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Abstract Beamforming remains one of the most common methods for estimat-
ing the Direction Of Arrival (DOA) of an acoustic source. Beamformers operate
using at least two sensors that look among a set of geometrical directions for the
one that maximizes received signal power. In this paper we consider a two-sensor
beamformer that estimates the DOA of a single source by scanning the broadside for
the direction that maximizes the mutual information between the two microphones.
This alternative approach exhibits robust behavior even under heavily reverberant
conditions where traditional power-based systems fail to distinguish between the
true DOA and that of a dominant reflection. Performance is demonstrated for both
algorithms with sets of simulations and experiments as a function of different en-
vironmental variables. The results indicate that the newly proposed beamforming
scheme can accurately estimate the DOA of an acoustic source.

1 Introduction

Locating an acoustic source in a reverberant and noisy enclosure using an array of
microphones remains an open problem in a class of different applications. Typical
examples include smart environments [1] and security systems [2]. Such systems
are typically required to identify the location of the active speech source in physical
space, from a short time frame on which speech is considered as stationary (typi-
cally 10 to 30 ms). Most solutions to the problem require employment of arrays in
the enclosure and the use of an Acoustic Source Localization (ASL) system. ASL
is based on the asynchrony between the various microphones and the corresponding
cross-correlation between their signals. The various methods are based on two ap-
proaches: time delay estimation (TDE) [3], and direct methods with the latter shown
to be more robust [4].
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The basic component of direct methods is a beamformer that scans a set of can-
didate directions for the one that exhibits the maximum power [4]. This process is
known as estimation of the Direction Of Arrival (DOA). Tuning the beamformer to
scan different directions refers to simply delaying the outputs of its microphones by
a different amount and then multiplying each of them by a set of appropriate coef-
ficients. In presence of noise and reverberation though the DOA estimate provided
could be spurious due to ensuing reflections and noise. Methods to overcome these
effects have been presented [5,6] but still suffer significantly in heavily reverberant
environments.

In the present work we present a new criterion for choosing the direction from
which the acoustic source emits. We extend the work that was presented in [1] for
TDE and use a two-microphone array to look for the DOA that maximizes the
marginal Mutual Information (MI) at the output of the beamformer. Information
theory concepts in beamforming have been used before [7] but have no mechanisms
to deal with reverberation. The approach presented in this paper involves a frame-
work that takes into account the effects of the spreading the information into sam-
ples neighboring to the one that maximizes the MI comparing function. Through
experiments and extensive simulations we demonstrate that this novel MI based
beamformer resolves to a great degree the reverberation problem and generates ro-
bust DOA estimations. To verify our mathematical framework we test and compare
it with the traditional power-based for a set of different environmental variables.

The rest of the paper is organized as follows. In Section II we formulate the DOA
estimation problem under the beamformer constraint and present the typical power-
based method which is used at a later stage for comparison purposes. The MI based
alternative is presented in Section III. Section IV examines the performance of the
two systems under different criteria such as reverberation level, array geometry and
other requirements imposed by real-time systems. Section V discusses briefly the
conclusions of this study.

2 System Model

A DOA estimation system is typically employed in a reverberant environment and
it considers at least two microphones. The sound source that the system attempts
to locate and track is assumed to be in the far field of the microphones. Therefore,
we can approximate the spherical wavefront emanating from the source as a plane
wavefront of sound waves arriving at the microphone pairs in a parallel manner. Let
rm,m= 1,2 denote the positions of the two microphones with their distance being
d meters. The discrete signal recorded at themth microphone at timek is then:

xm(k) = hm(k)∗s(k)+nm(k), (1)

wheres(k) is the source signal,hm(k) is the room impulse response between the
source andmth microphone,nm(k) is additive white Gaussian noise, and∗ denotes
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convolution. The length ofhm(k), and thus the number of reflections, is a function
of the reverberation timeT60 (defined as the time in seconds for the reverberation
level to decay to 60 dB below the initial level) of the room and expresses the main
problem when attempting to track an acoustic source. Data for DOA estimation is
collected over frames ofL samples which for thetth frame we denote asxtm =
[xtm(0) . . .xtm(L−1)] with xtm(k) = xm(L(t−1)+k).

