

Service Decomposition and Task Allocation

in Distributed Computing Environments

Malamati Louta
1
 and Angelos Michalas

2

1
 Department of Business Administration

Technological Educational Institute of Western Macedonia

Koila, Kozani, 50100, Greece, louta@kozani.teikoz.gr
*

 Department of Information and Communication Technologies

Engineering

University of Western Macedonia
2
 Department of Informatics and Computer Technology

Technological Educational Institute of Western Macedonia

Fourka, Kastoria, 52100, Greece, amichalas@kastoria.teikoz.gr

Abstract. Highly competitive and open environments should encompass

mechanisms that will assist service providers in accounting for their interests,

i.e., offering at a given period of time adequate quality services in a cost

efficient manner. Assuming that a user wishes to access a specific service

composed of a distinct set of service tasks, which can be served by various

candidate service nodes, a problem that should be addressed is the allocation

of service tasks to the most appropriate service nodes. This scenario accounts

for both the user and the service provider. Specifically, service providers

succeed in efficiently managing their resources, while users implicitly exploit

in a seamless way the otherwise unutilized power and capabilities of the

provider’s network. In general, service task allocation is founded on general

and service specific user preferences, service provider’s specific service logic

deployment and current system & network load conditions. The pertinent

problem is concisely defined, mathematically formulated, optimally solved

and evaluated through simulation experiments.

1 Introduction

The main role of all players in the liberalised, deregulated and competitive

telecommunication market is to constantly monitor the user demand, and in response

to create, promote and provide the desired services and service features. In

82 Malamati Louta1 and Angelos Michalas2

accordance with a business model applying to the telecommunications world, five

main different entities can be identified, namely, user, service provider, (third party)

application (content) provider, broker and network provider. The role of the (third

party) application (content) provider is to develop and offer applications (content).

The role of the service provider is to provide the means through which the users will

be enabled to access the applications (content) of (third party) application (content)

providers. The broker assists business level entities in finding other business entities.

Finally, the role of a network provider is to offer the network connectivity needed for

service provision.

Service provisioning in such open models is a quite complex process since it

involves various diverse actors. The following are some key factors for success.

First, the efficiency with which services will be developed. Second, the quality level,

in relation with the corresponding cost, of new services. Third, the efficiency with

which the services will be operated, controlled, maintained, administered, etc. The

challenges outlined above have brought to the foreground several new important

research areas. Some of them are the specification of service architectures (SAs)

[1,2], the development of advanced service creation environments (SCEs) and grid

computing architectures [3,4] and service characteristics (e.g., the personal mobility

concept), and the exploitation of advanced software technologies, (e.g., distributed

object computing [5] and intelligent mobile agents [6]). The aim of this paper is, in

accordance with the cost-effective QoS provision and the efficient service operation

objectives, to propose enhancements to the sophistication of the functionality that

can be offered by service architectures in open competitive communications

environments.

In accordance with the SA concept and exploiting advanced software paradigms,

the service logic is realised by a set of autonomous co-operating components, which

interact through middleware functionality that runs over Distributed Processing

Environments (e.g., Common Object Request Broker Architecture - CORBA).

Limited by techno-economic reasons or considering administrative, management and

resilience/ redundancy purposes it is assumed that each service provider deploys

service components realising service logic in different service nodes, residing in the

same and/or different domains. Moreover, it can be envisaged that a service will in

general comprise a set of distinct service tasks, which could be executed by different

service nodes.

Highly competitive and open environments should encompass mechanisms that

will assist service providers in accounting for their interests, i.e., offering at a given

period of time adequate quality services in a cost efficient manner which is highly

associated to efficiently managing and fulfilling current user requests. Thus,

assuming that a user wishes to access a specific service composed of a distinct set of

service tasks, which can be served by various candidate service nodes (CSNs), a

problem that should be addressed is the allocation of service tasks to the most

appropriate service nodes. In this paper, the pertinent problem is called service task

allocation. The aim of this paper is to address the problem from one of the possible

theoretical perspectives and to show the software architecture that supports its

solution and how it can be incorporated in service architectures that run in the open

environment.

lrt0

lrt0

Service Decomposition and Task Allocation in Distributed Computing Environments 83

In general, service task allocation is founded on general and service specific user

preferences, service provider’s specific service logic deployment and current system

& network load conditions. A high level problem statement may be the following.

