 0.72 v 0.79 v 0.85v 
breast-

cancer 
α- 0.68 0.58 * 0.65 * 0.58  * 0.56 * 0.54 * 0.43* 

g 0.73 0.72 0.71 0.72 0.71 0.66 * 0.65* 

α+ 0.71 0.75 v 0.69 0.75 v 0.75 v 0.77 v 0.86v credit-g 

α- 0.75 0.69 * 0.74 0.69 * 0.67 * 0.57 * 0.49* 

g 0.74 0.73 0.72 0.73 0.73 0.70 * 0.71* 

α+ 0.75 0.78 v 0.65 * 0.78 v 0.77 0.75 0.84v diabetes 

α- 0.73 0.68 * 0.8 v 0.68 * 0.69 * 0.66 * 0.6 * 

g 0.6 0.56 * 0.59 0.56* 0.56* 0.57* 0.44* 

α+ 0.88 0.89 0.64 * 0.89 0.88 0.87 0.94v haberman 

α- 0.41 0.35 * 0.55 v 0.35 * 0.36 * 0.38 * 0.21* 

g 0.8 0.8 0.76 * 0.8 0.78 0.81 0.78 

α+ 0.86 0.83 * 0.87 0.83 * 0.86 0.79 * 0.87* hepatitis 

α- 0.75 0.78 v 0.67 * 0.78 v 0.71 * 0.84 v 0.7* 

g 0.84 0.82 0.88 v 0.82 0.91 v 0.77* 0.83 

α+ 0.87 0.78 * 0.93 v 0.78 * 0.93 v 0.68 * 0.8* ionosphere 

α- 0.81 0.87 0.81 0.87 v 0.9 v 0.88 v 0.86v 

g 0.85 0.85 0.83 0.85 0.83 0.85 0.84 

α+ 0.87 0.87 0.86 0.87 0.85 0.88 0.9 v eap 

α- 0.83 0.83 0.81 0.83 0.82 0.83 0.78* 

g 0.86 0.86 0.76* 0.86 0.87 0.8* 0.86 

α+ 0.82 0.82 0.98 v 0.82 0.88 v 0.73 * 0.94v sick 

α- 0.9 0.9 0.59 * 0.9 0.86  * 0.87 * 0.78* 

Average  g 0.76 0.75 0.74 0.75 0.75 0.73 0.71 

 

In general, all the tested techniques give better results than the single Naive 

Bayes. The most remarkable improvement is from our technique, even though the 
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Threshold method gives, on average, the best accuracy in the minority class. The 

Metacost cannot improve the results of the NB as his author suspects. It must be 

noted that for NB classifier, modifying the decision boundary (Cost Sensitive 

method) is equivalent to reweighting training instances so as the relationship 

between false negative and false positive costs to be the inverse of the imbalanced 

priors. Moreover, Adaboost cost sensitive method cannot give better results than 

Cost Sensitive, even though it is a more time consuming technique. 

In Table 3, one can see the comparisons of the proposed technique with other 

attempts that have tried to obtain the best performance of a given imbalance data sets 

using C4.5 as base classifier.  

 

Table 3. Accuracy on majority class (α+), accuracy on minority class (α-) and geometric mean 