Estimating the DOA using a traditional beamformer involves scanning a set of
geometrical directions and choosing the one that maximizes the beamformer output
power. Typically this is performed in the frequency domain. As in the time-domain,
processing is performed in frames with the use of anL-point Short Time Fourier
Transform (STFT) over a set of discrete frequenciesω. Thus, the output of the
beamformer at framet and frequencyω is:

Yt(θ ,ω) =
1
2

2

∑
m=1

Htm(θ ,ω)Xtm(ω) (2)

whereXtm(ω) is theω th element of frameXtm i.e. the STFT ofxtm. Htm(θ ,ω) is
the weight applied to themth microphone when the beamformer is steered toward
directionθ . The beamformer weights are calculated as:

Htm(θ ,ω) = e−
jωdm

c sinθ (3)

wheredm is the Euclidean distance of themth microphone from the origin. Without
loss of generality we can considerr1 as the origin i.e.d1 = 0 andd2 = d. Thus, in

the case of the power-based beamforming the estimated directionθ [P]
s from which

the source emits at framet can be estimated as:

θ [P]
s = argmax

θ
|Ŷt(θ)|2 (4)

where|Ŷt(θ)|2 = ∑ω W(ω)|Yt(θ ,ω)|2 is the average beamformer output power over
theL discrete frequenciesω.W(ω) denotes any frequency weighting that is used. In
a reverberant environment though, the true source location is not always the global
maximum of the power function and thus the above approach often generates wrong
estimates.

3 Mutual Information Beamforming

The MI of two variables is an information theoretical measure that represents the
difference between the measured joint entropy of the two variables(in our case these
are the microphone signals) and their joint entropy if they were independent. Since
the analysis will be independent of the data frame we can dropt to express frames
simply asXm for anyt. So for any set of frames, the MI at the output of the beam-
former when steered toward an angleθ is [8]:
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IN =−1
2

ln
det[C(θ)]

det[C11]det[C22]
(5)

the joint covariance matrixC(θ) is a concatenation of framesX1 andX2 shifted by
different amounts in samples:

C(θ)≈

ℜ
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(6)

where theℜ{.} operation returns only the real part of its argument. Function
D(A,n) shifts the frequency components contained in frameA by n samples. This
is typically implemented by using an exponential with an appropriate complex ar-
gument.

If N is chosen to be greater than zero the elements ofC(θ) are themselves matri-
ces. In fact for any value ofθ , the size ofC(θ) is always2(N+1)×2(N+1). We
call N theorder of the beamforming system.N is really the parameter that controls
the robustness of the beamformer against reverberation. In the above equations and
in order to estimate the information between the microphone signals, we actually
use the marginal MI that considers jointlyN neighboring samples (thus the inclu-
sion of delayed versions of the microphone signals). This way function (5) takes into
account the spreading of information due to reverberation and returns more accurate
estimates.

The estimated DOAθ [MI ]
s is then obtained as the angle that maximizes (5), i.e.

θ [MI ]
s = argmax

θ
{IN} (7)

4 Performance Analysis

In order to demonstrate the improved robustness of the MI based beamformer we
conducted DOA estimation experiments and simulations for a single source and a
two-microphone system. We used a speech signal of duration 10 sec sampled at
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fs = 44.1 kHz which was broken into overlapped frames using a hamming window
and an overlap factor of1/2. The source was placed at the geometrical angles ofθs =
−60o,−30o,0o,30o,60o (so as to validate the performance under different arrivals),
and at a distanceRo = 2 m, from the mid-point between the two microphones. The
test scenario involves scanning the broadside of the array i.e. from−90o to +90o in
steps of3o and looking for the values that maximize functions (4) and (7). For each
frame of data processed, the beamforming systems return a different DOA estimate.
The squared error for framet is then computed as:

σt = (θs− θ̂t)2 (8)

whereθs is the actual DOA and̂θt is eitherθ [P]
s or θ [MI ]

s , depending on the beam-
forming system used. The Root Mean Squared Error (RMSE) metric is the perfor-
mance measure used to evaluate the systems. For a single experiment or simulation
this is defined to be the square root of the average value ofσt over all frames. This is
calculated separately for the two beamforming systems. Thus, the lower the average
RMSE value, the better the performance of the estimating system.

4.1 Real Experiments

First we look into a set of real experiments performed in a typical reverberant room
of size [5,3.67,2.58] m equipped with a speaker playing the test signal and a mi-
crophone array in which we can change the microphone distances. We repeated
the playback of the test signal for 30 random displacements of the overall relative
geometry between the source and microphone array inside the room. For each of
these displacements we examined the performance of the system for three different
inter-microphone distances. The reverberation time of the room was measured to be
approximately 0.3 s. In the figures to follow we present the average RMSE over all
30 experiments. It’s also worth noting that experiments are conducted in presence
of ambient noise from both air-conditioning and personal computers, estimated to
be15dB.

Fig. 1(a) shows the average RMSE of the beamforming systems for different
distancesd between the sensors. Effectively, changing the inter-microphone dis-
tance changes the resolution of the array. It is evident that the MI based beamformer
remains more robust in estimating the correct DOA for all distances. The improve-
ment of performance for both beamforming systems as the spacing decreases can
prove misleading since it is caused by the decreased resolution. Safe conclusions
were drawn by observing the comparative performance of the two systems for each
spacing.