Given the set of candidate service nodes and their layout, the set of service tasks

constituting the required service, the resource requirement of each service task in

terms of CPU utilization, memory and disk space, the cost of deploying each service

node, the current load conditions of each service node and of the network links, find

the minimum cost assignment of tasks to service nodes (in terms of the number of

nodes that need to be deployed, the communication cost introduced during the

execution of service tasks, and the management cost imposed by the arrangement)

subject to a set of constraints, associated with the capabilities of the service nodes.

The approach in this paper is the following. The starting point (section 2) is the

service task allocation architecture, presenting the software elements required for the

realisation of the assignment process. Additionally, our assumptions regarding the

model of service provisioning system are presented. Section 3 presents a concise

definition, mathematical formulation and optimal solution of the service task

allocation problem, while one possible formulation of the communication cost taken

into account in our framework is provided. Section 4 gives a set of experimental

results, indicative of the efficiency of the proposed service task assignment scheme.

Finally, section 5 gives future plans and concluding remarks.

2 Service Task Allocation Architecture

Service task assignment process, as a first step, requires a computational component

that will act on behalf of the user. Its role will be to capture the user preferences,

requirements and constraints regarding the requested service and to deliver them in a

suitable form to the appropriate service provider entity. As a second step, service

task allocation requires an entity that will act on behalf of the service provider. Each

role will be to intercept user requests, acquire and evaluate the corresponding service

node and network load conditions, and ultimately, to select the most appropriate

service nodes for the realisation of the service. Furthermore, a monitoring module is

required. Monitoring module consists of a distributed set of agents, which run on

each service node of the service provider. Each agent is responsible for monitoring

the load conditions and available resources of the service node and delivering them

to the service provider related entity. Additionally, a distributed set of network

provider related entities will be responsible for providing the service provider entity

with network load conditions and managing the network connections necessary for

the service provision.

The following key extensions are made so as to cover the functionality that was

identified above. First, the Service Provider Agent (SPA) is introduced and assigned

with the role of selecting on behalf of the service provider the best service task

assignment pattern. Second, the User Agent (UA) is assigned with the role of

promoting the service request to the appropriate SPA. Third, the Service Node Agent

(SNA) is introduced and assigned with the role of promoting the current load

conditions of a CSN. Finally, the Network Provider Agent (NPA) is introduced and

84 Malamati Louta1 and Angelos Michalas2

assigned with the task of providing current network load conditions (i.e., bandwidth

availability) to the appropriate SPA. In essence, the distributed set of the SNAs and

NPAs forms the monitoring module. In other words, the SPA interacts with the UA

in order to acquire the user preferences, requirements and constraints, analyses the

user request in order to identify the service tasks constituting the service and their

respective requirements in terms of CPU, memory and disk space, identifies the set

of CSNs and their respective capabilities, interacts with the SNAs of the candidate

service nodes so as to obtain their current load conditions and with the NPAs so as to

acquire the network load conditions, and ultimately selects the most appropriate

service task assignment pattern for the provision of the desired service.

Regarding the system model, we consider a set of service nodes SN and a set of

links L . Each service node SNn
i
! corresponds to a server, while each link Ll!

corresponds to a physical link that interconnects two nodes SNnn
ji
! , . Our system

operates in a multi-tasking environment, i.e., several tasks may be executed on a

single service node sharing its resources (e.g., CPU utilization, memory, disk space).

Let
i
D denote a set of nodes grouped to form a domain. A pattern for the physical

distribution of the related components to the service task assignment scheme is given

in Fig. 1. Each SPA controls the service nodes of a domain. Each SNA is associated

with each node, while each NPA is associated with the network elements (e.g.,

switches or routers) necessary for supporting service node connectivity. The SNA,

NPA role (in a sense) is to represent the service nodes or network elements,

respectively, and to assist SPA by providing information on the availability of

resources of the service node/network element. Domain state information (load

conditions of the service nodes of the particular domain and link utilisation) is

exchanged between the SPA and the SNAs/NPAs residing in the specific domain,

while SPAs residing in different domains exchange their domain state info. This

approach increases scalability as it reduces the requirements in terms of computation,

communication and storage. At this point it should be noted that for simplicity

reasons the network elements needed for the service node connectivity are not

depicted in Fig. 1.