(g) with NB as base classifier  

Data sets 
 

WRTIC4.5 ReWC4.5 ThresC4.5 CostC4.5 
Adabcos 

C4.5 

Metacost 

C4.5 
C4.5 

g 0.59 0.57 0.45* 0.5 * 0.56 * 0.55 * 0.5 * 

α+ 0.66 0.72 v 0.8 v 0.85 v 0.77 v 0.84 v 0.95 v 
breast-

cancer 
α- 0.52 0.45 * 0.25 * 0.3 * 0.41 * 0.36 * 0.26 * 

g 0.67 0.66 0.64* 0.61* 0.62* 0.64* 0.58 * 

α+ 0.75 0.67 * 0.7* 0.82 v 0.81 v 0.76 0.85 v credit-g 

α- 0.6 0.65 v 0.58 0.46 * 0.47 * 0.54 0.4 * 

g 0.73 0.72 0.7* 0.72 0.67* 0.73 0.7* 

α+ 0.71 0.72 0.69 0.78 v 0.79 v 0.78 v 0.82 v diabetes 

α- 0.75 0.73 0.71 * 0.67 * 0.57 * 0.67 * 0.6 * 

g 0.65 0.63 0.56 * 0.58 * 0.57 * 0.62 * 0.52 * 

α+ 0.65 0.68 v 0.61 * 0.66 0.76 v 0.76 v 0.85 v haberman 

α- 0.65 0.58 * 0.51 * 0.51 * 0.43 * 0.52 * 0.32 * 

g 0.72 0.73 0.62 * 0.64 * 0.7 0.68 * 0.58 * 

α+ 0.83 0.62 * 0.78 * 0.86 v 0.9 v 0.83 0.9 v hepatitis 

α- 0.63 0.85 v 0.49 * 0.48 * 0.55 * 0.56 * 0.37 * 

g 0.91 0.89 0.88 * 0.88 * 0.9 0.9 0.88 * 

α+ 0.96 0.94 0.95 0.94 0.94 0.98 0.94 ionosphere 

α- 0.87 0.85 0.81* 0.82 * 0.86 0.82 * 0.82 * 

g 0.84 0.81 * 0.69 * 0.83 0.79 * 0.82 0.83 

α+ 0.95 0.86 * 0.91 * 0.94 0.85 * 0.89 * 0.94 eap 

α- 0.74 0.77 v 0.53 * 0.74 0.74 0.76 0.74 

g 0.97 0.97 0.92 * 0.96 0.95 0.96 0.93 * 

α+ 0.99 0.99 0.99 0.99 1 v 0.98 0.99 sick 

α- 0.95 0.95 0.85 * 0.92 * 0.9 * 0.95 0.87 * 

Average  g 0.76 0.75 0.68 0.72 0.72 0.74 0.69 

  

The same five well-known techniques for handling imbalanced data sets were 

also used for this comparison. Likewise with the previous experiment, our method 

has better performance than the other techniques. However, Metacost has really 

better performance with C4.5 than NB. It must also be mentioned that Threshold 

method gives worst performance than single C4.5. Adaboost cost sensitive method, 

as in the previous experiment, cannot give better results than reweighting method 

even though it uses more time for training. 
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In Table 4, one can see the comparisons of the proposed technique with other 

attempts that have tried to obtain the best performance of a given imbalance data sets 

using 5NN as base classifier. The same five well-known techniques for handling 

imbalanced data sets were also used for this comparison. Likewise with the previous 

experiment, our method has better performance than the other techniques. It must be 

mentioned that Adaboost cost sensitive method and Metacost algorithm are 

extremely time consuming techniques if they are combined with lazy algorithm 5NN 

without offering spectacular improvement in the performance. Threshold method 

gives, on average, the least improvement in the performance of 5NN. 

 

Table 4. Accuracy on majority class (α+), accuracy on minority class (α-) and geometric mean 

(g) with 5NN as base classifier 

Data sets 
 

WRTI5NN ReW5NN Thres5NN Cost5NN 
Adabcos 

5NN  

Metacost 

5NN  
5NN 

g 0.64 0.62 0.6 * 0.61* 0.61* 0.51 * 0.45* 

α+ 0.73 0.73 0.57 * 0.72 0.7 * 0.86 v 0.96v 
breast-

cancer 
α- 0.56 0.52 * 0.63 v 0.52 * 0.53* 0.3  * 0.21* 

g 0.66 0.66 0.59 * 0.66 0.63 * 0.63 * 0.57 * 

α+ 0.68 0.69 0.84 v 0.69 0.7 0.73 v 0.89 v credit-g 

α- 0.64 0.63 0.42 * 0.63 0.56 * 0.55 * 0.37 * 

g 0.70 0.71 0.69 0.71 0.66 * 0.71 0.68 

α+ 0.76 0.69 * 0.79 v 0.69 * 0.71 * 0.75 0.83v diabetes 

α- 0.71 0.74 v 0.61 * 0.74 v 0.62 * 0.68 * 0.56* 

g 0.57 0.57 0.58 0.57 0.53 0.59 0.39* 

α+ 0.61 0.68 v 0.52 * 0.68 v 0.68 v 0.66 v 0.9v haberman 

α- 0.48 0.47 0.65 v 0.47 0.41 * 0.52 v 0.17* 

g 0.74 0.69 * 0.68 * 0.73 0.58 * 0.8 v 0.66 * 

α+ 0.77 0.79 0.91 v 0.85 v 0.8 v 0.84 v 0.94 v hepatitis 

α- 0.7 0.6 * 0.51 * 0.62 * 0.42 * 0.76 v 0.46 * 

g 0.83 0.83 0.82 0.83 0.83 0.79 * 0.78* 

α+ 0.97 0.97 0.97 0.97 0.95 0.98 0.98 ionosphere 

α- 0.71 0.71 0.7 0.71 0.72 0.63 * 0.62 * 

g 0.81 0.8 0.79 0.8 0.78 * 0.77 * 0.78 * 

α+ 0.81 0.84 v 0.83 0.84 v 0.79 0.87 v 0.9 v eap 

α- 0.82 0.76 * 0.75 * 0.76 * 0.77 * 0.69 * 0.68 * 

g 0.89 0.84 * 0.62 * 0.84 * 0.87 0.79 * 0.61 * 

α+ 0.93 0.89 * 0.99 v 0.89 * 0.98 v 0.9 * 0.99 v sick 

α- 0.85 0.79 * 0.39 * 0.79 * 0.77 * 0.7 * 0.37* 

Average   g 0.73 0.72 0.67 0.72 0.69 0.7 0.62 

5 Conclusion 

The problem of imbalanced data sets arises frequently. In this work, we survey 

some methods proposed by the ML community to solve the problem, we discuss 



36 M. Karagiannopoulos, D. Anyfantis, S. Kotsiantis and P. Pintelas 

 

some limitations of these methods and we propose a wrapper for weighting training 

instances technique as a more effective solution to problem. Our method allows 

improved identification of difficult small classes in predictive analysis, while 

keeping the classification ability of the other classes in an acceptable level. In a 

following study, we will examine the proposed technique in multi-class datasets. 
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