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Abstract. In this paper, we address tracking of multiple people in complex 3D 
scenes, using multiple calibrated and synchronized far-field recordings. Our 
approach utilizes the faces detected in every camera view. Faces of the same 
person seen from the different cameras are associated by first finding all 
possible associations and then choosing the best option by means of a 3D 
stochastic tracker. The performance of the proposed system is evaluated by 
using the outputs of two grossly different 2D face detectors as input to our 3D 
algorithm. The multi-camera videos employed come from the CLEAR 
evaluation campaign. Even though the two 2D face detectors have very 
different performance, the 3D tracking performance of our system remains 
practically unchanged. 

1 Introduction 

Tracking and recognizing people is very important for applications such as 
surveillance, security and human-machine interfaces. In the visual modality, faces 
are the most commonly used cue for recognition. Finding the faces also helps resolve 
human bodies that are merged into one by the tracker. Hence face localization is of 
paramount importance in many applications. 

Tracking in smart rooms can be very complicated due to the complex 
background and the crowded foreground. In smart room scenarios the cameras are 
placed a bit above body height, aiming to have their optical axes almost 
perpendicular to the faces and they are not panoramic, in order to have reasonable 
face sizes. This results to viewing conditions where a small group of four people can 
fill up a significant part of the frame. In such cases the targets no longer contain a 
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single person. As the bodies in the image plane touch each other, a formed target 
contains them all.  

Resolving the problem using motion or color information is not generic enough; 
the bodies can have similar velocity vectors, and they can be dressed in similar 
colors, especially in military applications. What can help to resolve the problem is 
the existence of multiple cameras; information from all of them can be used to build 
a 3D understanding of the smart room, enabling 3D person tracking. 

In this paper we address person tracking in 3D by utilizing the 2D face locations 
on multiple calibrated [1] and synchronized cameras. Effectively, we track the 
centroid of the head of every person in multi-view and multi-person recordings. 
Possible associations of the different views of a face are constructed by projecting a 
grid of 3D points onto the different image planes and collecting face evidence. A 
stochastic tracker then selects the best association. 

The recordings of the CLEAR Evaluation (Classification of Events, Activities 
and Relationships) [2,3] are utilized to test the proposed system. These recordings 
comprise five cameras each (four at the room corners and one panoramic at the 
ceiling). They depict multiple people in cluttered backgrounds, recorded in five 
different sites. The situation recorded is of the business meeting with presentation 
type. Breaks where people move around the room a lot are also recorded. These 
recordings are quite challenging for tracking. 

The paper is organized as follows: In section 2 the 2D face trackers employed are 
outlined. In section 3 the 3D tracking system is detailed. In section 4 the results are 
discussed, to be followed by the conclusions in Section 5. 

2 Face tracking in 2D 

Two different 2D face tracking algorithms are utilized to produce the location of the 
faces in every camera view. The one is from Athens Information Technology (AIT) 
and the other from Pittsburgh Pattern Recognition (PittPatt). Both algorithms 
participated in the 2D face tracking task of the CLEAR 2007 evaluation campaign, 
giving quite different results. They are summarized in the next two subsections. 
Their performance is also presented in a third subsection 

2.1 AIT face tracker 

The AIT face tracker is detailed in [4]. In summary, it operates as follows: The 2D 
face localization is constrained in the body areas provided by a body tracker. Three 
face detectors for frontal and left/right profile faces provide candidate face regions in 
the body areas. The face candidates are validated using the probability scores from a 
Gaussian Mixture Model. The surviving candidates are checked for possible 
merging, as both the profile detectors and the frontal one can detect different 
portions of the same face if the view is half-profile. The resulting face candidates are 
associated with faces existing in the previous frame and also with tracks that 
currently have no supporting evidence and are pending to either get an association, 
or be eliminated. Any faces of the previous frame that do not get associated with 
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candidate faces at the current frame have a CAM-Shift tracker [5] initiated to attempt 
to track similarly colored regions in the current frame. If CAM-Shift also fails to 
track, then these past faces have their track in pending status for a predefined number 
of frames. Finally, all active face tracks are checked for duplicates, i.e. high spatial 
similarity. Typical results of the face tracker are shown in Fig. 1. 