Fig. 1. System Model and physical distribution of the service task allocation related

components

SNA

D3

SPA

SPA

SNA SNA

SPA

NPA

NPA

SNA

NPA NPA

NPA

SNA

SNA

SNA SNA

SNA

SNA

D1 D2

lrt0

lrt0

Service Decomposition and Task Allocation in Distributed Computing Environments 85

3 Problem Formulation & Optimal Solution

User u wishes to use a given service s . A fundamental assumption at this point is

that service s may be decomposed in a set of distinct service tasks, which will be

denoted as)(sST . Among these service tasks, of interest to the user are those

designated in the user profile and will be denoted as),(suST (),(suST)(sST!).

Let’s assume the existence of multiple service nodes for the provision of service

s , denoted by)(sSN },...,{ ||1 s
nn= . Each service node-

j
n contains a collection of

components, denoted as)(iA
jn

, which inter-work with other components that may

reside in the same or in a different service node in order to accomplish each service

task)(sSTi! . Let
jn

A and C be the total set of components residing in the
j
n

service node and the various service nodes in total, respectively. Hence, the

following relationship holds: CAiA
jj nn
!!)(. Each service task ()sSTi! may be

executed on an associated set of possible candidate service nodes, represented by the

set)(iSN , (()suSTi ,!). Thus,)(iSN)(sSN! . The service logic deployment pattern

adopted by service providers determine each of these service node sets.

Task i , ()(sSTi!) requires for its completion consumption of)(ir
CPU

,)(ir
mem

and)(ir
disk

 resources of service node(s)
j
n))((, iSNn

j
! . A realistic assumption is

that SPA being in charge of assisting the service providers in the competitive

telecommunication market, has a solid interest in as accurately as possible

identifying the resources)(ir
a

 (where } , ,{ diskmemCPUa!) needed for the

provisioning of service task i in terms of CPU utilization, memory and disk space.

In this respect, the SPA can be the entity that configures these values based on the

service task characteristics, user preferences and requirements, exploiting also

previous experience.

Let
D
c denote the cost of involving service node

j
n))((, iSNn

j
! , in the service

provision. For notation simplicity it is assumed that the cost of involving a service

node in the solution is the same for all service nodes. As an alternative this cost

could be taken variant (depending on the cost of acquiring and/or maintaining the

node etc.). Notation may readily be extended.

The objective of our problem is to find a service task assignment pattern, i.e., an

allocation ()sA
ST

 of service tasks i (),(suSTi!) to service nodes
j
n))((, iSNn

j
! ,

that is optimal given the current load conditions and number of service tasks being

served by each service node
j
n , represented as)(

j

pre

a
nr and)(j

pre nk , respectively.

The assignment should minimise an objective function ()()sAsf ST, that models the

overall cost introduced due to system/network resources consumption. Among the

terms of this function there can be the overall cost due to the deployment of various

service nodes to the service provisioning process, the communication cost introduced

due to the interaction of the components
jn

A residing in
j
n service node with the

components
kn

A residing in service node
k
n for the completion of each service task

i ,))((sSTi!" , as well as the management cost)',(iic
M

 introduced due to the

assignment of)',(ii)(2 sST! service tasks to different service nodes

86 Malamati Louta1 and Angelos Michalas2

)(),(2

' sSNnn
jj
! .

The constraints of our problem are the following. First, each service task i

(),(suSTi!) should be assigned to only one service node
j
n ,))((iSNn

j
! . Second,

the capacity constraints of each service node should be preserved. Lets assume that
max

a
r and max

k represent the maximum load and the maximum number of service

tasks that a service node may handle. For notation simplicity, these parameters are

assumed to be the same for each service node
j
n ,))((sSNn

j
! . Thus, the constraints

are !)(
j

post

a
nr max

a
r and !)(j

post nk max

k ,))((sSNn
j
!" , where)(

j

post

a
nr and)(j

post nk

denote the potential load conditions of service node
j
n , after the service task

assignment process. Notation may readily be extended.