288 Osama N. Alrabadi, Fotios Talantzis, and Anthony G. Constantinides

0.06 0.14 0.30
0

1

2

3

4

5

6

7

8

9

10

Distance between receivers d (m)

R
M

S
E

MI beamformer 
Power beamformer

(a) Effect ofd during experiments

0.06 0.14 0.30
0

1

2

3

4

5

6

7

8

9

Distance between microphones d (m)

R
M

S
E

MI beamformer
Power beamformer

(b) Effect ofd during simulations

Fig. 1 Average RMSE for the two beamforming systems during experiments and simulations.
Values are shown for three different inter-microphone distances.L = 0.5×T60 fs andN = 4.

4.2 Simulations

Simulations where performed for three different environments differentiated by their
reverberation timesT60. For the used sampling ratefs these result in impulse re-
sponsesh(k) of different lengths. The impulse responses are generated using the
image model [9] modified to allow for non-integer sample delays. The simulated
room dimensions are identical to the ones of the room used in the experiments.
These where then convolved with the speech signal to create the microphone signals.
Moreover, 15dB of additive noise was also introduced to the signals. The process
was repeated for 30 random displacements and rotations of the relative geometry
between the source and the receivers inside the room.

4.2.1 Effect of system order

Choosing the orderN of the MI beamforming system affects performance signifi-
cantly. Fig. 2 shows the RMSE for varyingN for all three environments.L is chosen
to be 0.5×T60× fs. Since by increasingN we include more information about re-
verberation, the MI calculations became more accurate and the estimation of the
correct DOA becomes more robust. Thus, the effect ofN is more evident for higher
reverberation times.

4.2.2 Effect of reverberation

The most limiting factor in designing a robust beamformer is the effect of rever-
beration. As someone might expect, as the room becomes more reverberant the
performance of the estimating systems degrades because reflections enforce the
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power or the MI at a wrong DOA. Fig. 3 summarizes the effect for the case when
L = 0.5×T60 fs, N = 4. The MI beamformer exhibits a more robust behavior in all
environments when compared to the power-based beamformer of the corresponding
order.
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Fig. 2 RMSE of MI system with increasing orderN for different values ofT60. L = 0.5×T60 fs.
Microphone spacing is0.30m.

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

8

9

10

T
60

 (sec)

R
M

S
E

MI beamformer
Power beamformer

Fig. 3 RMSE of MI and power systems for varyingT60. L = 0.5×T60 fs. Shown for microphone
spacing of0.30m.

4.2.3 Effect of inter-microphone distance

We also investigate the effect of changing the distance between the microphones
for T60 = 0.30 sec, in order to compare the simulation results with those of the ex-
periments in Fig. 1.(a). Fig. 1.(b) shows the resulting RMSE as the distance of the
microphones increases. The MI system remains better for any spacing. The values
between Fig. 1(b) and Fig.1(a) are not identical but their differences remain small.
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These can be explained by noting that the experimental room is far from the ide-
alized version of the simulations. In reality, the experimental environment contains
furniture and walls of different texture and materials that a explain to a great degree
the differences. Additionally, the image model used in the simulations is subject to
a set of assumptions [9].

4.2.4 Effect of frame size

Beamforming systems are normally used in real-time applications so their response
time is crucial. In terms of our DOA estimation system this translates into the num-
ber of samplesL that are needed to produce a robust estimate. Thus, we examine
the effect of the value ofL by considering a series of different block sizes. To keep
these a function of the reverberation level in the room we examineL=[0.25, 0.5,
0.75, 1]×T60 fs in samples. Fig.4 expresses the effect ofL on the performance of the
MI beamformer as compared to the classical power-based forT60 = 0.15 sec and
T60 = 0.30 sec. This shows that, for the chosen parameters, the MI based method is
more robust than its counterpart, whereN = 4 in all cases. In real-time systems
where small block sizes are required, the presented system would obviously be
preferable since it requires far fewer data to perform satisfactory.
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Fig. 4 RMSE of MI and power systems for varying value ofL. Shown forT60 = 0.15 sec and
T60 = 0.30sec. Microphone spacing is0.30m.

5 Conclusions

In this paper a novel beamforming system has been introduced that detects the pres-
ence of an acoustic source based on information theory concepts. We demonstrated
that such an approach can take into account information about reverberation and
thus return DOA estimations those are more robust. This was demonstrated by a set
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of experiments and simulations under similar conditions. The MI-based beamformer
showed improved robustness for all examined scenarios and for any combination of
environmental and system variables like reverberation time, inter-microphone spac-
ing and frame size.
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