 
Fig. 1. Typical performance of the AIT face tracker. Detections of the three cascades of simple 
classifiers are marked in red, while faces being tracked by the CAM-Shift tracker are marked 
in blue. Notice that the latter are occluded or tilted faces 

2.2 PittPatt face tracker 

The PiiPatt face tracker is detailed in [6]. In summary, it proceeds in three stages: (1) 
frame-based face detection; (2) motion-based tracking; and (3) track filtering. At the 
heart of this system lies PittPatt's robust face detector, available for single-image 
testing through a web demo [7]. Conceptually, this version of the detection algorithm 
builds on the approach developed by Schneiderman [8]; however, a number of 
changes have been implemented recently that dramatically boost speed performance 
over previous versions. These changes include code-level as well as algorithmic 
optimizations, and have led to better than real-time processing of video on 
contemporary PC platforms. In motion-based tracking, single-frame observations are 
combined into face tracks -- each of which is ultimately associated with a unique 
subject ID -- by exploiting the spatiotemporal continuity of video through a second-
order motion model. Finally, in track filtering, results are finalized by merging IDs 
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for partial face tracks that meet certain spatial consistency criteria, and by 
eliminating face tracks likely to be false alarms. False alarm tracks are most often 
characterized by low classifier confidence throughout and/or exhibit very little 
movement throughout the lifetime of the track. It is these tracks that are eliminated in 
this last stage of processing. 

2.3 Performance of the 2D face trackers 

The quantitative evaluation of the both face trackers follows the CLEAR 2007 
evaluation protocol [2,3]. According to it, the tracking system outputs (hypotheses) 
are mapped to annotated ground truths based on centroid distance and using the 
Hungarian algorithm [9]. The ground truths contain both the face bounding boxes 
and the number of fiducial points visible in the face. There such fiducial points are 
marked: the left and right eyes and the nose bridge. A marked face is considered of 
interest if at least two of the fiducial points are visible; faces with just one fiducial 
point are considered ‘do not care’ regions. The metrics for face tracking are five [2]. 
The Multiple Object Tracking Precision (MOTP) is the position error for all 
correctly tracked persons over all frames. It is a measure of how well the system 
performs when it actually finds the face. There are three kinds of errors for the 
tracker, false positives, misses and track identity mismatches. They are reported 
independently and also jointly in an accuracy metric, the Multiple Object Tracking 
Accuracy (MOTA). The MOTA is the residual of the sum of these three error rates 
from unity. There are 20 recordings, 4 from each recording site, employed in the 
evaluation. Each of them is 5 minutes long and comprises 4 corner cameras that are 
used for face tracking, and a fifth that is only optionally used in 3D tracking. The 
quantitative performance of the two systems is summarized in Tables 1 and 2. 

Table 1. Per site and overall performance of the AIT face tracking system in the CLEAR 2007 
multi-site  and multi-camera recordings 

Site MOTP MOTA False positives Misses ID switches 
AIT 0.67 46.52 13.1 33.99 6.39 
IBM 0.66 16.46 42.66 34.93 5.96 

ITC-IRST 0.68 -1.80 59.97 38.69 3.14 
UKA 0.60 26.64 39.59 30.07 3.69 
UPC 0.64 25.15 30.66 36.68 7.51 

Overall 0.64 23.46 36.25 34.67 5.61 

The two systems have a large difference in MOTA performance, mainly due to 
their difference in misses and false alarms. The difference in misses and part of the 
difference in false alarms is due to the superior performance of the Schneiderman 
face detector [8] employed in the PittPatt system, over the AdaBoost face detector 
[10] employed in the AIT system. A significant part though of the false positives is 
due to the color-based tracking using CAM-Shift [5] employed in the AIT system. 
This tracking allows the survival of targets that once have been faces, but then they 
have out-of-plane rotated, offering to the camera just some skin patch in the back of 
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the neck/head or the cheeks. For examples, see the tracked skin patches in the third, 
fourth and ninth frames of Fig. 1. 

Table 2. Per site and overall performance of the PittPatt face tracking system in the CLEAR 
2007 multi-site and multi-camera recordings 

Site MOTP MOTA False positives Misses ID switches 
AIT 0.68 77.39 11.21 10.06 1.34 
IBM 0.70 58.04 5.19 36.20 0.57 

ITC-IRST 0.65 65.92 12.16 21.14 0.78 
UKA 0.70 65.38 18.49 15.23 0.91 
UPC 0.67 77.94 7.20 13.38 1.48 

Overall 0.68 68.81 10.31 19.85 1.03 

While such patches contribute to false positives to the face tracking tasks, they are 
quite useful to the 3D head tracking task for which the 2D face tracks are to be used 
in the next section. In order to demonstrate this difference in the two face tracking 
systems, they are both evaluated including the faces with just one fiducial point 
marked on them. The overall results for both systems are shown in Table 3. 
Obviously the performance of the AIT system degrades more gracefully as these 
faces are included. 