 The general problem version presented is open to various solution methods. Its

generality partly lies in the fact that the objective and the constraint functions are

open to alternate implementations. Thus, the problem statement can be distinguished

from the specific solution approach adopted hereafter. In order to describe the

allocation ()sA
ST

 of service tasks to service nodes we introduce the decision

variables ()jix
ST
, (),(suSTi! ,)(iSNn

j
!) that take the value 1(0) depending on

whether service task i is (is not) executed by service node-
j
n . The decision

variables ()jy
SN

 assume the value 1(0) depending on whether candidate service node

j
n ()(iSNn

j
!) is (is not) deployed (involved in the solution). In addition, we define

the set of variables ()',iiz
ST

 (() 2'),(, suSTii !") that take the value 1(0) depending on

whether the service tasks i and '
i are (are not) assigned to the same service node.

The variables ()', iiz
ST

 are related to variables ()jix
ST
, , ()jix

ST
,
' , through the relation

()=', iiz
ST

() ()!
=

"
)(

1

,',
iSN

j

STST
jixjix , which may be turned into a set of linear constraints

through the technique of [7]. Allocation ()sA
ST

 may be obtained by reduction to the

following 0-1 linear programming problem.

Service Task Assignment Problem:

 Minimise

()()sAsf TN, ! !
" "

##+##=
)(},,{

max
)
)(

)(
1()(

sSNn diskmemoryCPUa ja

j

pre

a

aSND

j
nr

nr
wbjyc

! !
" "

#+
)()(

),(),(
sSTi iSNn

STj

j

jixniC ! !
" "

#$+
)()('

))',(1()',(
sSTi sSTi

STM
iiziic (1),

where),(
j
niC denotes the communication cost introduced in case

j
n service node

has undertaken the responsibility for the execution of service task i (),(suSTi!),

subject to the constraints:

!
"

=
)(

1),(
iSNn

ST

j

jix)(sSTi!" (2),

!
"

#$#+
)(

max)()(),()()(
sSTi

SNaSTaj

pre

a
jyjrjixirnr)(sSNn

j
!" (3),

!
"

#$+
)(

max)()(),()(
sSTi

SNSTj

pre jyjkjixnk)(sSNn
j
!" (4)

Cost function (1) penalises the aspects identified previously (i.e., cost of the

service node involved in the solution, communication cost introduced during the

lrt0

lrt0

Service Decomposition and Task Allocation in Distributed Computing Environments 87

realisation of each service task, and management cost of service tasks that are

assigned to different service nodes). In order for the service providers to better utilize

their resources, the cost of each service node deployment introduced in cost function

(1) takes also into account the node’s current load conditions in order to obtain a load

balancing solution. Parameters ! ,)1(<! , and
a
w denote the relative significance

of load balancing and of each resource type a to the service provider. Constraints

(2), guarantee that each service task will be assigned to one service node. Constraints

(3) and (4) guarantee that each service node will not have to cope with more load and

service tasks than those dictated by its pertinent capacity constraint.

 In the rest of the section, we present a model for the overall communication cost

),(
j
niC introduced in case

j
n service node has undertaken the responsibility for the

execution of service task i (),(suSTi!). In essence, the model covers the case in

which the components of set)(iA
jn

 need to interact with the components of set

)(iA
kn

 residing in service node
k
n in order to provide service task i ,))((sSTi! . It

should be noted that service nodes
j
n and

k
n may reside even in different domains.

At this point, a major assumption adopted in our study, is that part of
jn

A

components are implemented as mobile agents, while the rest are supposed to be

fixed service agent components. Let M

n j
A and F

n j
A be the subset of components of

jn
A

that are implemented as mobile and fixed agents, respectively.

The volume of messages exchanged between each pair of components (e.g.,

dependent on the number of messages and size of each message) for the

accomplishment of task i ()(sSTi!) will be represented as)(im
wv

, 2),(Cvw !" and

)(sSTi!" . Let),(kj nncc be the communication cost per unit message that is

exchanged between service nodes
j
n and

k
n , 2)(),(sSNnn kj !" . This factor may be

proportional to the distance (e.g., number of hops) between the two service nodes

and the load conditions (e.g., bandwidth availability) of the communication link

interconnecting the two nodes. Another factor that should be taken into account is

the cost associated with the migration of a component (implemented as a mobile

agent) from one service node to another. In this respect, let),,(kj nnwmc be the

migration cost of component- w from service node
j
n to service node

k
n , Cw!"

and 2)(),(sSNnn kj !" .

The overall cost for the completion of task i))((sSTi! can be calculated by the

following formula.

]),()(),,(

),()(),()([),(
)(

! !!

! !! !!

" ""

" "" ""#

$+

+$+$=

M

jn kn
M

jn

F

jn jn
F

jn knk

Aw Av
kkwv

Aw

kj

Aw Av
jjwv

Aw Av
kjwv

sSNn
j

nnccimnnwmc

nnccimnnccimniC

,)(sSTi!" (5)

In the previous formulation three main factors are identified. The first one is

related to the communication cost deriving from the fixed components and is

proportional to the messages (their number and size) that are exchanged between

every pair of components),(vw and the communication cost per unit message

between different service nodes.

The second factor is associated with the migration cost of mobile agent

88 Malamati Louta1 and Angelos Michalas2

components between two different service nodes. This factor is dependent on the

path which the mobile agent will follow (i.e., number of hops) and the information

encryption and code execution cost, as well as the load conditions of the

communication links. The last factor is the communication cost within the same

service node, which in practice may be negligible, and in the context of this study is

taken equal to zero. It is noted that only the involved to the provisioning process

components are taken into account.

Apparently, the designation of the components that will be included in sets M

n j
A

and F

n j
A by the service providers may be based on factors such as the overall

communication and migration costs as well as estimation of the respective

component invocations. In our study, the service logic deployment pattern (i.e.,

service components/nodes) adopted by the service providers is known.

4 Experimental Results

In this section, indicative results are provided in order to assess the proposed

framework, which allows for effective service provisioning. In order to test the

performance of the service task allocation scheme, we assume a simple application

executing on a single PC performing a configurable number of queries on a database

(that is, the service considered is composed of one service task that involves

execution of one service component which interacts with the database).

 Concerning the implementation issues of our experiments, the overall Service

Provisioning System (SPS) has been implemented in Java. The Voyager mobile

agent platform [8] has been used for the realisation of the software components as

well as for the inter-component communication. To be more specific, the system

components (SPA and the monitoring module SNAs, NPAs) have been implemented

as fixed agents and the service task constituting the service as intelligent mobile

agent, which can migrate and execute to remote service nodes.

A copy of the database exists on each service node, thus, the communication cost

in practice is negligible and is taken equal to zero. In this case, only the service node

deployment cost factor is considered and the performance of the system is tested

using as decision parameter the load conditions of the service nodes.

 The network topology that has been adopted for the experiments consists of five

service nodes residing in a single domain. Specifically, all service nodes reside on a

100Mbit/sec Ethernet LAN. The configuration of the service nodes is as follows: two

service nodes with 2GHz CPU and 2 GB RAM and three service nodes with 1GHz

CPU and 1 GB RAM. All service nodes are running the Linux Redhat OS.

The idle states of the CPUs of the service nodes are simulated to follow the

Exponential distribution, with mean value 50,000 ms and maximum value 100,000

ms. In all cases, the duration in which the CPU load of the service nodes is above

50% is 20,000 ms.

The graphical user interface of the SPA module, which implements the service

task assignment process, is given in Fig. 2.

lrt0

lrt0

Service Decomposition and Task Allocation in Distributed Computing Environments 89

 Fig. 2. User interface of the SPA module

We have performed 100 experiments with the mobile agent realising the service

logic performing tasks varying from 100 to 1000 queries (with interval 100 queries).

The same experiments have also been conducted without using our service task

allocation scheme. In the latter case, service tasks are assigned randomly to service

nodes.