Table 3. Overall performance of both face tracking system in the CLEAR 2007 multi-site and 
multi-camera recordings when face patches with just one fiducial point are included in the 
evaluation 

Site MOTP MOTA False positives Misses ID switches 
AIT 0.63 27.49 24.76 41.95 5.80 

PittPatt 0.67 62.83 6.97 29.04 1.16 

3 Head tracking in 3D 

Our approach for 3D tracking utilizes the 2D face localization system presented in 
the previous section, applied on multiple calibrated [1] and synchronized cameras. 
To solve the problem of associating the views of the face of the same person from 
the different cameras, a 3D space to 2D image planes approach is utilized. The space 
is spanned by a 3D grid. Each point of the grid is projected onto the different image 
planes. Faces whose centers are close to the projected points are associated to the 
particular 3D point. 3D points that have more than one face associated to them are 
used to form possible associations of views of the face of the same person from the 
different cameras. If in each camera view c there are cn  faces then the k-th 
association (of the total K ones) that span the 3D space is of the form 

^ `( ) ( ) ( )
1 , ,k k k

Ca i i ! , where C is the number of available cameras and 
^ `( ) 0,1,k

c ci n� ! . A value ( ) 0k
ci   corresponds to no face from the c-th camera in the 

k-th association, while any other value corresponds to the membership of a face from 
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those in the c-th camera in the k-th association. Obviously ^ `1, ,c C� � ! , 1( ) 0k
ci !  

and 1 2k kz , it is 1 2( ) ( )k k
c ci iz , i.e. the same face in a camera view cannot be a member 

of different valid associations This condition renders some of the associations 
mutually exclusive. After eliminating duplicate associations, the remaining ones are 
grouped into possible sets of mutually exclusive associations and sorted according to 
a weight that depends on the distance of each association from the face center and on 
the number of other associations that contradict it. 

All the M mutually exclusive sets of possible associations ( )ka  are validated 
using a Kalman filter in the 3D space. For each new frame, all possible solutions are 
compared to the state established on the previous frame, penalizing solutions which 
fail to detect previously existing targets, or in which there are detections of new 
targets in the scene. While this strategy reduces the misses and false positives, it does 
not prevent new targets from appearing, as in the case of new people entering the 
room, all solution pairs will include that new target and thus will be equally 
penalized. 

The recordings employed also offer a fifth camera, a panoramic one. Although 
this camera can not be used for face tracking, it is quite useful for 3D head tracking. 
The AIT body tracker [11] is employed to obtain body bounding boxes from the 
panoramic camera. Any head being tracked by the 3D system should be included in 
this bounding box. If it is not, then the 3D head track is actually the product of miss-
association of actual 2D face tracks, or correct association of false positives 2D 
tracks. Therefore the panoramic camera is used to verify the associations and thus 
improve the accuracy of the 3D system. 

4 Performance evaluation 

3D person tracking is defined in the CLEAR evaluations as [2] tracking of the 
projection of the head centroid on the floor. Qualitatively, the performance of the 3D 
tracking system is shown in Fig. 2. For the quantitative performance analysis, the 
same metrics used in 2D face tracking are utilized here as well. The results are sown 
in Tables 4 to 7, where the 3D tracker operates on the 2D face tracking results of the 
AIT system without (Table 4) or with (Table 5) the use of the panoramic camera 
validation and on the 2D face tracking results of the PittPatt system without (Table 
6) or with (Table 7) the use of the panoramic camera validation. 

Table 4. Per site and overall performance of the proposed 3D tracking system operating on the 
2D faces provided by the AIT face tracker, without the use of the panoramic camera validation 

Site MOTP (mm) MOTA (%) False positives Misses ID switches 
AIT 84.10 59.91 3.06 34.90 2.12 
IBM 94.40 61.19 6.81 30.72 1.28 

ITC-IRST 102.1 59.22 7.15 31.53 2.10 
UKA 96.50 46.97 5.15 45.77 2.11 
UPC 91.20 65.19 7.16 25.61 2.04 

Overall 94.08 58.37 6.06 33.66 1.90 
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Table 5. Per site and overall performance of the proposed 3D tracking system operating on the 
2D faces provided by the AIT face tracker, with the use of the panoramic camera validation 