 The mean execution time when the service task assignment process is applied and

when the service node is selected randomly are illustrated in Fig. 3. From the

obtained results, we observe a decrease in the service completion time when the

service task assignment system is used. At this point, it should be mentioned that the

performance improvement introduced is tightly related to the number of queries the

service task needs to perform at the remote service node and the time that the service

node’s CPU is idle. It may be observed that for small and large tasks (from 100 to

400 and from 800 to 1000 queries) the improvement in performance is bigger than in

medium sized tasks (from 500 to 700 queries). It may also be derived that we have

about 6% improvement for small tasks and about 9% for the large ones, while for

medium sized tasks the improvement in performance is minor. This could be

explained as follows. From Fig. 3, it could be extracted that the mean time required

for initialisation of the mobile agent on a service node is approximately 35,000 ms.

Also the execution of a task consisting of 100 queries when CPU is idle is 5,500 ms.

Thus, small tasks can be performed during one slope of a CPU load (i.e., time during

which CPU load is below 50%), while large tasks require for their completion one

CPU slope, one CPU peak (i.e., time during which CPU load is above 50%) and

finally another CPU slope. The completion of medium tasks usually requires one

CPU slope and one CPU peak. Thus, the application of service task allocation

process results in minor performance improvement.

90 Malamati Louta1 and Angelos Michalas2

Fig. 3. Execution times with/without optimization for exponential CPU load

distribution

5 Conclusions

The highly competitive communications markets should encompass mechanisms that

will assist service providers in accounting for their interests, i.e., offering at a given

period of time adequate quality services in a cost efficient manner which is highly

associated to efficiently managing and fulfilling current user requests. This paper

presented such mechanisms. Specifically, the contribution of this paper lies in the

following areas. First, the definition and mathematical formulation of (one possible

version) of the service task allocation problem, while a model for the communication

cost between the service components involved during the provision of a service task

was also provided. Through this work it is shown that the problem can be reduced to

well-known optimisation problems, which can be solved by relevant standard

algorithms. Second, the presentation of a software architecture, which is adopted for

acquiring the best service task configuration pattern, i.e., assignment of service tasks

to service nodes for efficient service provisioning.

Experimental results indicate that the proposed framework produces good results

in relatively simple contexts (e.g., a service, which is composed of one service task

that involves execution of one service component). Specifically, when the load

conditions of the service nodes is the only factor considered for deciding on the most

appropriate service node for the service provisioning, an overall improvement in

service completion time of about 7% is introduced (especially, for the small and the

large sized service tasks). What remains is to evaluate the performance of the

proposed service task allocation scheme in complex contexts where communication

cost factor is also involved.

CPU Load with Exponential Distribution

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

100 200 300 400 500 600 700 800 900 1000

No of SNMP Queries

E
x

e
c
u

ti
o

n
 T

im
e

Execution with

Optimization

Execution without

Optimization

lrt0

lrt0

Service Decomposition and Task Allocation in Distributed Computing Environments 91

Directions for future work include, but are not limited to the following. First, the

realisation of further wide scale trials, so as to experiment with the applicability of

the framework presented herewith. Second, the experimentation with alternate

approaches (e.g., market-based techniques) for solving the service task allocation

problem.

References

1. Trigila S., Raatikainen K., Wind B., Reynolds P., 1998. “Mobility in long-term

service architectures and distributed platforms”, IEEE Personal

Communications, vol. 5, no. 4, pp. 44-55.

2. Magedanz, T., 1997. “TINA-Architectural basis for future telecommunications

services”, Computer Communications, vol. 20, no. 4, pp. 233-245.

3. Tag M., 1996. “Service creation environment engineering”, Proc.

Interworking’96 Conference, Japan.

4. Special Issue, 2003. “Special section on grid computing”, ACM SIGMETRICS

Performance Evaluation Review, vol. 30, no. 4, pp. 12-49.

5. Vinoski S., 1997. “CORBA: Integrating diverse applications within distributed

heterogeneous environments”, IEEE Commun. Mag., vol. 35, no. 2, pp. 46-55.

6. Morreale P., 1998. “Agents on the move”, IEEE Spectrum, vol. 35, no. 4, pp.

34-41.

7. Papadimitriou C., Steiglitz K, 1982. Combinatorial optimization: Algorithms

and complexity. Prentice Hall, Inc.

8. The Voyager Platform, Recursion Software Inc. http://www.recursionsw.com/