Site MOTP (mm) MOTA (%) False positives Misses ID switches 
AIT 83.70 59.23 2.42 36.18 2.16 
IBM 93.40 62.06 5.27 31.39 1.28 

ITC-IRST 86.10 62.82 2.56 32.79 1.83 
UKA 96.20 47.90 2.62 47.36 2.12 
UPC 89.40 67.74 4.03 26.22 2.02 

Overall 90.52 59.91 3.52 34.71 1.86 

Table 6. Per site and overall performance of the proposed 3D tracking system operating on the 
2D faces provided by the PittPatt face tracker, without the use of the panoramic camera 
validation 

Site MOTP (mm) MOTA (%) False positives Misses ID switches 
AIT 79.10 66.99 2.59 28.43 2.00 
IBM 92.60 36.12 3.45 58.47 1.97 

ITC-IRST 85.40 62.98 2.85 32.18 1.99 
UKA 100.2 47.31 4.40 46.25 2.05 
UPC 76.00 77.81 2.02 18.67 1.50 

Overall 87.39 57.21 3.11 37.80 1.89 

Table 7. Per site and overall performance of the proposed 3D tracking system operating on the 
2D faces provided by the PittPatt face tracker, with the use of the panoramic camera validation 

Site MOTP (mm) MOTA (%) False positives Misses ID switches 
AIT 77.50 66.21 1.84 29.95 2.00 
IBM 92.30 37.50 1.50 59.02 1.97 

ITC-IRST 83.70 60.51 1.34 36.36 1.78 
UKA 97.30 46.45 2.29 49.25 2.01 
UPC 75.40 78.29 0.94 19.26 1.50 

Overall 86.01 56.91 1.57 39.68 1.84 

It is evident from the results that the averaged performance of the 3D tracker is 
similar, no matter which 2D face tracks are used, with the use of the AIT 2D tracker 
together with the panoramic camera validation scheme yielding somewhat better 
MOTA. Since the AIT and PittPatt 2D face trackers yield grossly different results, 
this seems a counterintuitive result. The reason for this is the way the two 2D face 
trackers function: The AIT system allows for skin-colored head patches to be 
tracked, while the PittPatt system does not. As a result, the AIT 2D face tracker has 
reduced performance for faces, but enhanced for heads, yielding more frequent head 
detections from more than one camera to be synthesized into 3D tracks by the 3D 
system. The stricter face tracks of the PittPatt 2D system result to less frequent head 
detections from more than one camera, hence to more difficult 3D associations. 
Examining the results per recording site, two of them have similar performance no 
matter the 2D tracker employed, two are somewhat better with the PittPatt 2D 
tracker, and another one is far better with the AIT 2D tracker. Not surprisingly, in the 
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IBM recordings in which the use of the PittPatt 2D tracker does not give good 3D 
tracking results, the PittPatt 2D tracker has increased misses, possibly due to the very 
small face sizes. In terms of precision, the use of the PittPatt 2D face tracker 
improves (reduces) MOTP. 

 

 
Fig. 2. Operation of the individual 2D face trackers on the four corner cameras and association 
of the 2D evidence into 3D tracks. The detected faces are marked by bounding boxes. The IDs 
of the tracks are of the form AIT_XXX shown at the projection of the tracked head centroids 
on the floor. The tracks are also projected to a panoramic camera (not used by the system) for 
better visualization 

A second observation has to do with the effectiveness of the panoramic camera 
validation. When the AIT 2D face tracks are utilized by the 3D tracker, this 
validation scheme yields some improvement of the overall MOTA. In particular, for 
the recordings suffering from high false positive rates, the validation scheme 
considerably reduces the false positives, at the expense of some increase of the 
misses. Overall, the MOTA is increased. On the other hand, regarding the utilization 
of the PittPatt 2D face tracks, the false positives are lower, leading to no room for 
drastic improvement with the application of the validation scheme. Since the misses 
are again increased, the overall MOTA decreases. 
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5 Conclusions 

In this paper we have proposed a 3D head tracker for cluttered scenes and have 
evaluated its performance according to the CLEAR evaluation protocol. The tracker 
utilizes 2D face tracks obtained from synchronized and calibrated cameras. Two 
such 2D face tracking systems have been employed in the evaluation, demonstrating 
the robustness of the proposed 3D tracker. The 2D systems from AIT and PittPatt 
employed in the evaluation have grossly different face tracking performance, but 
their output combined in 3D head tracks by our system results to similar 3D 
performance. 
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